FastLim: a fast LHC limit calculator

Kazuki Sakurai

In collaboration with:

Michele Papucci (LBNL), Andreas Weiler, Lisa Zeune

Contents

- Introduction
- A fast LHC limit calculation and FastLim
- FastLim demonstration
- Application
- Summary

Introduction

- LHC worked well and produced a lot of SUSY limits
- \bullet The limits are not generic and employ assumptions \rightarrow cannot be applied to your model
- ullet MSSM has more than 100 parameters ullet no way to calculate/visualise the generic limit

ATLAS-CONF-2011-086

Signal Region	$\geq 2 \text{ jets}$	\geq 3 jets	≥ 4 jets
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 130	> 130	> 130
Leading jet p _T [GeV]	> 130	> 130	> 130
Second jet p _T [GeV]	> 40	> 40	> 40
Third jet p_T [GeV]	_	> 40	> 40
Fourth jet p _T [GeV]		_	> 40
$\Delta\phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{min}} (i = 1, 2, 3)$	> 0.4	> 0.4	> 0.4
$E_{ m T}^{ m miss}/m_{ m eff}$	> 0.3	> 0.25	> 0.25
m _{eff} [GeV]	> 1000	> 1000	> 1000

Process	Signal Region			
110003	≥ 2 jets	≥ 3 jets	≥ 4 jets	
Prediction	12.1 ± 2.8	10.1 ± 2.3	7.3 ± 1.7	
Observed	10	8	7	

Signal Regions

ATLAS-CONF-2011-086

Signal Region	≥ 2 jets	≥ 3 jets	≥ 4 jets
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 130	> 130	> 130
Leading jet p_T [GeV]	> 130	> 130	> 130
Second jet p _T [GeV]	> 40	> 40	> 40
Third jet p_T [GeV]	_	> 40	> 40
Fourth jet p_T [GeV]	_	_	> 40
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{min}} (i = 1, 2, 3)$	> 0.4	> 0.4	> 0.4
$E_{ m T}^{ m miss}/m_{ m eff}$	> 0.3	> 0.25	> 0.25
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 1000

Process	Signal Region		
110005	≥ 2 jets	≥ 3 jets	≥ 4 jets
Prediction	12.1 ± 2.8	10.1 ± 2.3	7.3 ± 1.7
Observed	10	8	7

Signal Regions

ATLAS-CONF-2011-086

Signal Region	≥ 2 jets	≥ 3 jets	≥ 4 jets
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 130	> 130	> 130
Leading jet p_T [GeV]	> 130	> 130	> 130
Second jet p _T [GeV]	> 40	> 40	> 40
Third jet p_T [GeV]	_	> 40	> 40
Fourth jet p_T [GeV]	_	_	> 40
$\Delta \phi(\text{jet}_i, E_{\text{T}}^{\text{miss}})_{\text{min}} (i = 1, 2, 3)$	> 0.4	> 0.4	> 0.4
$E_{ m T}^{ m miss}/m_{ m eff}$	> 0.3	> 0.25	> 0.25
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 1000

Process	Signal Region				
110005	$\geq 2 \text{ jets}$ $\geq 3 \text{ jets}$ $\geq 4 \text{ jets}$				
Prediction	12.1 ± 2.8	10.1 ± 2.3	7.3 ± 1.7		
Observed	10	8	7		

additional contribution from SUSY events

$$N_{SUSY} = ..., 2,, 10, ...?$$

Process		Signal Region	
110003	≥ 2 jets	≥ 3 jets	≥ 4 jets
Prediction	12.1 ± 2.8	10.1 ± 2.3	7.3 ± 1.7
Observed	10	8	7

$$rac{N_{
m SUSY}^{(i)}}{N_{
m UL}^{(i)}} \equiv R^{(i)} \left\{ egin{array}{l} > 1 : {
m excluded} \ \leq 1 : {
m allowed} \end{array}
ight.$$

How to evaluate Nsusy?

by Feynman diagram calc. (Prospino, NLLfast, ...)
$$N_{\rm SUSY}^{(i)} = \epsilon_{\rm SUSY}^{(i)} \cdot \sigma_{\rm SUSY} \cdot \mathcal{L}_{\rm int} \text{ fixed}$$

How to evaluate Nsusy?

by Feynman diagram calc. (Prospino, NLLfast, ...)
$$N_{\rm SUSY}^{(i)} = \underbrace{\epsilon_{\rm SUSY}^{(i)}}_{\text{Constant of MC simulations}} \cdot \sigma_{\rm SUSY} \cdot \mathcal{L}_{\rm int}$$

$$\epsilon_{\rm SUSY}^{(i)} = \lim_{N_{\rm MC}^{\rm gen.} \to \infty} \frac{N_{SR}^{(i)} \left(\begin{array}{c} \text{Events fall into} \\ \text{Signal Region (i)} \end{array} \right)}{N_{MC}^{\rm gen.}}$$

Chain of simulations

Chain of simulations

 $G = \tilde{g}$

 $Q = \tilde{q}$

 $N1 = \tilde{\chi}_1^0$

• We propose a new approach to estimate N_{SUSY}

Key Idea: to reconstruct N_{SUSY} using simplified model processes

• We propose a new approach to estimate N_{SUSY}

 $Q = \tilde{q}$ $G = \tilde{g}$ $N1 = \tilde{\chi}_1^0$

Key Idea: to reconstruct N_{SUSY} using simplified model processes

 $N1 = \tilde{\chi}_1^0$

• We propose a new approach to estimate N_{SUSY}

Key Idea: to reconstruct N_{SUSY} using simplified model processes

```
N_{SUSY}^{(i)} = \begin{cases} N_{QqN1:QqN1} = \mathbf{\epsilon}_{QqN1:QqN1}(mQ, mN1) \cdot \sigma_{QQ} \cdot BR_{QqN1:QqN1} \cdot L_{int} \\ + \\ N_{GqqN1:GqqN1} = \mathbf{\epsilon}_{GqqN1:GqqN1}(mG, mN1) \cdot \sigma_{GG} \cdot BR_{GqqN1:GqqN1} \cdot L_{int} \\ + \\ N_{GqqN1:QqN1} = \mathbf{\epsilon}_{GqqN1:QqN1}(mQ, mG, mN1) \cdot \sigma_{GQ} \cdot BR_{GqqN1:QqN1} \cdot L_{int} \\ + \\ \vdots \end{cases}
```

$$N1 = \tilde{\chi}_1^0$$

Efficiencies for simplified processes depend only on a few mass parameters

```
N_{QqN1:QqN1} = \epsilon_{QqN1:QqN1(mQ, mN1)} \cdot \sigma_{QQ} \cdot BR_{QqN1:QqN1} \cdot L_{int} +
N_{SUSY}^{(i)} = \left\{ \begin{array}{l} N_{GqqN1:GqqN1} = \mathbf{\epsilon}_{GqqN1:GqqN1}(mG,mN1) \cdot \sigma_{GG} \cdot BR_{GqqN1:GqqN1} \cdot L_{int} \\ + \\ N_{GqqN1:QqN1} = \mathbf{\epsilon}_{GqqN1:QqN1}(mQ,mG,mN1) \cdot \sigma_{GQ} \cdot BR_{GqqN1:QqN1} \cdot L_{int} \\ + \\ \vdots \end{array} \right.
```

 $Q = \hat{q}$

 $G = \tilde{g}$

 $N1 = \tilde{\chi}_1^0$

• Once one has the efficiency tables for the simplified model processes, one can read off the efficiencies and re-assemble N_{SUSY} of your model.

no MC simulation is required!

•
$$\sigma_{QQ}$$
 • $BR_{QqN1:QqN1}$ • L_{int}

•
$$\sigma_{GG}$$
 • $BR_{GqqN1:GqqN1}$ • L_{int}

•
$$\sigma_{GQ}$$
 • $BR_{GqqN1:QqN1}$ • L_{int}

FastLim

pre-calculated cross section tables calculated by NLLfast

Prospino2. I is interfaced for the EWkino cross section

efficiency tables for the simplified processes taken from ATLAS/CMS if available otherwise calculated by MadGraph + ATOM

(Automated Testing Of Models)

- ATOM: a program to calculate the efficiencies including detector effects
- well validated and reliable

FastLim

FastLim

FastLim

Process	σ·Br[fb]
QqN1:QqN1	1.04
GqqN1:GqqN1	0.98
GqqN1:QqN1	2.15
• • •	• • •

FastLim $\epsilon_{\mathrm{proc}(a)}^{(i)}$ masses **Xsec** $\sigma_{QQ}, \sigma_{GG}, \sigma_{QG}$ mN1 interpolation m_{G} BR m_Q reconstruction of Nsusy $N_{SUSY}^{(i)} = \sum \epsilon_a^{(i)} \cdot (\sigma \cdot Br)_a \cdot \mathcal{L}_{int}$ simplified model generation $\sigma \cdot Br[fb]$ Process N_{SUSY}/N_{UL} cut QqN1:QqN1 1.04 GqqN1:GqqN1 0.98 SR(1) 1.04 GqqN1:QqN1 2.15 SR(2) 0.98 • • •

A complete set of Q-G-N1 model (w/o top) has been implemented

• Many analyses have been implemented (thanks to ATOM)

Name	E _{cm}	Short description
ATLAS_2011_CONF_2011_086	7	Jets+MET at 7 TeV with 165pb^{-1}.
ATLAS_2011_CONF_2011_090	7	Ilepton+jets+MET at 7 TeV with 165pb^{-1}.
ATLAS_2011_CONF_2011_098	7	bjets+MET+0L at 7 TeV with 830pb^{-1}.
ATLAS_2011_CONF_2011_126	7	Search for Anomalous Production of Prompt Like-sign Muon Pairs with 1.6 fb^{-1}.
ATLAS_2011_CONF_2011_130	7	bjets+llept+jets+MET SUSY search at 7TeV with Ifb^{-1}
ATLAS_2011_S8970084	7	<pre>Ilepton+jets+MET at 7 TeV with 35pb^{-1}.</pre>
ATLAS_2011_S8983313	7	Jets+MET at 7 TeV with 35pb^{-1}.
ATLAS_2011_S9011218	7	bjets+MET at 7 TeV with 35pb^{-1}.
ATLAS_2011_S9019553	7	SF lepton pairs SUSY search at 7 TeV with 35pb^{-1}.
ATLAS_2011_S9019561	7	2leptons+MET at 7TeV with 35pb^{-1}.
ATLAS_2011_S9225137	7	multijet SUSY search at 7TeV
ATLAS_2012_CONF_2012_033	7	2-6 jets + MET SUSY search at 7TeV
CMS_2011_S8932190	7	Jets+MET with alpha_T variable with 35pb^{-1}
CMS_2011_S8991847	7	OS dileptons at 7TeV with 35pb^{-1}
CMS_2011_S9036504	7	Same Sign dileptons at 7TeV in 35pb^{-1}
CMS_PAS_SUS_10_005	7	HT,MHT susy search in jets+MET at 7 TeV with 35pb^{-1}.
CMS_PAS_SUS_10_009	7	razor analysis on jets+MET and Hepton+jets+MET at 7 TeV with 35pb^{-1}.
CMS_PAS_SUS_I0_011	7	alpha_T analysis on b jets+MET at 7 TeV with 35pb^{-1}.
CMS_PAS_SUS_II_003	7	Jets+MET with alpha_T variable with 1.1 fb^{-1}
CMS_PAS_SUS_II_017	7	Search for New Physics in Events with a Z Boson and Missing Transverse Energy
ATLAS_2012_CONF_2012_109	8	2-6 jets + MET SUSY search at 8TeV
CMS_PAS_SUS_12_028	8	CMS 8 TeV analysis

FastLim demonstration

Applications

Because FastLim contains a finite set of simplified processes, we would like to check how well the code covers the interesting models:

- CMSSM
- NUHM
- natural SUSY
- spread SUSY

$$Q = \tilde{q}$$
 $G = \tilde{g}$
 $C1 = \tilde{\chi}_1^{\pm}$
 $N2 = \tilde{\chi}_2^{0}$
 $N1 = \tilde{\chi}_1^{0}$

Coverage =
$$\frac{\sum_{i} \sigma_{i} \left(\text{implemented processes} \right)}{\sigma_{\text{tot}}}$$

Q-G-N1 model

GttNI QqGttNI GbbNI QqGqqNI QqGbbNI_QqGbbNI GqqNI_QqGqqNI QqGttNI QqGttNI GttNI QqNI GbbNI QqNI GbbNI GbbNI GbbNI_QqGttNI GttNI GttNI QqGbbNI_QqGttNI QqGttNI QqNI QqGbbNI_QqGqqNI GbbNI GttNI GqQqNI GqQqNI QqGqqNI_QqGqqNI GqqNI QqGttNI GbbNI GqqNI GttNI QqGqqNI GttNI_QqGbbNI GqQqNI_QqNI QqNI QqNI GqqNI GttNI QqGqqNI_QqNI GqqNI_QqGbbNI GbbNI_QqGbbNI QqGbbNI_QqNI QqGqqNI_QqGttNI GqqNI GqqNI GqqNI_QqNI

$$Q = \tilde{q}$$

$$G = \tilde{g}$$

$$C1 = \tilde{\chi}_{1}^{\pm}$$

$$N2 = \tilde{\chi}_{2}^{0}$$

$$N1 = \tilde{\chi}_{1}^{0}$$

Coverage =
$$\frac{\sum_{i} \sigma_{i} \left(\text{implemented processes} \right)}{\sigma_{\text{tot}}}$$

Q-G-N1 + G(Q)-C1-N1 + C1-N2-N1 model

GttNI_QqGttNI GqqNI QqGqqNI
GttNI_QqNI
GbbNI_GbbNI
GbbNI_QqGttNI
QqGttNI_QqNI
GbbNI_GttNI
QqGqqNI_QqGqqNI
GbbNI_GqqNI
GttNI_QqGqqNI
GqQqNI_QqNI
GqqNI_GttNI
GqqNI_QqGbbNI
QqGbbNI_QqNI
GqqNI_GqqNI

GbbNI_QqGqqNI QqGttNI QqGttNI GbbNI QqNI GttNI GttNI QqGbbNI_QqGttNI GqQqNI GqQqNI GqqNI QqGttNI GttNI_QqGbbNI QqNI QqNI QqGqqNI_QqNI GbbNI_QqGbbNI QqGqqNI_QqGttNI GqqNI_QqNI

GqqClwNl GttNl QqGbbNI_QqGbbNI_GbtCIwNI_GqqCIwNI GbbNI GqqCIwNI GqqCIwNI GqqNI GbtCIwNI GttNI GbbNI GbtCIwNI QqGbbNI_QqGqqNI GqqCIwNI_GqqCIwNI GbtClwNl GqqNl GbtClwNl GbtClwNl QqCIwNI QqNI QqCIwNI_QqCIwNI CIWNI N2zNI CIWNI CIWNI CIWNI N2h0NI

$$Q = \tilde{q}$$

$$G = \tilde{g}$$

$$C1 = \tilde{\chi}_1^{\pm}$$

$$N2 = \tilde{\chi}_2^0$$

$$N1 = \tilde{\chi}_1^0$$

$$\tilde{\chi}_1^+ \to \nu \tilde{\tau}^+ \text{ open}$$

 $\tilde{\chi}_1^+ \to W^+ \tilde{\chi}_1^0 \text{ suppressed}$

gluino decay modes to the higgsino states dominate due to the top Yukawa coupling and that makes decay chains longer

$$Q = \tilde{q}$$
 $G = \tilde{g}$
 $C1 = \tilde{\chi}_1^{\pm}$
 $N2 = \tilde{\chi}_2^{0}$
 $N1 = \tilde{\chi}_1^{0}$

Q-G-CI-NI model is necessary => 4 dimensional

NUHM coverage

Non Universal Higgs Mass (NUHM) model

$$\mu = m_A = 3 m_{1/2}$$

- $\tilde{g} \to t\bar{t}\tilde{\chi}_3^0$, $b\bar{t}\tilde{\chi}_2^+$ not open due to large μ
- 4D Q-G-C1(N2)-N1 model is assumed

After the null SUSY search results and ~125GeV Higgs discovery at the LHC,
 natural SUSY and spread SUSY models become attractive

natural SUSY

- tension between fine tuning and null SUSY search results is optimised
- the Higgs sector should be extended to explain 125GeV Higgs mass, but such extension may not alter the LHC signatures

R.Kitano, Y.Nomura, 0602096 M.Papucci, J.T.Ruderman, A.Weiler, 1110.6926

spread SUSY

- EW naturalness is removed from the SUSY motivation
- no flavour/CP problem
- 125GeV Higgs mass is realised
- model building is simple

L.J.Hall, Y.Nomura, 1111.4519
M.Ibe, S.Matsumoto, T.T. Yanagida, 1202.2253
A.Arvanitakia, N.Craigb, S.Dimopoulosa, G.Villadoroc, 1210.0555
N.Arkani-Hamed, A.Gupta, D.E.Kaplan, N.Weiner, T. Zorawski, 1212.6971

• • •

• After the null SUSY search results and ~125GeV Higgs discovery at the LHC, natural SUSY and spread SUSY models become attractive

• After the null SUSY search results and ~125GeV Higgs discovery at the LHC, natural SUSY and spread SUSY models become attractive

good coverage can be achieved by a few sets of simplified models

Summary

- FastLim reconstructs N_{SUSY} of a given model from the efficiency tables for the simplified processes and calculate the LHC constraints.
- A finite set of simplified processes are implemented in FastLim, but it can provide good coverage for interesting SUSY models: CMSSM, NUHM, natural SUSY, spread SUSY

simplified processes

your favourite models

Thank you for listening

G-N1 + G-T1(B1)-N1 model

GbbNI GbtNI GbbNI GqqNI BIbNI BItNI GbtNI_GqqNI GqqNI GqqNI BIBNI BIBNI GqqNI_GttNI GtTIbNI GtTItNI TIbNI TItNI GttNI_GttNI GtTltNI GtTltNI TItNI TItNI GbbNI GbbNI GtTlbNl GtTlbNl BItNI BItNI GbtNI GbtNI GbBIbNI_GbBItNI TIbNI_TIbNI GbbNI_GttNI GbBItNI GbBItNI GbtNI GttNI GbBIbNI GbBIbNI

$G-C1-N1 + C1-N2-N1 \mod e1$

GbbNI_GbtCIwNI
GqqCIwNI_GqqNI
GbtNI_GqqCIwNI
GbtCIwNI_GqqNI
GbtCIwNI_GbtNI
GdqCIwNI_GbtNI
GdqCIwNI_GqqCIwNI
GbtCIwNI_GdqCIwNI

GttNI_GttNI
GbtNI_GttNI
GbtCIwNI_GttNI
GbbNI_GqqCIwNI
GqqCIwNI_GttNI
CIwNI_CIwNI
CIwNI_N2zNI
CIwNI_N2h0NI

$$Q = \tilde{q}$$
 $G = \tilde{g}$
 $C1 = \tilde{\chi}_{1}^{\pm}$
 $N2 = \tilde{\chi}_{2}^{0}$
 $N1 = \tilde{\chi}_{1}^{0}$

$$\tilde{g} \to \tilde{t}_1 t, \tilde{b}_1 b \text{ open}$$

$$\tilde{t}_1 \to b \tilde{\chi}_2^+ \to \cdots$$

$$\tilde{b}_1 \to b \tilde{\chi}_3^0 \to \cdots$$

higgsinos make decay chains longer BR is large due to the top Yukawa