

Reinhild Yvonne Peters

Georg-August University Göttingen & DESY

Motivation

- tt forward backward asymmetry at Tevatron: larger than SM prediction
 - New physics?
 - Issue: IF new physics, there are constraints from other top precision measurements
- Constraints from b quark coupling from precision flavor observables
 → many models for A_{FB} couple only to right-handed top quarks
 - → predict large top polarization!
- Top decay in top rest frame:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,n}} = \frac{1}{2} \left(1 + \mathcal{P}_n \kappa_i \cos\theta_{i,n} \right)$$

- P_n : polarization; κ_i : spin analyzing power of decay product i;
 - θ_i : direction of daughter wrt. chosen axis
 - In ATLAS paper: κ is called α

 π

Krohn et al, arxiv:1105.3743

Motivation

 For example: lepton asymmetry related to top polarization

> black: unpolarized top Red: right-handed top Blue: left-handed top

Important to measure top polarization

Krohn et al, arxiv:1105.3743

- In its own right
- To distinguish models predicting tt asymmetry !=SM

First Top Polarization Study

- First study done by DØ
 - Reconstruction in dilepton: neutrino weighting; in I+jets: kinematic fitter
 - Calculate cos θ distribution
 - Compare prediction of SM MC to data
 - \rightarrow good agreement with SM

Yvonne Peters

Top Polarization Measurements

- Since summer 2012: two measurements of top polarization
 - CMS: dilepton events; 5.0fb⁻¹, 7TeV data
 - ATLAS: dilepton and I+jets events, 4.7fb⁻¹, 7TeV data

arxiv:1307.6511

- Will go through
 - Measurement procedures
 - Results
 - Systematics

for both measurements and compare

Conclusions are based on my personal opinion!

ATLAS Measurement: Basics

- Calculate cos distribution
 - Quantization axis: top quark direction in tt rest frame (helicity basis)
- Event selection:
 - Dilepton: standard selection
 - At least 2 jets
 - Two isolated, opposite-sign high p_T leptons (e or μ)
 - Large \mathbf{E}_{τ} for ee and $\mu\mu$ channel, large \mathbf{H}_{τ} for $\mathbf{e}\mu$ channel
 - I+jets: standard selection
 - At least 4 jets, >0 b-tagged
 - Exactly one isolated, high p_{τ} lepton (e or μ)
 - Large \mathbf{E}_{T} and cut on \mathbf{m}_{T}^{W}

ATLAS Measurement: Basics

- Sample estimation using MC and data-driven estimations
 - Diboson and single top taken from MC
 - In l+jets:
 - Simulation for Z+jets
 - Charge asymmetry normalization for W+jets (shape from MC)
 - QCD multijet estimated using matrix method
 - In dilepton:
 - Z+jets in ee and $\mu\mu$ channels: estimated with

 $E_{T,rel}^{miss} = E_T^{miss} \times \sin \Delta \phi (E_T^{miss}, closest \ object)$

Fake estimation using matrix method (mainly W+jets)

ATLAS Measurement: Procedure

- Reconstruction of tt event:
 - I+jets: KLfitter
 - Dilepton: neutrino weighting
 - Assume neutrino ηs
 - solve event kinematics for each assumption
 - Calculate ∉_T from neutrino momentum solutions
 - Calculate weight based on the comparison of calculated and measured 𝓕_⊥
 - Neutrino weighting efficiency for signal: ~85%
- Take solution with highest weight
- Use lepton for construction of $\cos \theta$

Measurement procedure: template fit

Step 1: construct templates with positive and negative polarization

ATLAS Measurement: Procedure

- Consider two scenarios: CP conserving and CP violating
- Reweighting:
 - tt MC: MC@NLO with full spin correlation included
 - Use lepton/d-type quark from top and antitop sides:

 $d\sigma \propto 1 \pm (\alpha P)_1 \cos \theta_1 \pm (\alpha P)_2 \cos \theta_2 - C \cos \theta_1 \cos \theta_2$

- For the two scenarios:
 - CP conserving: $(\alpha P)_1 = (\alpha P)_2$
 - CP violating: $(\alpha P)_1 = -(\alpha P)_2$
- C: spin correlation; use value from MC truth
- Reweight templates to ±0.3 for polarization of templates
 → to not run into bias
- α for leptons: 1 in LO; close to 1 in NLO

ATLAS Measurement: Fit

- Binned maximum likelihood fit of templates
 - Signal and background templates
 - Extract f: fraction of positive polarization
 - Simultaneous extraction of tt
 cross section

 → reduce uncertainties from normalization

ATLAS Measurement: Results

Yvonne Peters

Final combined results:

 $\alpha_{\ell} P_{\text{CPC}} = -0.035 \pm 0.014 (\text{stat}) \pm 0.037 (\text{syst})$

 $\alpha_{\ell} P_{\text{CPV}} = 0.020 \pm 0.016(\text{stat})^{+0.013}_{-0.017}(\text{syst})$

- Consistent with SM prediction
 - SM: negligible polarization (P=0.003 from weak contributions)
- Uncertainties for CP violating smaller
 → due to reverse behavior for top and antitops

CMS Measurement: Basics

- Calculate $\cos \theta$ distribution using leptons
- Select dilepton events
 - At least 2 jets, of which at least 1 is b-tagged
 - Two isolated, opposite-sign high p_{τ} leptons (e or μ)
 - No cut on $\mathbf{E}_{\mathbf{T}}$
- Signal and background estimation:
 - Signal generated with Powheg+Pythia (ATLAS: MC@NLO+Herwig)
 - Diboson and single top from MC
 - Fakes estimated from "loosened" selection criteria on lepton
 - Data-driven; like matrix-method
 - Z+jets in ee and μμ: based on counting events in Z veto region (i.e. close to Z mass peak)

Yvonne Peters

CMS Measurement: Basics

CMS:

Sample	ee	μμ	еµ	all
$t \overline{t} ightarrow \ell^+ \ell^-$	1791.7 ± 4.4	2127.3 ± 4.7	5069.4 ± 7.3	8988.5 ± 9.7
$t\bar{t} \rightarrow other$	32.5 ± 2.9	4.8 ± 1.1	53.3 ± 3.6	90.7 ± 4.8
W + jets	< 1.9	4.7 ± 3.3	4.7 ± 3.4	9.4 ± 4.7
$DY \rightarrow ee$	52.3 ± 5.8	< 0.6	< 0.6	52.3 ± 5.8
$DY \rightarrow \mu\mu$	< 0.6	72.8 ± 6.5	1.6 ± 0.9	74.4 ± 6.5
$DY \rightarrow \tau \tau$	17.6 ± 3.3	8.7 ± 2.2	18.7 ± 3.2	45.0 ± 5.1
Di-boson	10.6 ± 0.5	13.0 ± 0.5	24.0 ± 0.7	47.6 ± 1.0
Single top	84.9 ± 2.3	101.2 ± 2.4	252.1 ± 3.9	438.2 ± 5.1
Total (simulation)	1989.6 ± 8.8	2332.6 ± 9.3	5423.8 ± 10.3	9746.0 ± 16.4
Data	1961	2373	5412	9746

For comparison: yields in ATLAS (before reconstruction)

Source	e+jets	μ +jets	ee	$e\mu$	$\mu\mu$
$t\overline{t}$	16200	26500	570	4400	1660
Bkgd.	5100	9400	110	700	320
Total	21300	35900	690	5000	1980
Uncertainty	± 1300	± 1700	± 80	± 500	± 180
Data	21956	37919	740	5328	2057

CMS Measurement: Procedure

- Extract cos θ distribution
 - Reconstruction of events: analytical matrix weighting technique
 - Do many hypotheses of top mass
 - For given top mass, constraints and measured observables restrict transverse momenta of neutrinos to lie on ellipse in px-py plane
 - \rightarrow intersection of ellipses from both neutrinos: solutions fulfilling the constraints
 - Calculate weight for each solution (based on probabilities to observe leptons of certain energy for assumed top mass)

CMS Measurement: Procedure

- Use only positively charged leptons
 - My guess: To avoid CP conserving/violating modeling? Note factor 2 wrt ATLAS definition!

W

Extract polarization as:

 $P_n = \frac{N(\cos(\theta_l^+) > 0) - N(\cos(\theta_l^+) < 0)}{N(\cos(\theta_l^+) > 0) + N(\cos(\theta_l^+) < 0)},$

ith
$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{l,n}} = \frac{1}{2} (1 + 2\kappa_l P_n \cos\theta_{l,n})$$

- - Reco level:
 - $P_n = 0.04 \pm 0.012$ in data; $P_n = 0.049 \pm 0.002$ in simulation
 - Negative leptons: only used as cross-check
 - Correction for background, resolution and acceptance effects still required

CMS Measurement: Procedure

- For resolution/acceptance correction: unfolding
- Binning chosen to optimize bin-to-bin oszillations
- Acceptance matrix bins:

Smearing matrix:

- Taken from Powheg+Pythia tt samples
- Regularized unfolding used (SVD)

CMS Measurement: Result

Result CMS: $P_{n} = -0.009 \pm 0.029 \text{ (stat)} \pm 0.041 \text{ (syst)}$ Reminder ATLAS: $\alpha_{\ell} P_{CPV} = 0.020 \pm 0.016 \text{ (stat)}^{+0.013} \text{ (syst)}$ $\alpha_{\ell} P_{CPV} = 0.020 \pm 0.016 \text{ (stat)}^{+0.013} \text{ (syst)}$

- Remember factor 2:
 - 2xCMS = what to compare to ATLAS!

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,n}} = \frac{1}{2} \begin{pmatrix} 1 + \mathcal{P}_n \kappa_i \cos\theta_{i,n} \end{pmatrix}$$
ATLAS definition

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{l,n}} = \frac{1}{2} \begin{pmatrix} 1 + 2\kappa_l P_n \cos\theta_{l,n} \end{pmatrix}$$
CMS definition

 $\cos(\theta_{l}^{T})$

Systematics: ATLAS

Source	$\Delta lpha_\ell P_{ m CPC}$	$\Delta lpha_\ell P_{ m CPV}$
Jet reconstruction	+0.031 -0.031	+0.009 -0.005
Lepton reconstruction	+0.006 -0.007	+0.002 -0.001
$E_{\rm T}^{\rm miss}$ reconstruction	+0.008 -0.007	+0.004 -0.001
$t\bar{t}$ Modeling	+0.015 -0.016	+0.005 -0.013
Background Modeling	+0.011 -0.010	+0.005 -0.007
Template Statistical Uncertainty	+0.005 -0.005	+0.006 -0.006
Total Systematic Uncertainty	+0.037 -0.037	+0.013 -0.017

CMS

Table 3: Systematic uncertainties.

JES	lepton energy scale	M _t scan range	background	t t modeling	matching
0.020	0.001	0.024	0.009	0.014	0.004
Q^2 scale	simulated M _t	<i>b</i> -tagging eff.	Trig eff. and lep ID	pile-up	Total
0.007	0.019	0.001	0.005	0.002	0.041

 Let's compare for CP conserving scenario (more compatible model between the two experiments)

Systematics: ATLAS

Source	$\Delta \alpha_{\ell} P_0$	CPC	$\Delta \alpha_{\ell} F$	CPV
Jet reconstruction	+0.031 -	0.031	-0.009	-0.005
Lepton reconstruction	+0.006	0.007	+0.002	-0.001
$E_{\mathrm{T}}^{\mathrm{miss}}$ reconstruction	+0.008 -	·0.007 ·	+0.004	-0.001
$t\bar{t}$ Modeling	+0.015 -	- 0.016 ·	+0.005	-0.013
Background Modeling	+0.011 -	·0.010 ·	+0.005	-0.007
Template Statistical Uncertainty	+0.005 -	·0.005 ·	+0.006	-0.006
Total Systematic Uncertainty	+0.037 -	·0.037 ·	+0.013	-0.017

CMS

 Let's compare for CP conserving scenario (more compatible model between the two experiments)

- Dominant systematics at ATLAS: Jet reconstruction
 - Mainly JES
 - Second dominant systematics for CMS
 - JES directly affects shape of $\cos \theta$ (reco methods)
 - Similar order of magnitude for CMS and ATLAS
- Smaller contributions from
 - Background modeling, lepton reco, pile-up, etc
 - Similar in size
 - Some systematics done differently between experiments
 - Matching and scale: shower matching p_T threshold and factorization/renormalization scales: done in CMS
 - Not in ATLAS → but very small compared to other signal modeling

- Signal modeling: compare different MC (MC generator, reconnection, etc.)
 - MC generator: MC@NLO versus Powheg
 - At CMS: unfolding derived from alternative MC
 - At ATLAS: derive templates from alternative MC
 - Done at ATLAS:
 - Color reconnection
 - Fragmentation and parton shower (should be ~ covered in CMS due to using Herwig for MC@NLO)
 - Underlying event

•	ISR/FSR (at CMS:	Top mass	+0.012	-0.012	+0.000	-0.000
		Signal MC generator	+0.005	-0.008	+0.004	-0.013
	scale variation instead)	ISR and FSR	+0.005	-0.004	+0.001	-0.002
		Color reconnection	+0.001	-0.004	+0.002	-0.002
		Fragmentation/parton shower	+0.002	-0.002	+0.000	-0.001
		Underlying event	+0.002	-0.004	+0.002	-0.002
		Proton PDF	+0.003	-0.003	+0.000	-0.000

 $\Delta \alpha_{\ell} P_{\rm CPV}$

 $\Delta \alpha_{\ell} P_{\rm CPC}$

- Top mass:
 - ATLAS: use different top mass assumptions in MC
 - Assign fitted polarization for mass values ±1.4GeV around default of 172.5GeV
 - "Large" effect from reconstruction
 - CMS: use different top mass assumptions in MC (down to 166.5GeV and up to 178GeV)
- Choice of M₁ scan for reconstruction technique
 - Take largest difference when changing scan range from default 165-180GeV to 0-2500GeV, 100-300GeV or fixed 172.5GeV
 - Conservative
- MC statistics: template statistics error for ATLAS small
 - CMS: ?

- Two measurements of top polarization on the market
 - ATLAS: publication submitted to journal
 - CMS: preliminary result in dilepton
- Pretty different techniques
 - ATLAS: "simple" template fit
 - CMS: full corrected distribution of $\cos \theta$
- So far: polarization in agreement with SM value

BACKUP

Jet Energy Scale

