Physics background and beam-beam effects

S. Lukić For the FCAL Collaboration

Vinča Institute of <mark>Nuclear Sciences,</mark> University of <mark>Belgrade</mark>, Serbia

Outline

- Highlights from the method of luminosity measurement*
 - Correction of angular losses from beam-beam effects
 - Estimate and suppression of background at ILC
- Overview of the systematic uncertainties at ILC

* For details see:

S. Lukić et al., JINST 8 (2013) P05008 I. Božović-Jelisavčić et al., arXiv:1304.4082

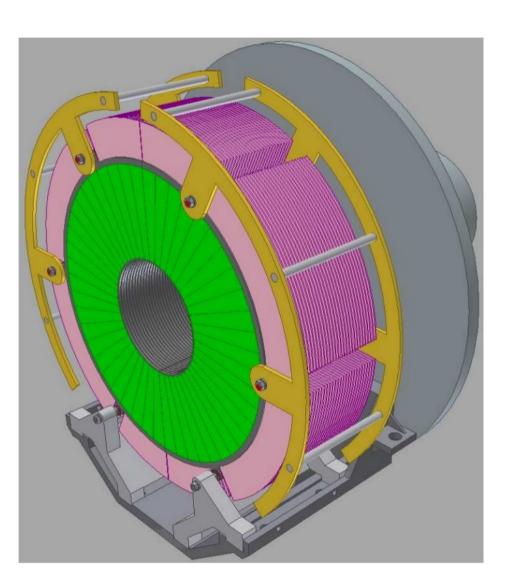
Luminosity measurement

• Using the Bhabha scattering as the gauge process

$$L = \frac{N_{Bh}(\Xi(E_{1,2}^{lab}, \Omega_{1,2}^{lab}))}{\sigma_{Bh}(Z(E_{1,2}^{CM}, \Omega_{1,2}^{CM}))}$$

- Precision ~0.6 permille at LEP
- A number of systematic effects limiting precision at future colliders
 - Beam-beam effects (10%)
 - Luminosity >2 orders of magnitude higher than @LEP
 - Higher energy
 - Physics background

Luminosity Calorimeter

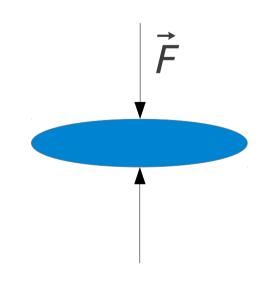


- Two W-semiconductor sandwich-calorimeters (30 layers)
- One at each side of the IP, at 2.5 m
- Segmentation in r, ϕ
- Molière radius ~1cm
- 4-momentum reconst.
- Fiducial volume (FV) in the angular range 41-67 mrad (2.3-3.8°)

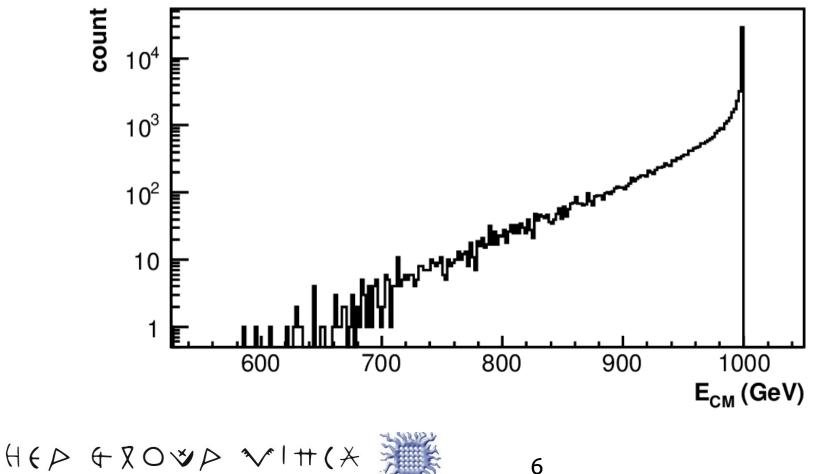
Beam-beam effects

- EM interaction at bunch crossing
 - Lorentz factor $\gamma \sim 10^6$
 - "Pinch" effect strong focusing of the bunches
 - Beamstrahlung (before collision)
 - Energy loss
 - Boost along the beam axis **Counting loss**

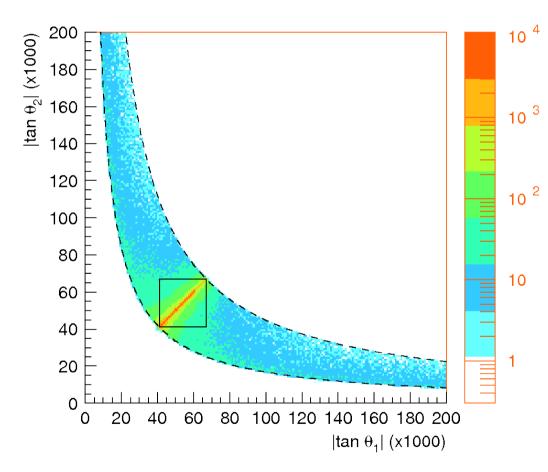
5


• *EM deflection* of the final charged particles – minor additional counting loss

K. Yokoya and P. Chen, in *Lecture Notes in Physics* vol. 400, pp. 415-445, Springer 1991



Energy loss


 Luminosity spectrum at 1TeV ILC (Guinea-Pig, beam parameters from the ILC Interim Report 2011)

Angular loss

- Simulation of Bhabha events using Guinea-Pig and BHLUMI
- Final angles feature Lorentz boost along the beam axis

Correction of the angular loss

Reconstruct the boost of the *collision frame* from the final angles

$$\beta_{coll} = \frac{\sin(\theta_1 + \theta_2)}{\sin\theta_1 + \sin\theta_2}$$

- For each detected event with the boost β_{coll} there are *n* events with the same boost for which:
 - The scattering angle satisfies $\theta_{coll} \in [\theta_{min,FV}, \theta_{max,FV}]$
 - One of the final electrons misses the FV because of the boost
- $w(\beta_{coll}) = 1 + n = \frac{\int_{\theta_{min}} \frac{\Delta}{d\theta} u_{\theta}}{\int_{\theta_{max}} \frac{d\sigma}{d\theta}} d\theta$ Event-by-event correction weight

S. Lukić et al., JINST 8 (2013) P05008

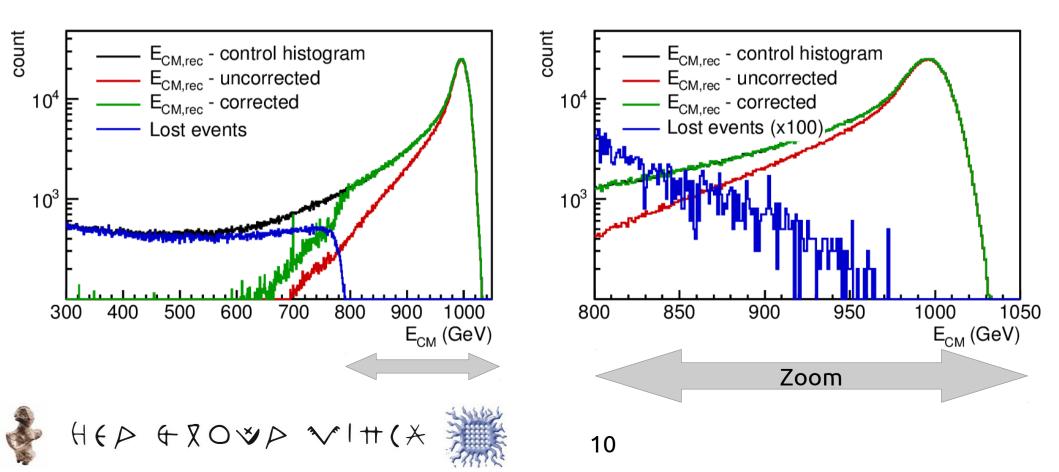
Test by simulation

• Bhabha events

- Initial 4-momenta generated by Guinea-Pig
- Final 4-momenta generated by BHLUMI at a fixed energy, then scaled and Lorentz-transformed into the Guinea-Pig frame
- Tracking of final electrons in Guinea-Pig

• Interaction with the detector (approximation)

- Summation of all 4-momenta within 1 Molière radius of the most energetic shower inside FV
- $E \, {\rm and} \, \theta \, {\rm smearing}$ by addition of random Gaussian fluctuation matching detector resolution
- Beam-parameter variations
 - $q, \sigma_{x,y,z}$ variation by ± 10% ± 20%
 - Beam misalignment in x and y by up to 1σ beam size
 - Total 25 simulations at 500 GeV and 25 simulations at 1 TeV



Results of the angular-loss correction

• Reconstructed CM energies of Bhabha events

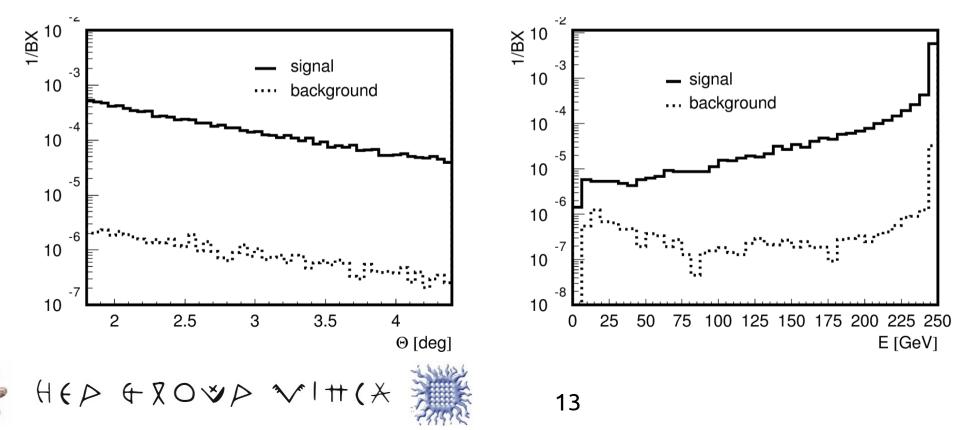
Results of the angular-loss correction

- To quantify the agreement, the integral count in the top 20% of CM energy after correction was compared to the control histogram:
- Deviations in 25 cases of beam-parameter variation agree with zero within statistical uncertainties
- Fractional residual bias in table averaged over 25 simulations

	500 GeV	1 TeV
Before correction	12.8 %	14.0 %
After β_{coll} correction	-1.1 x 10 ⁻³	-0.7 x 10 ⁻³
Fraction $\beta_{coll} > \beta_{max}$	1.5 x 10 ⁻³	1.4 x 10 ⁻³
Corrected	+0.4 x 10 ⁻³	+0.7 x 10 ⁻³
€ > € \$ 0 \$ > \$ \$ 1 + (>	÷ 💥 11	

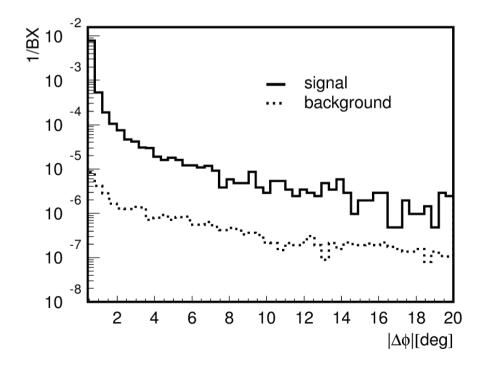
Systematics of the angular correction

- Assumption $\vec{\beta}_{coll} = \beta_{coll} \vec{e}_z$ (corrected)
- Assumption that the Most Energetic Shower contains the electron
- Approximate differential cross section
- Assumption of clean separation of ISR and FSR



Physics background

- Four-fermion processes $e^-e^+ \rightarrow e^-e^+ f \bar{f}$
 - Final electrons at small angles with a large fraction of energy
 - Count relative to Bhabha: (in the entire spectrum)


⁶x10⁻³ @500GeV 2.2x10⁻³ @1TeV

Physics background

- Reduction of background by selection criteria
 - To be equally applicable to the experimental count and the cross-section calculation, selection cuts must be invariant w.r.t the longitudinal boost
- *E_{CM}* cut removes the low-energy background
- Acoplanarity cut $|\Delta \phi| < 5^{\circ}$
- Background fraction after selection: @500GeV: +2.2x10⁻³
 @1TeV: +0.8x10⁻³
- Signal efficiency 94%

14

Further syst. uncertainties (from other studies)

- Bhabha cross-section unc. ?? (at LEP [1] 5.4x10⁻⁴)
- LumiCal polar angle resolution [2] 1.6x10⁻⁴
- Polar angle reconstruction bias [2] 1.6x10⁻⁴
- IP lateral position uncertainty [3] 1x10⁻⁴
- Energy resolution effect [2] 1x10⁻⁴
- Energy scale [2] 1x10⁻³
- Beam polarization [2] 1.9x10⁻⁴

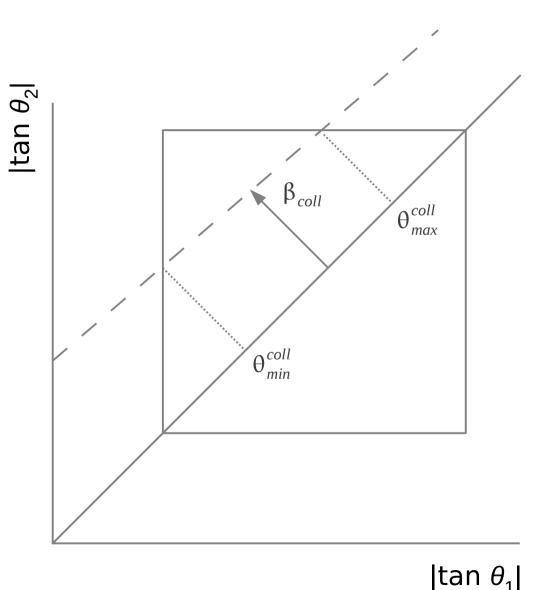
A. Arbuzov et al., Phys. Lett. B 383 (1996) 238
H. Abramowicz et al., JINST 5 (2010) P12002
A. Stahl, LC note LC-DET-2005-004, DESY, 2005

Summary of systematic uncertainties

Effect	ΔL/L (500 GeV)	ΔL/L (1 TeV)	
Bhabha cross section	5.4x10 ⁻⁴	5.4×10 ⁻⁴	
LumiCal $\sigma_{ heta}$	1.6x10 ⁻⁴	1.6x10 ⁻⁴	
LumiCal $\Delta \theta$	1.6x10 ⁻⁴	1.6x10 ⁻⁴	
IP lateral position	1×10 ⁻⁴	1x10 ⁻⁴	
Energy resolution	1x10 ⁻⁴	1x10 ⁻⁴	
Energy scale	1x10 ⁻³	1x10 ⁻³	
Beam polarization	1.9×10 ⁻⁴	1.9×10 ⁻⁴	
Beamstrahlung+ISR (sim-independent corr.)	-1.1x10 ⁻³	-0.7x10 ⁻³	
Beamstrahlung+ISR (full correction)	+0.4x10 ⁻³	+0.7x10 ⁻³	
EMD	0.5x10 ⁻³	0.2x10 ⁻³	
Phys. background	2.2x10 ⁻³	0.8x10 ⁻³	
Total	2.6x10 ⁻³	1.6x10 ⁻³	
$H \in P \in X \cap V \mid H (X)$ 16			

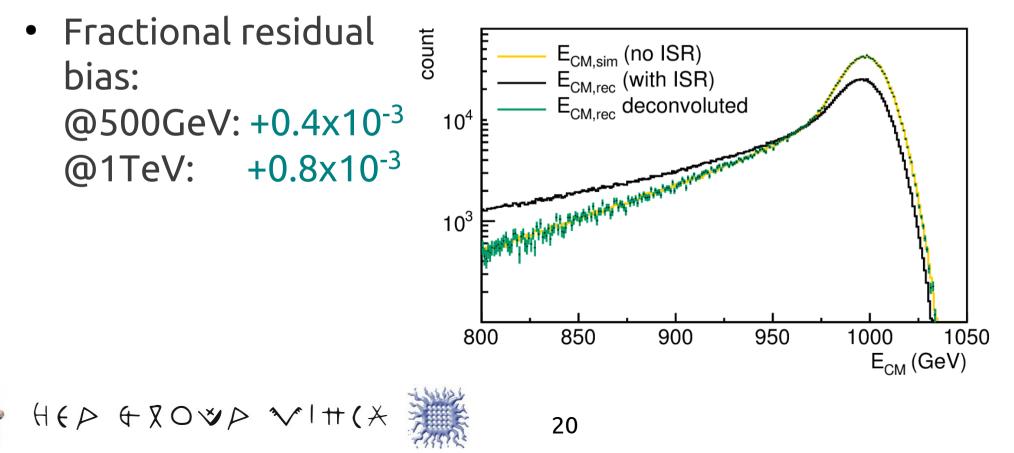
Conclusions

- At present, we have a method of measuring the luminosity with a precision in the low permille range –
 Good for most measurements !
- There are Physics programmes, notably the Giga-Z, requiring better precision –
 Ongoing work – precise estimate of the Physics background ...


Backup slides

 $H \in P \in X \cap Y P \vee H (X$

- Among events with a given β_{coll} (dashed line), the angular acceptance loss can be analytically calculated


- Correct by the weighting factor

 $w(\beta_{coll}) = \frac{\int_{\theta_{max}}^{\theta_{max}} \frac{d\sigma}{d\theta} d\theta}{\int_{\theta_{max}}^{\theta_{coll}} \frac{d\sigma}{d\theta} d\theta}$

ISR deconvolution

- Required as a basis for the cross-section calculation
- Useful for the reconstruction of the luminosity spectrum in the upper 20% of *E*

Requirements on the cross-section calculation

- For the integral luminosity in the upper 20% of energy, the Bhabha cross section should be calculated as follows:
 - Initial CM energy sampled from the normalized ISR-deconvoluted spectrum
 - Bhabha scattering angle within the limiting angles (θ_{\min} , θ_{\max}) of the FV
 - Lab-frame final angles unbounded
 - Final CM energy > $0.8E_0$
- Accuracy unknown, but there is no apparent reason why it should be worse than 10⁻³

