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1 Introduction and Review
The aim of this talk is to present how to calculate the power spectrum of CMB fluctuations analytically. To
reveal the functional dependence of the power spectrum on the cosmological parameters, its main contribu-
tions will be additionally determined by numerical fits. If not marked otherwise, I will refer to the results
presented in [2].

We will start with a review of the basic equations needed for the calculation of the power spectrum.

1.1 Correlation Function
The spectrum of CMB fluctuations is usually expressed in terms of correlation function

C(θ) =
〈δT

T0

(
~n1

) δT
T0

(
~n2

)〉
, (1)

which describes the average of temperature fluctuations measured by photons coming from the directions
~n1 and ~n2, separated by an angle θ (where ~n1 · ~n2 = cos(θ)).
The temperature fluctuations in the direction ~n at present conformal time ηo and location ~x0 are given by

δT
T0

(
ηo, ~xo, ~n

)
=

w d3k

(2π)
3
2

(Φ +
δ

4

)
~k
−

3
4

δ′
~k

k2

∂

∂η0


ηr

ei~k·(~xo+~n (ηr−ηo)), (2)

where Φ and δ correspond to the gravitational potential and the fluctuations of the photon energy density,
while ηr refers to the moment of recombination. (The prime denotes the derivative with respect to conformal
time.) In the above equation, the first term under the integral describes the combined result from the initial
inhomogeneities in the radiation energy density and the Sachs-Wolfe effect, while the second term (the so-
called Doppler contribution) is related to the velocities of the baryon-radiation plasma at recombination.
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By inserting (2) in (1), the correlation function can be rewritten in the following form

C(θ) =
1

4π

∞∑
l=2

(2l + 1) Cl Pl(cos(θ)) (3)

with

Cl =
2
π

w
k2dk

∣∣∣∣∣ (Φk(ηr) +
δk(ηr)

4

)
jl(kη0) −

3
4
δ′k(ηr)

k
∂ jl(kη0)
∂η0

∣∣∣∣∣2 (4)

Thereby, the monopole and dipole components (l = 0, 1) were excluded. Pl(cos(θ)) and jl(kη) denote the
Legendre polynomials and spherical Bessel functions, respectively.

1.2 Power Spectrum on Big Angular Scales
The formula (4) was derived in the approximation of instantaneous recombination. This approximation is
suitable for big angular scales (corresponding to small multipole moments l) where the CMB fluctuations
are mainly determined by inhomogeneities exceeding the horizon scale at recombination. On those super-
horizon scales, the fluctuations in the photon energy density at recombination time ηr can be approximated
as

δk(ηr) ' −
8
3

Φk, δ′k(ηr) ' 0 (5)

so that their contribution to the temperature fluctuations (cf. (2)) yields

δT
T0

(
ηo, ~xo, ~n

)
'

1
3

Φ
(
ηr, ~x0 − η0 ~n

)
. (6)

Assuming a flat initial spectrum
(∣∣∣∣ (Φ0

k

)2
k3

∣∣∣∣ = B with amplitude B
)
, substituting (5) in (4) and performing

the integration, the power spectrum of CMB fluctuations for big angular scales arises as

(l (l + 1) Cl)l<30 =
9B

100π
= const., (7)

constituting a good approximation for l < 30.

1.3 Delayed Recombination and Finite-Thickness Effect
On small angular scales, the process of recombination cannot be approximated as instantaneous effect any-
more. Instead, the finite duration of recombination (delayed recombination) has to be taken into account. As
a consequence the information about the place from where the photons arrive is “smeared out”. This leads
to a suppression of the CMB fluctuations in small angular scales, which is referred to as finite-thickness
effect.
To account for the finite duration of recombination, the recombination moment ηr in the formula (2) should
be replaced by the moment of last scattering ηL, weighted with the probability that the photon was scattered
last time within the time interval dηL,

dP(ηL) = µ′(ηL) e−µ(ηL) dηL (8)

where µ (ηL) denotes optical depth and µ′(ηL) e−µ(ηL) equals the visibility function. The visibility function
reaches its maximum in the ”middle” of recombination at zr ' 1050, irrespective of the values of the
cosmological parameters.1 Near its maximum it can be well approximated by the Gaussian function

µ′(ηL) e−µ(ηL)
∝ e−

3
2σ

2
(
ηL
ηr
−1

)2

. (9)

(The pre-exponential factor can be determined by normalization to unity.)
By substituting now (8) with (9) in (2) and estimating the gravitational potential Φ and the photon energy
density δ at ηr to perform the integration over ηL, we obtain the modified expression

δT
T0

=
w d3k

(2π)
3
2

(Φ +
δ

4

)
~k
−

3
4

δ′
~k

k2

∂

∂η0


ηr

ei~k·(~xo+~n (ηr−ηo)) e−(σ kηr)2
. (10)

Thus, in comparison to the case of instantaneous recombination, the key formula (2) has to be multiplied
by a general factor e−(σ kηr)2

under the integral to include the effect of delayed recombination (cf. (10)).
1In the following, we will refer to ηr as the maximum of the visibility function.
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2 Power Spectrum on Small Angular Scales
The horizon scale at recombination corresponds to the multipole moment l ' 200. Hence, the perturbations,
which are responsible for the fluctuations with l > 100 . . . 200 in the power spectrum, entered the horizon
before recombination. As they evolve in a rather complicated way, the spectrum of CMB fluctuations on
small angular scales is (in distinction to the spectrum on big angular) strongly modified compared to the
primordial spectrum and sensitively depends on the major cosmological parameters. At the moment of
recombination ηr these fluctuations can be described by the following equations [2],

Φk +
δk

4
'

Tp

1 − 1
3c2

S

 + To
√

cS cos

k ηrw

0

dη cS (η)

 e
− k2

k2
D

 Φ0
k , (11)

δ′k ' −4Tokc
3
2
S sin

k ηrw

0

dη cS (η)

 e
− k2

k2
D Φ0

k , (12)

wherein Tp and To denote the transfer functions relating the initial spectrum of gravitational potential Φ0
k to

the resulting spectra for Φ and δ at ηr.
In the following, we will restrict our consideration to the (realistic) case Ωb � Ωm where the baryon density
Ωb is much smaller than the total matter density Ωm. This will in particular allow us to neglect the baryon
contribution to the gravitational potential in the computation of the transfer functions.

2.1 Calculation of the Power Spectrum
2.1.1 Analytical Calculation of the Power Spectrum

Since we consider small angular scales, corresponding to big multipoles l � 1, the spherical Bessel func-
tions jl(kη0) in (4) (corrected by a factor e−2(σ kηr)2

due to the finite-thickness effect) can be approximated
analytically. The resulting expression was first derived in [5, 6, 7] and will be the starting point for our
further calculations,

Cl '
1

16π

∞w

l
η0

dk

 |4Φ + δ|2k2

kη0

√
(kη0)2 − l2

+
9
√

(kη0)2 − l2

(kη0)3 δ′2k

 e−2(σ kηr)2
. (13)

If we substitute the basic formulae (11) and (12) (assuming a flat initial spectrum
(∣∣∣∣ (Φ0

k

)2
k3

∣∣∣∣ = B
)
) into the

above equation for Cl and change the integration variable to x ≡ kη0
l , the resulting expression for the power

spectrum can be written as the sum of an oscillating contribution O and a non-oscillating contribution N,

l (l + 1) Cl '
B
π

(O + N) . (14)

Thereby, the oscillating contribution
O = O1 + O2 (15)

which consists of two terms with twice different periods,

O1 ≡ 2
√

cS

1 − 1
3c2

S

 ∞w
1

dx
Tp(x) To(x) e

− l2 x2
2

 1
l2S
− 1

l2f

2

x2
√

x2 − 1
cos(l%x) , (16)

O2 ≡
cS

2

∞w

1

dx
T 2

o (x)
[(

1 − 9c2
S

)
x2 + 9c2

S

]
e
− l2 x2

l2S

x4
√

x2 − 1
cos(2l%x) , (17)

modulates the spectrum by generating its characteristic peaks and valleys. In particular, it depends on the
parameter % determining the period of oscillations and therefore the location of the peaks. Besides, the
oscillating contributions are dependent on the speed of sound cS , the damping scales l f and lS as well as on
the transfer functions Tp and T0. We will discuss these parameters and especially their relation to cosmol-
ogy in detail in the following section (cf. 2.1.2).

Similarly, the non-oscillating contribution

N = N1 + N2 + N3 (18)
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can be written as a sum of three integrals, namely

N1 ≡

1 − 1
3c2

S

2 ∞w

1

dx
T 2

p(x) e
− l2 x2

l2f

x2
√

x2 − 1
, (19)

N2 ≡
cS

2

∞w

1

dx
T 2

o (x) e
− l2 x2

l2S

x2
√

x2 − 1
, (20)

N3 ≡
9c3

S

2

∞w

1

dx
T 2

o (x) e
− l2 x2

l2S

√
x2 − 1

x4 . (21)

Thereby, the contribution N1 is proportional to the baryon density and vanishes in the absence of baryons
when c2

S = 1
3 , as we will see from the definition of the speed of sound cS in the following section.

2.1.2 Parameters Entering the Power Spectrum

Before we proceed further with the calculation of the integrals in (16)-(21), we will express the param-
eters entering the power spectrum (14), namely, cS , l f , lS as well as To, Tp and %, in terms of the basic
cosmological parameters Ωb, Ωm and ΩΛ = 1 −Ωm (for a flat universe).

Speed of sound cS(Ωb). To characterize how the speed of sound cS at recombination deviates from the
speed of sound in an ultrarelativistic medium, one introduces the parameter ξ is by

c2
s =

1
3 (1 + ξ)

(22)

with

ξ(Ωb) ≡
1

3c2
S

− 1 =
3
4

(
εb

εγ

)
r
' 17 Ωbh2

75. (23)

(In the numerically fitted last expression of (23), h75 denotes the Hubble parameter normalized to 75 km/s

Mpc .)
Thus, the speed of sound cS at recombination depends only on the baryon density Ωb. In the absence of
baryons, Ωbh2

75 = 0 so that ξ = 0, it equals c2
S = 1

3 (ultrarelativistic medium), while for a realistic value of
baryon density Ωbh2

75 ' 0.035 where ξ ' 0.6 it yields c2
S ' 0.2 (⇒ cS ' 0.46).

Damping scales l f (Ωm) and lS(Ωb,Ωm). The scales l f and lS , which characterize the damping of the
CMB fluctuations due to the finite-thickness effect and the so-called Silk dissipation2, arise from (14) as

1
l2f
≡ 2σ2

(
ηr

η0

)2

, (24)

1
l2S
≡ 2

(
σ2 +

1
kDηr

) (
ηr

η0

)2

(25)

with

σ ' 1.49 · 10−2

1 +
1√

1 +
zeq

zr

 . (26)

The exact value of zeq depends on the contribution of the matter density to the total energy density and on
the number of the ultrarelativistic species. Assuming three types of neutrinos, the ratio zeq

zr
can be estimated

as zeq

zr
' 12.8 Ωmh2

75 (27)

where zr ' 1050 (cf. 1.3).
To express the scales l f and lS in dependence on the cosmological parameters, we have to determine the
Silk damping scale (kDη)r and the ratio ηr

η0
. At recombination the Silk damping scale reads [2]

1
(kDη)2

r

' 0.36

√
Ωmh2

75

Ωbh2
75

1

z
3
2
r

+
12
5

c2
sσ

2, (28)

2resulting from the finite viscosity of the radiation-baryon plasma before recombination
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wherein the first term, accounting for the dissipation until the beginning of recombination, is the same as
in the case of instantaneous recombination, while the second term describes an extra contribution of Silk
dissipation due to the delayed recombination.
The ratio ηr

η0
is given by

ηr

η0
=

1
√

zr

(√
1 +

zr

zeq
−

√
zr

zeq

)
IΛ, (29)

where the integral IΛ ' Ω−0.09
m is determined numerically by assuming a flat universe with ΩΛ = 1 −Ωm.

After inserting the expressions for σ, (kDη)r and ηr
η0

in (24) and (25), we obtain for the damping scales l f

and lS the following results,

l f (Ωm) ' 1530
√

1 +
zr

zeq

1
IΛ

, (30)

lS (Ωb,Ωm) ' 0.7
1√

1+0.56ξ
1+ξ

+ 0.8
ξ(1+ξ)

√
Ωmh2

75(
1+ 1

√
1+zeq/zr

)2

l f . (31)

Note that the damping scale lS (in contrast to l f ) depends not only on the matter density Ωm, but also on the
baryon density Ωb (via the parameter ξ).

Parameter %(Ωb,Ωm). From the oscillating contributions O1 and O2 (cf. (16), (17)) to the power spec-
trum one can see that the parameter % determines the period of oscillations and the location of the peaks.
By using the numerical fit for zr

zeq
, it can be expressed as

%
(
Ωb,Ωm

)
' ln


√(

1 + zr
zeq

)
ξ +

√
1 + ξ

1 +
√

zr
zeq
ξ


' 0.014

(
Ωmh3.1

75

)0.16 1
1 + 0.13 ξ

.

(32)

Note that the parameter % and therefore the characteristics of the peaks in the power spectrum depend both
on the baryon density Ωb and the matter density Ωm.

Transfer functions Tp(Ωm) and To(Ωm). The first few peaks in the power spectrum are generated by
perturbations which entered the horizon in between the time of matter-radiation equality and recombination.
In this intermediate range

(
1 < kηeq < 10

)
, the transfer functions Tp and T0, which generally depend on the

wavenumber k and the equality time ηeq, can be calculated only numerically. By introducing the variable
x ≡ kηo

l by

kηeq =
ηeq

η0
lx ' 0.72

IΛ√
Ωmh2

75

l
200

x (33)

and assuming Ωb � Ωm, the transfer functions in the relevant range of kηeq can be approximated for
200 < l < 1000 by [1, 2]

Tp(x) ' 0.74 − 0.25 (P + ln(x)) , (34)
To(x) ' 0.50 + 0.36 (P + ln(x)) , (35)

where

P(l,Ωm, h75) ≡ ln

 IΛ√
Ωmh2

75

l
200

 . (36)

2.1.3 Numerical Determination of the Power Spectrum

The form of integrals contained in the oscillating functions O1 and O2, (16) and (17), allows to calculate
them by using the analytical expression

∞w

1

f (x) cos(l%x)
√

x2 − 1
'

√
π

l%
f (1) cos

(
l% +

π

4

)
, (37)
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which has been approximated for big l. Consequently, the oscillating contribution arises as

O
(
Ωb,Ωm

)
= O1 + O2 '

√
π

l%

(
A1 cos

(
l% +

π

4

)
+ A2 cos

(
2l% +

π

4

))
, (38)

where the coefficients A1 and A2 are slowly varying functions of l. Using the fact that the transfer functions
Tp and To can be approximated in the range 200 < l < 1000 (relevant for the first peaks) by the numerical
fits (34) and (35), the coefficients A1 and A2 read

A1(Ωb) ≡ −
(

4
3 (1 + ξ)

) 1
4

ξ
(
TpTo

)
x=1

e
l2
2

 1
l2S
− 1

l2f


(39)

' 0.1

(
(P − 0.78)2 − 4.3

)
ξ

(1 + ξ)
1
4

e
l2
2

 1
l2S
− 1

l2f


, (40)

A2(Ωb) ≡

(
T 2

o

)
x=1

4
√

3 (1 + ξ)
(41)

' 0.14
(0.5 + 0.36 P)2√

1 + ξ
. (42)

Analogously, the numerical approximations (34) and (35) of the transfer functions can be substituted in the
non-oscillating contribution N1 in (19). By defining subsequently the integrals

Im

(
l
l f

)
≡

∞w

1

dx
(ln(x))m

x2
√

x2 − 1
e
−

(
l

l f

)2
x2

(43)

(which can be calculated analytically in terms of the hypergeometric functions) and fitting them numerically,
we finally obtain the following result for the non-oscillating term N1,

N1(Ωb,Ωm) ' ξ2
[
(0.74 − 0.25 P)2 I0 − (0.37 − 0.125 P) I1 + (0.25)2 I2

]
(44)

' 0.063 ξ2

(
P − 0.22

(
l
l f

)0.3
− 2.6

)2

1 + 0.65
(

l
l f

)1.4 e
−

(
l

l f

)2

. (45)

Similarly, the resulting expressions for the non-oscillating contributions N2 and N3, given by

N2(Ωb,Ωm) ' 0.037
1

(1 + ξ)
1
2

(
P − 0.22

(
l
l f

)0.3
+ 1.7

)2

1 + 0.65
(

l
l f

)1.4 e
−

(
l

l f

)2

, (46)

N3(Ωb,Ωm) ' 0.033
1

(1 + ξ)
3
2

(
P − 0.5

(
l
l f

)0.55
+ 2.2

)2

1 + 2
(

l
l f

)1.4 e
−

(
l

l f

)2

, (47)

can be deduced. Note that the numerical fits used in (45), (46) and (47) reproduce the exact results with
an accuracy of a few percent within the relevant region 200 < l < 1000 for a wide range of cosmological
parameters.

The power spectrum for small angular scales of (14) is conveniently normalized to the corresponding spec-
trum for big angular scales, given by (7). Hence, we finally obtain the following result for the power
spectrum of CMB fluctuations,

l (l + 1) Cl

(l (l + 1) Cl)l<30
=

100
9

(O + N1 + N2 + N3) , (48)

where the specific contributions O, N1, N2 and N3 to the spectrum are given by (38), (45), (46) and (47),
respectively.
The power spectrum based on (48) for the cosmological parameters Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04 and
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H = 70 km/s

Mpc is shown in Fig. 1. Thereby, the dashed and thin solid lines correspond to the non-oscillating
and oscillating contributions, N = N1+N2+N3 and O, while the total resulting spectrum of CMB fluctuations
is represented by the thick solid line. The power spectrum (48) reproduces the numerical results with a good
accuracy for a wide range of cosmological parameters. Only for very high values of the baryon density Ωb

and the matter density Ωm, significantly deviations from the numerics arise. Furthermore, the peaks in the
power spectrum are slightly shifted in comparison to the numerical results.

Figure 1: Power spectrum of CMB fluctuations l(l+1) Cl
(l(l+1) Cl)l<30

, based on (48), in de-
pendence of the multipole moments l for the cosmological parameters
Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04 and H0 = 70 km/s

Mpc . The total resulting
power spectrum of CMB fluctuations (thick solid lines) can be separated
into a non-oscillating contribution (dashed line) and an oscillating contri-
bution (thin solid line).

2.2 Dependence of the Power Spectrum on the Cosmological Parameters
The power spectrum of CMB fluctuations depends in general on the cosmological parameters

Ωb, Ωm, h75, B and nS ,

where B and ns denote the amplitude and the spectral index of the primordial spectrum. (As before, the
cosmological constant is fixed by the flatness condition to be ΩΛ = 1−Ωm). The peaks in the power
spectrum constitute its most interesting feature since their location and height sensitively depends on these
cosmological parameters. They arise as result of the superposition of the oscillating contribution O, given
by (38), on the ”hill” N = N1 + N2 + N3 (cf. (45)-(47)) representing the non-oscillating part of the spectrum.

2.2.1 Location of the Peaks

If we consider only the oscillating contribution O in (38) and assume for the amplitudes |A1| � A2, the
peaks should be located at

cos
(
2ln% +

π

4

)
!
= 1 ⇒ ln = π

(
n −

1
8

)
1
%

(49)

with n ∈ N and % defined in (32). Since the first term in (38) has a twice bigger period than the second one
as well as a negative amplitude (cf. (39)), the sum of these two terms results in constructive interference
for the odd peaks (n = 1, 3, . . .) and in destructive interference for the even peaks (n = 2, 4, . . .). Due to the
shift of the arguments of the two cosines, their maxima do not coincide so that the peaks should be located
in between the maxima of the two cosines. Therefore, the location of the first peak should roughly at

l1 ' π
(

6
8
. . .

7
8

)
1
%
. (50)

If |A1| � A2, the first peak moves closer to the lower bounds of the above interval. Besides, superimposing
the non-oscillating contribution N leads to a further shift of the peak towards the “top of the hill”.
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Calculating the parameter % of (32) for Ωbh2
75 ' 0.035 (ξ ' 0.6) and Ωmh2

75 ' 0.26 and using (50) after-
wards, yields l1 ' 225 . . . 265 for the location of the first peak.

As the parameter % = %(Ωb,Ωm) depends on the baryon and matter density, the location of the peaks
(cf. (49)) consequently also depends on these parameters. In detail, an increase of the baryon density Ωb

leads to a shift of the peak locations to higher multipoles l (to the right in Fig. 1), whereas an increasing
matter density Ωm shifts the peaks in the opposite direction, i.e. to lower multipoles l (to the left). By
simultaneously increasing the baryon and matter density, the location of the first peaks (for a fixed height)
becomes stable. Hence, the stability of the location of the first peak is a strong indicator for the total energy
density of the universe.3

2.2.2 Height of the Peaks

The height of the peaks, calculated by inserting the locations of the peaks ln in the power spectrum (48),
depends on the baryon and matter density as well.

Height of the first peak. While an increasing baryon density Ωb raises the height of the first peak
(mainly due to the contributions of N1 ∝ ξ2 and O where A1 ∝ ξ), an increase in the matter density Ωm

leads to a decrease of the height of the first peak (mainly since the contributions N2 and N3 decrease when
Ωm increases). Therefore, in a certain range of parameters the increase of the height due to a higher baryon
density can be compensated by simultaneously increasing the matter density. Since cosmology restricts Ωm

not to exceed unity too much (and the transfer functions, causing the dependence of the peak height on Ωm,
reach their asymptotic values in the region of the first peak), the height of the first peak allows us to fix the
relation between the baryon and matter density, Ωb

Ωm
. Moreover, we can conclude from the height of the first

peak that the baryon density can only constitute 15 . . . 20 % of the total critical density.

Height of the second peak. As the second peak results mostly from the destructive interference of
the terms in the oscillating contribution O, its height sensitively depends on the ratio of the amplitudes A1
and A2. When enlarging the baryon density Ωb, the negative amplitude A1 of the first term increases and
the second amplitude A2 simultaneously decreases so that the second peak will be removed for high baryon
densities. Hence the presence of the second peak can be considered as the indication of a low baryon density
being smaller than 6 . . . 8% of the matter density.
Similarly, an increase of the matter density Ωm, leading to a decrease of A2 which is faster than the corre-
sponding increase of A1, tends to eliminate the second peak. By fixing the relation Ωb

Ωm
from the height of

the first peak, the height of the second peak requires the total matter density to be smaller than the critical
one. Thus, the height of the second peak sets a limit on the baryon density as well as on the matter density.

Height of the third peak. In the above calculations of the power spectrum we have assumed a flat
universe with spectral index nS = 1. However, inflation predicts a deviation of the spectral index from unity
(nS ' 0.92 . . . 0.97 [3, 4]). For ns , 1 the result for the power spectrum of (48) has to be modified by a
factor ∝ l1−nS .
Since the height of the third peak is more sensitive to the deviations of the spectral index than the heights
(and locations) of the first two peaks, nS is varied for a given unchanged height of the first peak (by simul-
taneously varying the amplitude B of the spectrum) whereby the relative height of the third peak changes
as

∆H3

H3
∝

(
l3
l1

)1−ns

− 1. (51)

Compared to the case nS = 1, the height of the third peak increases by about 5% for nS ' 0.95.

2.2.3 Dependence on the Hubble Parameter

Assuming a Hubble parameter higher than h75 shifts the location of the peaks to lower multipole moments
l. However, for an accurate determination of the Hubble parameter from the power spectrum alone, the
position of the peaks has to be determined with an extremely high accuracy (< 1% for an accuracy of 7%
in the Hubble parameter).

3In an open universe without cosmological constant, the location of the first peak is even more sensitive to the total energy density
since l1 ∝ 1√

Ωtot
.
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