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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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Fig. 1. Planck foreground-subtracted temperature power spectrum (with foreground and other “nuisance” parameters fixed to their
best-fit values for the base ⇥CDM model). The power spectrum at low multipoles (⇥ = 2–49, plotted on a logarithmic multi-
pole scale) is determined by the Commander algorithm applied to the Planck maps in the frequency range 30–353 GHz over
91% of the sky. This is used to construct a low-multipole temperature likelihood using a Blackwell-Rao estimator, as described
in Planck Collaboration XV (2013). The asymmetric error bars show 68% confidence limits and include the contribution from un-
certainties in foreground subtraction. At multipoles 50 � ⇥ � 2500 (plotted on a linear multipole scale) we show the best-fit CMB
spectrum computed from the CamSpec likelihood (see Planck Collaboration XV 2013) after removal of unresolved foreground com-
ponents. The light grey points show the power spectrum multipole-by-multipole. The blue points show averages in bands of width
�⇥ ⇥ 31 together with 1� errors computed from the diagonal components of the band-averaged covariance matrix (which includes
contributions from beam and foreground uncertainties). The red line shows the temperature spectrum for the best-fit base ⇥CDM
cosmology. The lower panel shows the power spectrum residuals with respect to this theoretical model. The green lines show the
±1� errors on the individual power spectrum estimates at high multipoles computed from the CamSpec covariance matrix. Note the
change in vertical scale in the lower panel at ⇥ = 50.
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Table 1. Cosmological parameters used in our analysis. For each, we give the symbol, prior range, value taken in the base ⇤CDM
cosmology (where appropriate), and summary definition (see text for details). The top block contains parameters with uniform
priors that are varied in the MCMC chains. The ranges of these priors are listed in square brackets. The lower blocks define various
derived parameters.

Parameter Prior range Baseline Definition

!b ⌘ ⌦bh2 . . . . . . . [0.005, 0.1] . . . Baryon density today
!c ⌘ ⌦ch2 . . . . . . . [0.001, 0.99] . . . Cold dark matter density today
100✓MC . . . . . . . . . [0.5, 10.0] . . . 100⇥ approximation to r⇤/DA (CosmoMC)
⌧ . . . . . . . . . . . . . . [0.01, 0.8] . . . Thomson scattering optical depth due to reionization
⌦K . . . . . . . . . . . . [�0.3, 0.3] 0 Curvature parameter today with ⌦tot = 1 �⌦KP

m⌫ . . . . . . . . . . . [0, 5] 0.06 The sum of neutrino masses in eV
me↵
⌫, sterile . . . . . . . . . [0, 3] 0 E↵ective mass of sterile neutrino in eV

w0 . . . . . . . . . . . . . [�3.0,�0.3] �1 Dark energy equation of statea, w(a) = w0 + (1 � a)wa
wa . . . . . . . . . . . . . [�2, 2] 0 As above (perturbations modelled using PPF)
Ne↵ . . . . . . . . . . . . [0.05, 10.0] 3.046 E↵ective number of neutrino-like relativistic degrees of freedom (see text)
YP . . . . . . . . . . . . . [0.1, 0.5] BBN Fraction of baryonic mass in helium
AL . . . . . . . . . . . . . [0, 10] 1 Amplitude of the lensing power relative to the physical value
ns . . . . . . . . . . . . . [0.9, 1.1] . . . Scalar spectrum power-law index (k0 = 0.05Mpc�1)
nt . . . . . . . . . . . . . nt = �r0.05/8 Inflation Tensor spectrum power-law index (k0 = 0.05Mpc�1)
dns/d ln k . . . . . . . . [�1, 1] 0 Running of the spectral index
ln(1010As) . . . . . . . [2.7, 4.0] . . . Log power of the primordial curvature perturbations (k0 = 0.05 Mpc�1)
r0.05 . . . . . . . . . . . . [0, 2] 0 Ratio of tensor primordial power to curvature power at k0 = 0.05 Mpc�1

⌦⇤ . . . . . . . . . . . . . . . Dark energy density divided by the critical density today
t0 . . . . . . . . . . . . . . . . Age of the Universe today (in Gyr)
⌦m . . . . . . . . . . . . . . . Matter density (inc. massive neutrinos) today divided by the critical density
�8 . . . . . . . . . . . . . . . . RMS matter fluctuations today in linear theory
zre . . . . . . . . . . . . . . . . Redshift at which Universe is half reionized
H0 . . . . . . . . . . . . [20,100] . . . Current expansion rate in km s�1Mpc�1

r0.002 . . . . . . . . . . . 0 Ratio of tensor primordial power to curvature power at k0 = 0.002 Mpc�1

109As . . . . . . . . . . . . . 109 ⇥ dimensionless curvature power spectrum at k0 = 0.05 Mpc�1

!m ⌘ ⌦mh2 . . . . . . . . . Total matter density today (inc. massive neutrinos)

z⇤ . . . . . . . . . . . . . . . . Redshift for which the optical depth equals unity (see text)
r⇤ = rs(z⇤) . . . . . . . . . . Comoving size of the sound horizon at z = z⇤
100✓⇤ . . . . . . . . . . . . . 100⇥ angular size of sound horizon at z = z⇤ (r⇤/DA)
zdrag . . . . . . . . . . . . . . . Redshift at which baryon-drag optical depth equals unity (see text)
rdrag = rs(zdrag) . . . . . . . Comoving size of the sound horizon at z = zdrag

kD . . . . . . . . . . . . . . . . Characteristic damping comoving wavenumber (Mpc�1)
100✓D . . . . . . . . . . . . . 100⇥ angular extent of photon di↵usion at last scattering (see text)
zeq . . . . . . . . . . . . . . . . Redshift of matter-radiation equality (massless neutrinos)
100✓eq . . . . . . . . . . . . . 100⇥ angular size of the comoving horizon at matter-radiation equality
rdrag/DV(0.57) . . . . . . . BAO distance ratio at z = 0.57 (see Sect. 5.2)

a For dynamical dark energy models with constant equation of state, we denote the equation of state by w and adopt the same prior as for w0.

The photon temperature today is well measured to be T0 =
2.7255 ± 0.0006 K (Fixsen 2009); we adopt T0 = 2.7255 K as
our fiducial value. We assume full thermal equilibrium prior to
neutrino decoupling. The decoupling of the neutrinos is nearly,
but not entirely, complete by the time of electron-positron anni-
hilation. This leads to a slight heating of the neutrinos in addition
to that expected for the photons and hence to a small departure
from the thermal equilibrium prediction T� = (11/4)1/3T⌫ be-
tween the photon temperature T� and the neutrino temperature
T⌫. We account for the additional energy density in neutrinos by
assuming that they have a thermal distribution with an e↵ective
energy density

⇢⌫ = Ne↵
7
8

 
4

11

!4/3

⇢�, (1)

with Ne↵ = 3.046 in the baseline model (Mangano et al. 2002,
2005). This density is divided equally between three neutrino
species while they remain relativistic.

In our baseline model we assume a minimal-mass normal
hierarchy for the neutrino masses, accurately approximated for

current cosmological data as a single massive eigenstate with
m⌫ = 0.06 eV (⌦⌫h2 ⇡ P

m⌫/93.04 eV ⇡ 0.0006; corrections
and uncertainties at the meV level are well below the accuracy
required here). This is consistent with global fits to recent os-
cillation and other data (Forero et al. 2012), but is not the only
possibility. We discuss more general neutrino mass constraints
in Sect. 6.3.

We shall also consider the possibility of extra radiation,
beyond that included in the Standard Model. We model this
as additional massless neutrinos contributing to the total Ne↵
determining the radiation density as in Eq. (1). We keep the
mass model and heating consistent with the baseline model at
Ne↵ = 3.046, so there is one massive neutrino with N(massive)

e↵ =

3.046/3 ⇡ 1.015, and massless neutrinos with N(massless)
e↵ =

Ne↵ � 1.015. In the case where Ne↵ < 1.015 we use one mas-
sive eigenstate with reduced temperature.
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Fig. 3. Constraints in the ⌦m–H0 plane. Points show samples
from the Planck-only posterior, coloured by the corresponding
value of the spectral index ns. The contours (68% and 95%)
show the improved constraint from Planck+lensing+WP. The
degeneracy direction is significantly shortened by including WP,
but the well-constrained direction of constant ⌦mh3 (set by the
acoustic scale), is determined almost equally accurately from
Planck alone.

Adding WMAP polarization information shrinks the errors by
only 10%.

The dark matter density is slightly less accurately measured
at around 3%:

⌦ch2 = 0.1196 ± 0.0031 (68%; Planck). (18)

3.4. Optical depth

Small-scale fluctuations in the CMB are damped by Thomson
scattering from free electrons produced at reionization. This
scattering suppresses the amplitude of the acoustic peaks by e�2⌧

on scales that correspond to perturbation modes with wavelength
smaller than the Hubble radius at reionization. Planck measures
the small-scale power spectrum with high precision, and hence
accurately constrains the damped amplitude e�2⌧As. With only
unlensed temperature power spectrum data, there is a large de-
generacy between ⌧ and As, which is weakly broken only by the
power in large-scale modes that were still super-Hubble scale
at reionization. However, lensing depends on the actual ampli-
tude of the matter fluctuations along the line of sight. Planck
accurately measures many acoustic peaks in the lensed tempera-
ture power spectrum, where the amount of lensing smoothing de-
pends on the fluctuation amplitude. Furthermore Planck’s lens-
ing potential reconstruction provides a more direct measurement
of the amplitude, independently of the optical depth. The combi-
nation of the temperature data and Planck’s lensing reconstruc-
tion can therefore determine the optical depth ⌧ relatively well.
The combination gives

⌧ = 0.089 ± 0.032 (68%; Planck+lensing). (19)

As shown in Fig. 4 this provides marginal confirmation (just un-
der 2�) that the total optical depth is significantly higher than
would be obtained from sudden reionization at z ⇠ 6, and is con-
sistent with the WMAP-9 constraint, ⌧ = 0.089 ± 0.014, from

large-scale polarization (Bennett et al. 2012). The large-scale E-
mode polarization measurement is very challenging because it
is a small signal relative to polarized Galactic emission on large
scales, so this Planck polarization-free result is a valuable cross-
check. The posterior for the Planck temperature power spectrum
measurement alone also consistently peaks at ⌧ ⇠ 0.1, where the
constraint on the optical depth is coming from the amplitude of
the lensing smoothing e↵ect and (to a lesser extent) the relative
power between small and large scales.

Since lensing constrains the underlying fluctuation ampli-
tude, the matter density perturbation power is also well deter-
mined:

�8 = 0.823 ± 0.018 (68%; Planck+lensing). (20)

Much of the residual uncertainty is caused by the degeneracy
with the optical depth. Since the small-scale temperature power
spectrum more directly fixes �8e�⌧, this combination is tightly
constrained:

�8e�⌧ = 0.753 ± 0.011 (68%; Planck+lensing). (21)

The estimate of �8 is significantly improved to �8 = 0.829 ±
0.012 by using the WMAP polarization data to constrain the op-
tical depth, and is not strongly degenerate with ⌦m. (We shall
see in Sect. 5.5 that the Planck results are discrepant with re-
cent estimates of combinations of �8 and ⌦m from cosmic shear
measurements and counts of rich clusters of galaxies.)

3.5. Spectral index

The scalar spectral index defined in Eq. (2) is measured by
Planck data alone to 1% accuracy:

ns = 0.9616 ± 0.0094 (68%; Planck). (22)

Since the optical depth ⌧ a↵ects the relative power between large
scales (that are una↵ected by scattering at reionization) and in-
termediate and small scales (that have their power suppressed
by e�2⌧), there is a partial degeneracy with ns. Breaking the de-
generacy between ⌧ and ns using WMAP polarization leads to a
small improvement in the constraint:

ns = 0.9603 ± 0.0073 (68%; Planck+WP). (23)

Comparing Eqs. (22) and (23), it is evident that the Planck tem-
perature spectrum spans a wide enough range of multipoles to
give a highly significant detection of a deviation of the scalar
spectral index from exact scale invariance (at least in the base
⇤CDM cosmology) independent of WMAP polarization infor-
mation.

One might worry that the spectral index parameter is degen-
erate with foreground parameters, since these act to increase
smoothly the amplitudes of the temperature power spectra at
high multipoles. The spectral index is therefore liable to po-
tential systematic errors if the foreground model is poorly con-
strained. Figure 4 shows the marginalized constraints on the
⇤CDM parameters for various combinations of data, includ-
ing adding high-resolution CMB measurements. As will be dis-
cussed in Sect. 4, the use of high-resolution CMB provides
tighter constraints on the foreground parameters (particularly
“minor” foreground components) than from Planck data alone.
However, the small shifts in the means and widths of the distri-
butions shown in Fig. 4 indicate that, for the base ⇤CDM cos-
mology, the errors on the cosmological parameters are not lim-
ited by foreground uncertainties when considering Planck alone.
The e↵ects of foreground modelling assumptions and likelihood
choices on constraints on ns are discussed in Appendix B.
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Fig. 22. The Planck power spectrum of Fig. 10 plotted as `2D`
against multipole, compared to the best-fit base ⇤CDM model
with ns = 0.96 (red dashed line). The best-fit base ⇤CDM model
with ns constrained to unity is shown by the blue line.

Our extensive grid of models allows us to investigate cor-
relations of the spectral index with a number of cosmological
parameters beyond those of the base ⇤CDM model (see Figs.
21 and 24). As expected, ns is uncorrelated with parameters de-
scribing late-time physics, including the neutrino mass, geom-
etry, and the equation of state of dark energy. The remaining
correlations are with parameters that a↵ect the evolution of the
early Universe, including the number of relativistic species, or
the helium fraction. This is illustrated in Fig. 24: modifying the
standard model by increasing the number of neutrinos species,
or the helium fraction, has the e↵ect of damping the small-scale
power spectrum. This can be partially compensated by an in-
crease in the spectral index. However, an increase in the neu-
trino species must be accompanied by an increased matter den-
sity to maintain the peak positions. A measurement of the matter
density from the BAO measurements helps to break this degen-
eracy. This is clearly seen in the upper panel of Fig. 24, which
shows the improvement in the constraints when BAO measure-
ments are added to the Planck+WP+highL likelihood. With the
addition of BAO measurements we find more than a 3� devi-
ation from ns = 1 even in this extended model, with a best-fit
value of ns = 0.969 ± 0.010 for varying relativistic species. As
discussed in Sect. 6.3, we see no evidence from the Planck data
for non-standard neutrino physics.

The simplest single-field inflationary models predict that the
running of the spectral index should be of second order in infla-
tionary slow-roll parameters and therefore small [dns/d ln k ⇠
(ns � 1)2], typically about an order of magnitude below the
sensitivity limit of Planck (see e.g., Kosowsky & Turner 1995;
Baumann et al. 2009). Nevertheless, it is easy to construct in-
flationary models that have a larger scale dependence (e.g., by
adjusting the third derivative of the inflaton potential) and so it
is instructive to use the Planck data to constrain dns/d ln k. A
test for dns/d ln k is of particularly interest given the results from
previous CMB experiments.

Early results from WMAP suggested a preference for a nega-
tive running at the 1–2� level. In the final 9-year WMAP analy-
sis no significant running was seen using WMAP data alone, with
dns/d ln k = �0.019 ± 0.025 (68% confidence; Hinshaw et al.
2012. Combining WMAP data with the first data releases from
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Fig. 23. Upper: Posterior distribution for ns for the base ⇤CDM
model (black) compared to the posterior when a tensor compo-
nent and running scalar spectral index are added to the model
(red) Middle: Constraints (68% and 95%) in the ns–dns/d ln k
plane for ⇤CDM models with running (blue) and additionally
with tensors (red). Lower: Constraints (68% and 95%) on ns and
the tensor-to-scalar ratio r0.002 for ⇤CDM models with tensors
(blue) and additionally with running of the spectral index (red).
The dotted line show the expected relation between r and ns for
a V(�) / �2 inflationary potential (Eqs. 66a and 66b); here N is
the number of inflationary e-foldings as defined in the text. The
dotted line should be compared to the blue contours, since this
model predicts negligible running. All of these results use the
Planck+WP+highL data combination.
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Fig. 22. The Planck power spectrum of Fig. 10 plotted as `2D`
against multipole, compared to the best-fit base ⇤CDM model
with ns = 0.96 (red dashed line). The best-fit base ⇤CDM model
with ns constrained to unity is shown by the blue line.

Our extensive grid of models allows us to investigate cor-
relations of the spectral index with a number of cosmological
parameters beyond those of the base ⇤CDM model (see Figs.
21 and 24). As expected, ns is uncorrelated with parameters de-
scribing late-time physics, including the neutrino mass, geom-
etry, and the equation of state of dark energy. The remaining
correlations are with parameters that a↵ect the evolution of the
early Universe, including the number of relativistic species, or
the helium fraction. This is illustrated in Fig. 24: modifying the
standard model by increasing the number of neutrinos species,
or the helium fraction, has the e↵ect of damping the small-scale
power spectrum. This can be partially compensated by an in-
crease in the spectral index. However, an increase in the neu-
trino species must be accompanied by an increased matter den-
sity to maintain the peak positions. A measurement of the matter
density from the BAO measurements helps to break this degen-
eracy. This is clearly seen in the upper panel of Fig. 24, which
shows the improvement in the constraints when BAO measure-
ments are added to the Planck+WP+highL likelihood. With the
addition of BAO measurements we find more than a 3� devi-
ation from ns = 1 even in this extended model, with a best-fit
value of ns = 0.969 ± 0.010 for varying relativistic species. As
discussed in Sect. 6.3, we see no evidence from the Planck data
for non-standard neutrino physics.

The simplest single-field inflationary models predict that the
running of the spectral index should be of second order in infla-
tionary slow-roll parameters and therefore small [dns/d ln k ⇠
(ns � 1)2], typically about an order of magnitude below the
sensitivity limit of Planck (see e.g., Kosowsky & Turner 1995;
Baumann et al. 2009). Nevertheless, it is easy to construct in-
flationary models that have a larger scale dependence (e.g., by
adjusting the third derivative of the inflaton potential) and so it
is instructive to use the Planck data to constrain dns/d ln k. A
test for dns/d ln k is of particularly interest given the results from
previous CMB experiments.

Early results from WMAP suggested a preference for a nega-
tive running at the 1–2� level. In the final 9-year WMAP analy-
sis no significant running was seen using WMAP data alone, with
dns/d ln k = �0.019 ± 0.025 (68% confidence; Hinshaw et al.
2012. Combining WMAP data with the first data releases from
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Fig. 23. Upper: Posterior distribution for ns for the base ⇤CDM
model (black) compared to the posterior when a tensor compo-
nent and running scalar spectral index are added to the model
(red) Middle: Constraints (68% and 95%) in the ns–dns/d ln k
plane for ⇤CDM models with running (blue) and additionally
with tensors (red). Lower: Constraints (68% and 95%) on ns and
the tensor-to-scalar ratio r0.002 for ⇤CDM models with tensors
(blue) and additionally with running of the spectral index (red).
The dotted line show the expected relation between r and ns for
a V(�) / �2 inflationary potential (Eqs. 66a and 66b); here N is
the number of inflationary e-foldings as defined in the text. The
dotted line should be compared to the blue contours, since this
model predicts negligible running. All of these results use the
Planck+WP+highL data combination.
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We show 68% and 95% contours for various data combinations.
Note the tightening of the constraints with the addition of BAO
data.

ACT and SPT, Hinshaw et al. (2012) found a negative running
at nearly the 2� level with dns/d ln k = �0.022 ± 0.012 (see
also Dunkley et al. 2011 and Keisler et al. 2011 for analysis
of ACT and SPT with earlier data from WMAP). The ACT
3-year release, which incorporated a new region of sky, gave
dns/d ln k = �0.003 ± 0.013 (Sievers et al. 2013) when com-
bined with WMAP 7 year data. With the wide field SPT data at
150 GHz, a negative running was seen at just over the 2� level,
dns/d ln k = �0.024 ± 0.011 (Hou et al. 2012).

The picture from previous CMB experiments is therefore
mixed. The latest WMAP data show a 1� trend for a running,
but when combined with the S12 SPT data, this trend is ampli-
fied to give a potentially interesting result. The latest ACT data
go in the other direction, giving no support for a running spectral
index when combined with WMAP29.

The results from Planck data are as follows (see Figs. 21 and
23):

dns/d ln k = �0.013 ± 0.009 (68%; Planck+WP); (62a)

29The di↵erences between the Planck results reported here and the
WMAP-7+SPT results (Hou et al. 2012) are discussed in Appendix A.

dns/d ln k = �0.015 ± 0.009 (68%; Planck+WP+highL); (62b)
dns/d ln k = �0.011 ± 0.008 (68%; Planck+lensing

+WP+highL). (62c)

The consistency between (62a) and (62b) shows that these re-
sults are insensitive to modelling of unresolved foregrounds.
The preferred solutions have a small negative running, but not
at a high level of statistical significance. Closer inspection of
the best-fits shows that the change in �2 when dns/d ln k is in-
cluded as a parameter comes almost entirely from the low multi-
pole temperature likelihood. In fact, the fits to the high multipole
Planck likelihood have a slightly worse �2 when dns/d ln k is in-
cluded. The slight preference for a negative running is therefore
driven by the spectrum at low multipoles ` <⇠ 50. The tendency
for negative running is partly mitigated by including the Planck
lensing likelihood (Eq. 62c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations, the marginalized posterior
distributions for dns/d ln k give

dns/d ln k = �0.021 ± 0.011 (68%; Planck+WP), (63a)
dns/d ln k = �0.022 ± 0.010 (68%; Planck+WP+highL), (63b)
dns/d ln k = �0.019 ± 0.010 (68%; Planck+lensing

+WP+highL). (63c)

As with Eqs. (62a)–(62c) the tendency to favour negative run-
ning is driven by the low multipole component of the tempera-
ture likelihood not by the Planck spectrum at high multipoles.

This is one of several examples discussed in this section
where marginal evidence for extensions to the base ⇤CDM
model are favoured by the TT spectrum at low multipoles. (The
low multipole spectrum is also largely responsible for the pull of
the lensing amplitude, AL, to values greater than unity discussed
in Sect. 5.1). The mismatch between the best-fit base ⇤CDM
model and the TT spectrum at multipoles ` <⇠ 30 is clearly vis-
ible in Fig. 1. The implications of this mismatch are discussed
further in Sect. 7.

Beyond a simple running, various extended parameter-
izations have been developed by e.g., Bridle et al. (2003),
Shafieloo & Souradeep (2008), Verde & Peiris (2008), and
Hlozek et al. (2012), to test for deviations from a power-law
spectrum of fluctuations. Similar techniques are applied to the
Planck data in Planck Collaboration XXII (2013).

6.2.2. Tensor fluctuations

In the base ⇤CDM model, the fluctuations are assumed to
be purely scalar modes. Primordial tensor fluctuations could
also contribute to the temperature and polarization power spec-
tra (e.g., Grishchuk 1975; Starobinsky 1979; Basko & Polnarev
1980; Crittenden et al. 1993, 1995). The most direct way of test-
ing for a tensor contribution is to search for a magnetic-type par-
ity signature via a large-scale B-mode pattern in CMB polar-
ization (Zaldarriaga & Seljak 1997; Kamionkowski et al. 1997).
Direct B-mode measurements are challenging as the expected
signal is small; upper limits measured by BICEP and QUIET
give 95% upper limits of r0.002 < 0.73 and r0.002 < 2.8 respec-
tively (Chiang et al. 2010; QUIET Collaboration et al. 2012)30.

30As discussed in Planck Collaboration II (2013) and
Planck Collaboration VI (2013), residual low-level polarization
systematics in both the LFI and HFI data preclude a Planck B-mode
polarization analysis at this stage.
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⌦m and ⌦⇤ due to the e↵ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

X
m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⌦m and ⌦⇤ due to the e↵ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

X
m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
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Fig. 34. Marginalized posterior distributions for the dark en-
ergy equation of state parameter w (assumed constant), for
Planck+WP alone (green) and in combination with SNe data
(SNSL in blue and the Union2.1 compilation in red) or BAO
data (black). A flat prior on w from �3 to �0.3 was as-
sumed and, importantly for the CMB-only constraints, the prior
[20, 100] km s�1 Mpc�1 on H0. The dashed grey line indicates
the cosmological constant solution, w = �1.

which is in tension with w = �1 at more than the 2� level.
The results in Eqs. (91–93) reflect the tensions between the

supplementary data sets and the Planck base ⇤CDM cosmology
discussed in Sect. 5. The BAO data are in excellent agreement
with the Planck base ⇤CDM model, so there is no significant
preference for w , �1 when combining BAO with Planck. In
contrast, the addition of the H0 measurement, or SNLS SNe data,
to the CMB data favours models with exotic physics in the dark
energy sector. These trends form a consistent theme throughout
this section. The SNLS data favours a lower ⌦ in the ⇤CDM
model than Planck, and hence larger dark energy density today.
The tension can be relieved by making the dark energy fall away
faster in the past than for a cosmological constant, i.e., w < �1.

The constant w models are of limited physical interest. If
w , �1 then it is likely to change with time. To investigate
this we consider the simple linear relation in Eq. (4), w(a) =
w0 + wa(1 � a), which has often been used in the literature
(Chevallier & Polarski 2001; Linder 2003). This parameteriza-
tion approximately captures the low-redshift behaviour of light,
slowly-rolling minimally-coupled scalar fields (as long as they
do not contribute significantly to the total energy density at early
times) and avoids the complexity of scanning a large number of
possible potential shapes and initial conditions. The dynamical
evolution of w(a) can lead to distinctive imprints in the CMB
(Caldwell et al. 1998) which would show up in the Planck data.

Figure 35 shows contours of the joint posterior distribution in
the w0–wa plane using Planck+WP+BAO data (colour-coded ac-
cording to the value of H0). The points are coloured by the value
of H0, which shows a clear variation with w0 and wa reveal-
ing the three-dimensional nature of the geometric degeneracy in
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Fig. 35. 2D marginalized posterior distribution for w0 and wa
for Planck+WP+BAO data. The contours are 68% and 95%,
and the samples are colour-coded according to the value of H0.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
are assumed. Dashed grey lines show the cosmological constant
solution w0 = �1 and wa = 0.

such models. The cosmological constant point (w0,wa) = (�1, 0)
lies within the 68% contour and the marginalized posteriors for
w0 and wa are

w0 = �1.04+0.72
�0.69 (95%; Planck+WP+BAO), (94a)

wa < 1.32 (95%; Planck+WP+BAO). (94b)

Including the H0 measurement in place of the BAO data moves
(w0,wa) away from the cosmological constant solution towards
negative wa at just under the 2� level.

Figure 36 shows likelihood contours for (w0,wa), now
adding SNe data to Planck. As discussed in detail in Sect. 5,
there is a dependence of the base ⇤CDM parameters on the
choice of SNe data set, and this is reflected in Fig. 36. The re-
sults from the Planck+WP+Union2.1 data combination are in
better agreement with a cosmological constant than those from
the Planck+WP+SNLS combination. For the latter data combi-
nation, the cosmological constant solution lies on the 2� bound-
ary of the (w0,wa) distribution.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe
at early times. Such early dark energy (EDE; Wetterich 2004)
models may be very close to ⇤CDM recently, but have a non-
zero dark energy density fraction, ⌦e, at early times. Such mod-
els complement the (w0,wa) analysis by investigating how much
dark energy can be present at high redshifts. EDE has two main
e↵ects: it reduces structure growth in the period after last scat-
tering; and it changes the position and height of the peaks in the
CMB spectrum.

The model we adopt here is that of Doran & Robbers (2006):

⌦de(a) =
⌦0

de �⌦e(1 � a�3w0 )
⌦0

de +⌦
0
ma3w0

+⌦e(1 � a�3w0 ) . (95)

It requires two additional parameters to those of the base⇤CDM
model: ⌦e, the dark energy density relative to the critical den-
sity at early times (assumed constant in this treatment); and the
present-day dark energy equation of state parameter w0. Here⌦0

m
is the present matter density and⌦0

de = 1�⌦0
m is the present dark
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Fig. 36. 2D marginalized posterior distributions for w0 and
wa, for the data combinations Planck+WP+BAO (grey),
Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue).
The contours are 68% and 95%, and dashed grey lines show the
cosmological constant solution.

energy abundance (for a flat Universe). Note that the model of
Eq. (95) has dark energy present over a large range of redshifts;
the bounds on ⌦e can be substantially weaker if dark energy is
only present over a limited range of redshifts (Pettorino et al.
2013). The presence or absence of dark energy at the epoch of
last scattering is the dominant e↵ect on the CMB anisotropies
and hence the constraints are insensitive to the addition of low
redshift supplementary data such as BAO.

The most precise bounds on EDE arise from the analysis
of CMB anisotropies (Doran et al. 2001; Caldwell et al. 2003;
Calabrese et al. 2011; Reichardt et al. 2012; Sievers et al.
2013; Hou et al. 2012; Pettorino et al. 2013). Using
Planck+WP+highL, we find

⌦e < 0.009 (95%; Planck+WP+highL). (96)

(The limit for Planck+WP is very similar: ⌦e < 0.010.) These
bounds are consistent with and improve the recent ones of
Hou et al. (2012), who give ⌦e < 0.013 at 95% CL, and
Sievers et al. (2013), who find ⌦e < 0.025 at 95% CL.

In summary, the results on dynamical dark energy (except for
those on early dark energy discussed above) are dependent on
exactly what supplementary data are used in conjunction with
the CMB data. (Planck lensing does not significantly improve
the constraints on the models discussed here.) Using the direct
measurement of H0, or the SNLS SNe sample, together with
Planck we see preferences for dynamical dark energy at about
the 2� level reflecting the tensions between these data sets and
Planck in the⇤CDM model. In contrast, the BAO measurements
together with Planck give tight constraints which are consistent
with a cosmological constant. Our inclination is to give greater
weight to the BAO measurements and to conclude that there is
no strong evidence that the dark energy is anything other than a
cosmological constant.

6.6. Dark matter annihilation

Energy injection from dark matter (DM) annihilation can
change the recombination history and a↵ect the shape of
the angular CMB spectra (Chen & Kamionkowski 2004;

Padmanabhan & Finkbeiner 2005; Zhang et al. 2006;
Mapelli et al. 2006). As recently shown in several papers
(see e.g., Galli et al. 2009, 2011; Giesen et al. 2012; Hutsi et al.
2011; Natarajan 2012) CMB anisotropies o↵er an opportunity
to constrain DM annihilation models.

High-energy particles injected in the high-redshift thermal
gas by DM annihilation are typically cooled down to the keV
scale by high energy processes; once the shower has reached
this energy scale, the secondary particles produced can ion-
ize, excite or heat the thermal gas (Shull & van Steenberg 1985;
Valdes et al. 2010); the first two processes modify the evolution
of the free electron fraction xe, while the third a↵ects the tem-
perature of the baryons.

The rate of energy release, dE/dt, per unit volume by a relic
annihilating DM particle is given by

dE
dt

(z) = 2 g ⇢2
cc2⌦2

c(1 + z)6 pann(z), (97)

where pann is, in principle, a function of redshift z, defined as

pann(z) ⌘ f (z)
h�vi
m�
, (98)

where h�vi is the thermally averaged annihilation cross-section,
m� is the mass of the DM particle, ⇢c is the critical density of
the Universe today, g is a degeneracy factor equal to 1/2 for
Majorana particles and 1/4 for Dirac particles (in the following,
constraints will refer to Majorana particles), and the parameter
f (z) indicates the fraction of energy which is absorbed overall
by the gas at redshift z. We note that the presence of the brackets
in h�vi denote a thermal average over the velocity distribution
of particles.

In Eq. (98), the factor f (z) depends on the details of the
annihilation process, such as the mass of the DM particle and
the annihilation channel (see e.g., Slatyer et al. 2009). The func-
tional shape of f (z) can be taken into account using gen-
eralized parameterizations (Finkbeiner et al. 2012; Hutsi et al.
2011). However, as shown in Galli et al. (2011), Giesen et al.
(2012), and Finkbeiner et al. (2012) it is possible to neglect the
redshift dependence of f (z) to first approximation, since current
data shows very little sensitivity to variations of this function.
The e↵ects of DM annihilation can therefore be well parameter-
ized by a single constant parameter, pann, that encodes the de-
pendence on the properties of the DM particles.

We compute here the theoretical angular power in the pres-
ence of DM annihilations, by modifying the RECFAST routine
in the camb code as in Galli et al. (2011) and by making use
of the package CosmoMC for Monte Carlo parameter estimation.
We checked that we obtain the same results by using the CLASS
Boltzmann code (Lesgourgues 2011a) and the Monte Python
package (Audren et al. 2012), with DM annihilation e↵ects cal-
culated either by RECFAST or HyRec (Ali-Haimoud & Hirata
2011), as detailed in Giesen et al. (2012). Besides pann, we sam-
ple the parameters of the base ⇤CDM model and the fore-
ground/nuisance parameters described in Sect. 4.

From Planck+WP we find

pann < 5.4 ⇥ 10�6 m3 s�1 kg�1 (95; Planck+WP). (99)

This constraint is weaker than that found from the full
WMAP9 temperature and polarization likelihood, pann < 1.2 ⇥
10�6 m3s�1kg�1 because the Planck likelihood does not yet in-
clude polarization information at intermediate and high multi-
poles. In fact, the damping e↵ect of DM annihilation on the
CMB temperature power spectrum is highly degenerate with
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Fig. 36. 2D marginalized posterior distributions for w0 and
wa, for the data combinations Planck+WP+BAO (grey),
Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue).
The contours are 68% and 95%, and dashed grey lines show the
cosmological constant solution.

energy abundance (for a flat Universe). Note that the model of
Eq. (95) has dark energy present over a large range of redshifts;
the bounds on ⌦e can be substantially weaker if dark energy is
only present over a limited range of redshifts (Pettorino et al.
2013). The presence or absence of dark energy at the epoch of
last scattering is the dominant e↵ect on the CMB anisotropies
and hence the constraints are insensitive to the addition of low
redshift supplementary data such as BAO.

The most precise bounds on EDE arise from the analysis
of CMB anisotropies (Doran et al. 2001; Caldwell et al. 2003;
Calabrese et al. 2011; Reichardt et al. 2012; Sievers et al.
2013; Hou et al. 2012; Pettorino et al. 2013). Using
Planck+WP+highL, we find

⌦e < 0.009 (95%; Planck+WP+highL). (96)

(The limit for Planck+WP is very similar: ⌦e < 0.010.) These
bounds are consistent with and improve the recent ones of
Hou et al. (2012), who give ⌦e < 0.013 at 95% CL, and
Sievers et al. (2013), who find ⌦e < 0.025 at 95% CL.

In summary, the results on dynamical dark energy (except for
those on early dark energy discussed above) are dependent on
exactly what supplementary data are used in conjunction with
the CMB data. (Planck lensing does not significantly improve
the constraints on the models discussed here.) Using the direct
measurement of H0, or the SNLS SNe sample, together with
Planck we see preferences for dynamical dark energy at about
the 2� level reflecting the tensions between these data sets and
Planck in the⇤CDM model. In contrast, the BAO measurements
together with Planck give tight constraints which are consistent
with a cosmological constant. Our inclination is to give greater
weight to the BAO measurements and to conclude that there is
no strong evidence that the dark energy is anything other than a
cosmological constant.

6.6. Dark matter annihilation

Energy injection from dark matter (DM) annihilation can
change the recombination history and a↵ect the shape of
the angular CMB spectra (Chen & Kamionkowski 2004;

Padmanabhan & Finkbeiner 2005; Zhang et al. 2006;
Mapelli et al. 2006). As recently shown in several papers
(see e.g., Galli et al. 2009, 2011; Giesen et al. 2012; Hutsi et al.
2011; Natarajan 2012) CMB anisotropies o↵er an opportunity
to constrain DM annihilation models.

High-energy particles injected in the high-redshift thermal
gas by DM annihilation are typically cooled down to the keV
scale by high energy processes; once the shower has reached
this energy scale, the secondary particles produced can ion-
ize, excite or heat the thermal gas (Shull & van Steenberg 1985;
Valdes et al. 2010); the first two processes modify the evolution
of the free electron fraction xe, while the third a↵ects the tem-
perature of the baryons.

The rate of energy release, dE/dt, per unit volume by a relic
annihilating DM particle is given by

dE
dt

(z) = 2 g ⇢2
cc2⌦2

c(1 + z)6 pann(z), (97)

where pann is, in principle, a function of redshift z, defined as

pann(z) ⌘ f (z)
h�vi
m�
, (98)

where h�vi is the thermally averaged annihilation cross-section,
m� is the mass of the DM particle, ⇢c is the critical density of
the Universe today, g is a degeneracy factor equal to 1/2 for
Majorana particles and 1/4 for Dirac particles (in the following,
constraints will refer to Majorana particles), and the parameter
f (z) indicates the fraction of energy which is absorbed overall
by the gas at redshift z. We note that the presence of the brackets
in h�vi denote a thermal average over the velocity distribution
of particles.

In Eq. (98), the factor f (z) depends on the details of the
annihilation process, such as the mass of the DM particle and
the annihilation channel (see e.g., Slatyer et al. 2009). The func-
tional shape of f (z) can be taken into account using gen-
eralized parameterizations (Finkbeiner et al. 2012; Hutsi et al.
2011). However, as shown in Galli et al. (2011), Giesen et al.
(2012), and Finkbeiner et al. (2012) it is possible to neglect the
redshift dependence of f (z) to first approximation, since current
data shows very little sensitivity to variations of this function.
The e↵ects of DM annihilation can therefore be well parameter-
ized by a single constant parameter, pann, that encodes the de-
pendence on the properties of the DM particles.

We compute here the theoretical angular power in the pres-
ence of DM annihilations, by modifying the RECFAST routine
in the camb code as in Galli et al. (2011) and by making use
of the package CosmoMC for Monte Carlo parameter estimation.
We checked that we obtain the same results by using the CLASS
Boltzmann code (Lesgourgues 2011a) and the Monte Python
package (Audren et al. 2012), with DM annihilation e↵ects cal-
culated either by RECFAST or HyRec (Ali-Haimoud & Hirata
2011), as detailed in Giesen et al. (2012). Besides pann, we sam-
ple the parameters of the base ⇤CDM model and the fore-
ground/nuisance parameters described in Sect. 4.

From Planck+WP we find

pann < 5.4 ⇥ 10�6 m3 s�1 kg�1 (95; Planck+WP). (99)

This constraint is weaker than that found from the full
WMAP9 temperature and polarization likelihood, pann < 1.2 ⇥
10�6 m3s�1kg�1 because the Planck likelihood does not yet in-
clude polarization information at intermediate and high multi-
poles. In fact, the damping e↵ect of DM annihilation on the
CMB temperature power spectrum is highly degenerate with
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Fig. 34. Marginalized posterior distributions for the dark en-
ergy equation of state parameter w (assumed constant), for
Planck+WP alone (green) and in combination with SNe data
(SNSL in blue and the Union2.1 compilation in red) or BAO
data (black). A flat prior on w from �3 to �0.3 was as-
sumed and, importantly for the CMB-only constraints, the prior
[20, 100] km s�1 Mpc�1 on H0. The dashed grey line indicates
the cosmological constant solution, w = �1.

which is in tension with w = �1 at more than the 2� level.
The results in Eqs. (91–93) reflect the tensions between the

supplementary data sets and the Planck base ⇤CDM cosmology
discussed in Sect. 5. The BAO data are in excellent agreement
with the Planck base ⇤CDM model, so there is no significant
preference for w , �1 when combining BAO with Planck. In
contrast, the addition of the H0 measurement, or SNLS SNe data,
to the CMB data favours models with exotic physics in the dark
energy sector. These trends form a consistent theme throughout
this section. The SNLS data favours a lower ⌦ in the ⇤CDM
model than Planck, and hence larger dark energy density today.
The tension can be relieved by making the dark energy fall away
faster in the past than for a cosmological constant, i.e., w < �1.

The constant w models are of limited physical interest. If
w , �1 then it is likely to change with time. To investigate
this we consider the simple linear relation in Eq. (4), w(a) =
w0 + wa(1 � a), which has often been used in the literature
(Chevallier & Polarski 2001; Linder 2003). This parameteriza-
tion approximately captures the low-redshift behaviour of light,
slowly-rolling minimally-coupled scalar fields (as long as they
do not contribute significantly to the total energy density at early
times) and avoids the complexity of scanning a large number of
possible potential shapes and initial conditions. The dynamical
evolution of w(a) can lead to distinctive imprints in the CMB
(Caldwell et al. 1998) which would show up in the Planck data.

Figure 35 shows contours of the joint posterior distribution in
the w0–wa plane using Planck+WP+BAO data (colour-coded ac-
cording to the value of H0). The points are coloured by the value
of H0, which shows a clear variation with w0 and wa reveal-
ing the three-dimensional nature of the geometric degeneracy in
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Fig. 35. 2D marginalized posterior distribution for w0 and wa
for Planck+WP+BAO data. The contours are 68% and 95%,
and the samples are colour-coded according to the value of H0.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
are assumed. Dashed grey lines show the cosmological constant
solution w0 = �1 and wa = 0.

such models. The cosmological constant point (w0,wa) = (�1, 0)
lies within the 68% contour and the marginalized posteriors for
w0 and wa are

w0 = �1.04+0.72
�0.69 (95%; Planck+WP+BAO), (94a)

wa < 1.32 (95%; Planck+WP+BAO). (94b)

Including the H0 measurement in place of the BAO data moves
(w0,wa) away from the cosmological constant solution towards
negative wa at just under the 2� level.

Figure 36 shows likelihood contours for (w0,wa), now
adding SNe data to Planck. As discussed in detail in Sect. 5,
there is a dependence of the base ⇤CDM parameters on the
choice of SNe data set, and this is reflected in Fig. 36. The re-
sults from the Planck+WP+Union2.1 data combination are in
better agreement with a cosmological constant than those from
the Planck+WP+SNLS combination. For the latter data combi-
nation, the cosmological constant solution lies on the 2� bound-
ary of the (w0,wa) distribution.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe
at early times. Such early dark energy (EDE; Wetterich 2004)
models may be very close to ⇤CDM recently, but have a non-
zero dark energy density fraction, ⌦e, at early times. Such mod-
els complement the (w0,wa) analysis by investigating how much
dark energy can be present at high redshifts. EDE has two main
e↵ects: it reduces structure growth in the period after last scat-
tering; and it changes the position and height of the peaks in the
CMB spectrum.

The model we adopt here is that of Doran & Robbers (2006):

⌦de(a) =
⌦0

de �⌦e(1 � a�3w0 )
⌦0

de +⌦
0
ma3w0

+⌦e(1 � a�3w0 ) . (95)

It requires two additional parameters to those of the base⇤CDM
model: ⌦e, the dark energy density relative to the critical den-
sity at early times (assumed constant in this treatment); and the
present-day dark energy equation of state parameter w0. Here⌦0

m
is the present matter density and⌦0

de = 1�⌦0
m is the present dark
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w = -1.13 ± 0.12 (68%, Planck+WP+BAO)!
!
SNLS (blue) favours phantom dark energy, 
w<-1!

1: w=const 2: w=w0 +wa(1-a) 

3: Early dark energy 
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Table 9. Results of the Hausman test applied to the temperature
power spectrum for 2  `  32.

Data set sobs1 P(s1 < sobs1 )
[%]

Commander . . . . . -0.647 0.73
NILC . . . . . . . . . -0.649 0.73
SEVEM . . . . . . . . -0.804 0.50
SMICA . . . . . . . . -0.589 1.33
WMAP9 ILC . . . . -0.234 7.18

sidered in detail in the next section. We also note that there is an
apparent power deficit around ` ⇠ 1800, which, as discussed in
§ ... is not statistically significant at more than... Needs complet-
ing, in particular in view of the inflation paper...

Table 8 shows the estimated parameters. The second column
gives the ‘best-fit’ parameter values that maximize the likeli-
hood. The third column gives the mean value, and the remaining
columns give the 1� and 2� ranges. For parameters that are well
constrained, e.g., ⌦bh2, the numbers in columns 2 and 3 are in
close agreement. However, the numbers can di↵er substantially
on some foreground parameters.

FRB: But we need to discuss a bit th e finding, stress nS,
and defer to the parameter paper for further discussion. PN: Can
HKE do this in his pass?

9.3. Significance of the low ` tension with ⇤CDM models

Figure 37 made immediately visible that the low end of Planck
measured spectrum (` . 30) is in apparent tension with the
Planck best fit cosmological model. The purpose of this section
is to show that the e↵ect is genuine, and to quantify its signific-
ance.

We construct a modified Hausman test (?), similar to the
one employed in Planck Collaboration 02 (2013). Specifically,
we only consider the Hausman s1 statistics here, which is built
by summing on ` the residuals between the observed spectrum
and the ⇤CDM model and taking the maximum deviation9. We
use the FFP6 simulations to derive the empirical distribution of
s1 under the null hypothesis. Results for s1 at `max = 32 are
shown in Fig. 38 and summarized in Table 9. The Planck maps
reject the null hypothesis (absence of o↵set) at around 99% sig-
nificance. For WMAP-9, the rejection is significantly weaker, if
present at all. Let us note that in terms of map based �2 statistics,
which is not really suited to quantify o↵sets, the Planck best fit
model provides a good fit to our low resolution CMB component
maps. In fact, taking �2 = mtM�1m where m is the TT block of
the matrix in Eq. 21, we find (using again the FFP6 simulations)
that the empirical probabilities P(�2 < �2

obs

) are between 14%
and 16% for all Planck CMB maps, and ⇠ 23% for the WMAP-9
ILC.

9 More rigorously, if Ĉ` is the estimated spectrum and C` the model,
we define

H` =
⇣

Ĉ` �C`
⌘

/
q

Var
n

Ĉ`
o

and

B(`max, r) =
1p
`max

[`maxr]
X

`=2

H`, r 2 [0, 1]

where [·] denotes the integer part. Then s1 = supr B(`max, r). See
Planck Collaboration 02 (2013) for further details.
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Figure 38. Results of the Hausman test applied to the temperat-
ure power spectrum for 2  `  32. The black histogram shows
the empirical distribution (estimated via FFP6 simulations) of
the s1 test statistic described in the text. The vertical bars rep-
resent Planck CMB maps and the 9-year WMAP ILC map. Note
that the NILCmap is indistinguishable from the Commandermap
for this statistic.
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Figure 39. Power spectrum amplitude, A, relative to the best-fit
Planck model as a function of `max, as measured by the low-`
Planck and WMAP temperature likelihoods, respectively. Error
bars indicate 68 and 95% confidence regions.

To gain further insight into the anomaly, we define the quant-
ity C`(A, n) = A (`/`0)n Cfid

` , where Cfid
` is the best-fit Planck

⇤CDM model and `0 = 30 ([HKE please CHECK]. We run the
Commander low-` likelihood to estimate the best amplitude A,
while marginalizing over n, for several maximum multipoles in
the range 20  `max < 50. The minimum multipole is kept fixed
at ` = 2. Results are shown in Fig. 39 and reinforce the evidence
that the Planck lowest multipoles are anomalous, at the ⇠ 2.5�
level for `max ⇠ 30. Raising `max slowly brings the results back
to normality. The e↵ect is also displayed by the WMAP-9 data,
but its significance is below 2�. We have verified that the well-
known low value of the observed quadrupole does not drive this
result, i.e. our conclusions remain the same if we exclude C2.

As a further test, we have set up a modified version of the
Planck likelihood code that allows a shift by a factor Alow of the
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Using Planck + WP, at 1-sigma: 

 

•  Peak scale                         0.060%                     direct H0 measurement tension:           

•  Baryon density                   1.3% 

•  CDM density                       2.3% 

•  Primordial amplitude           2.5% 

•  Primordial spectral index    0.76%  

•  Reionization optical depth  0.13% 

Derived (model-dependent) parameters: 

•  Hubble parameter 

•  Λ fractional density 

•  Reionization redshift 
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Table 8. Approximate constraints with 68% errors on ⇥m and
H0 (in units of km s�1 Mpc�1) from BAO, with ⇤m and ⇤b fixed
to the best-fit Planck+WP+highL values for the base �CDM
cosmology.

Sample ⇥m H0

6dF . . . . . . . . . . . . . . . . . . . . . . . . . 0.305+0.032
�0.026 68.3+3.2

�3.2
SDSS . . . . . . . . . . . . . . . . . . . . . . . 0.295+0.019

�0.017 69.5+2.2
�2.1

SDSS(R) . . . . . . . . . . . . . . . . . . . . . 0.293+0.015
�0.013 69.6+1.7

�1.5
WiggleZ . . . . . . . . . . . . . . . . . . . . . 0.309+0.041

�0.035 67.8+4.1
�2.8

BOSS . . . . . . . . . . . . . . . . . . . . . . . 0.315+0.015
�0.015 67.2+1.6

�1.5
6dF+SDSS+BOSS+WiggleZ . . . . . . 0.307+0.010

�0.011 68.1+1.1
�1.1

6dF+SDSS(R)+BOSS . . . . . . . . . . . 0.305+0.009
�0.010 68.4+1.0

�1.0
6dF+SDSS(R)+BOSS+WiggleZ . . . . 0.305+0.009

�0.008 68.4+1.0
�1.0

surements constrain parameters in the base �CDM model, we
form ⇥2,

⇥2
BAO = (x � x�CDM)T C�1

BAO(x � x�CDM), (50)

where x is the data vector, x�CDM denotes the theoretical pre-
diction for the �CDM model and C�1

BAO is the inverse covari-
ance matrix for the data vector x. The data vector is as fol-
lows: DV(0.106) = (457 ± 27) Mpc (6dF); rs/DV(0.20) =
0.1905 ± 0.0061, rs/DV(0.35) = 0.1097 ± 0.0036 (SDSS);
A(0.44) = 0.474 ± 0.034, A(0.60) = 0.442 ± 0.020, A(0.73) =
0.424±0.021 (WiggleZ); DV(0.35)/rs = 8.88±0.17 (SDSS(R));
and DV(0.57)/rs = 13.67±0.22, (BOSS). The o⇤-diagonal com-
ponents of C�1

BAO for the SDSS and WiggleZ results are given
in Percival et al. (2010) and Blake et al. (2011). We ignore any
covariances between surveys. Since the SDSS and SDSS(R) re-
sults are based on the same survey, we include either one set of
results or the other in the analysis described below, but not both
together.

The Eisenstein-Hu values of rs for the Planck and WMAP-9
base �CDM parameters di⇤er by only 0.9%, significantly
smaller than the errors in the BAO measurements. We can obtain
an approximate idea of the complementary information provided
by BAO measurements by minimizing Eq. (50) with respect to
either ⇥m or H0, fixing ⇤m and ⇤b to the CMB best-fit parame-
ters. (We use the Planck+WP+highL parameters from Table 5.)
The results are listed in Table 819.

As can be seen, the results are very stable from survey to
survey and are in excellent agreement with the base �CDM
parameters listed in Tables 2 and 5. The values of ⇥2

BAO are
also reasonable. For example, for the six data points of the
6dF+SDSS(R)+BOSS+WiggleZ combination, we find ⇥2

BAO =
4.3, evaluated for the Planck+WP+highL best-fit�CDM param-
eters.

The high value of ⇥m is consistent with the parameter anal-
ysis described by Blake et al. (2011) and with the “tension” dis-
cussed by Anderson et al. (2013) between BAO distance mea-
surements and direct determinations of H0 (Riess et al. 2011;
Freedman et al. 2012). Furthermore, if the errors on the BAO
measurements are accurate, the constraints on ⇥m and H0 (for
fixed ⇤m and ⇤b) are of comparable accuracy to those from
Planck.

19As an indication of the accuracy of Table 8, the full likelihood
results for the Planck+WP+6dF+SDSS(R)+BOSS BAO data sets give
⇥m = 0.308 ± 0.010 and H0 = 67.8 ± 0.8 km s�1 Mpc�1, for the base
�CDM model.

Fig. 16. Comparison of H0 measurements, with estimates of
±1� errors, from a number of techniques (see text for details).
These are compared with the spatially-flat �CDM model con-
straints from Planck and WMAP-9.

The results of this section show that BAO measurements are
an extremely valuable complementary data set to Planck. The
measurements are basically geometrical and free from complex
systematic e⇤ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to Planck. In addition, BAO
measurements can be used to break parameter degeneracies that
limit analyses based purely on CMB data. For example, from
the excellent agreement with the base �CDM model evident in
Fig. 15, we can infer that the combination of Planck and BAO
measurements will lead to tight constraints favouring ⇥K = 0
(Sect. 6.2) and a dark energy equation-of-state parameter, w =
�1 (Sect. 6.5).

Finally, we note that we choose to use the
6dF+SDSS(R)+BOSS data combination in the likelihood
analysis of Sect. 6. This choice includes the two most accu-
rate BAO measurements and, since the e⇤ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble constant

A striking result from the fits of the base�CDM model to Planck
power spectra is the low value of the Hubble constant, which is
tightly constrained by CMB data alone in this model. From the
Planck+WP+highL analysis we find

H0 = (67.3±1.2) km s�1 Mpc�1 (68%; Planck+WP+highL).(51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP-9 analysis. Fitting
the base �CDM model, Hinshaw et al. (2012) find

H0 = (70.0 ± 2.2) km s�1 Mpc�1 (68%; WMAP-9), (52)

consistent with Eq. (51) to within 1�. We emphasize here that
the CMB estimates are highly model dependent. It is important
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Fig. 19. Posterior distributions for ⇥m (assuming a flat cosmol-
ogy) for the SNe compilations described in the text. The poste-
rior distribution for ⇥m from the Planck+WP+highL fits to the
base �CDM model is shown by the solid green line.

combining CMB and SNe data should therefore be treated with
caution.

5.5. Additional data

In this subsection we review a number of other astrophysical data
sets that have sometimes been combined with CMB data. These
data sets are not used with Planck in this paper, either because
they are statistically less powerful than the data reviewed in pre-
vious subsections and/or they involve complex physics (such as
the intra-cluster gas in rich clusters of galaxies) which is not yet
well understood.

5.5.1. Shape information on the galaxy/matter power
spectrum

Reid et al. (2010) present an estimate of the dark matter
halo power spectrum, Phalo(k), derived from 110,756 lumi-
nous red galaxies (LRGs) from the SDSS 7th data release
(Abazajian et al. 2009). The sample extends to redshifts z ⇤ 0.5,
and is processed to identify LRGs occupying the same dark
matter halo, reducing the impact of redshift-space distortions
and recovering an approximation to the halo density field. The
power spectrum Phalo(k) is reported in 45 bands, covering the
wavenumber range 0.02 h Mpc�1 < k < 0.2 h Mpc�1. The win-
dow functions, covariance matrix and CosmoMC likelihood mod-
ule are available on the NASA LAMBDA web site25.

The halo power spectrum is plotted in Fig. 20. The blue line
shows the predicted halo power spectrum from our best-fit base
�CDM parameters convolved with the Reid et al. (2010) win-
dow functions. Here we show the predicted halo power spec-
trum for the best-fit values of the “nuisance” parameters b0
(halo bias), a1, and a2 (defined in equation 15 of Reid et al.
2010) which relate the halo power spectrum to the dark mat-
ter power spectrum (computed using camb). The Planck model
gives ⇥2

LRG = 46.9 for 42 degrees of freedom and is an ac-
ceptable, though marginally worse, fit than the best-fit model

25http://lambda.gsfc.nasa.gov/toolbox/lrgdr.

Fig. 20. Band-power estimates of the halo power spectrum,
Phalo(k), from Reid et al. (2010) together with 1� errors. (Note
that these data points are strongly correlated.) The line shows
the predicted spectrum for the best-fit Planck+WP+highL base
�CDM parameters.

of Reid et al. (2010), which has ⇥2
LRG = 40.0. Interestingly, the

main di⇤erences between the two models are at wavenumbers
k >⇥ 0.1 h Mpc�1, where the nonlinear corrections to the matter
power spectrum become important.

Figure 20 shows that the Planck parameters provide a good
match to the shape of the halo power spectrum. However, we do
not use these data (in this form) in conjunction with Planck. The
BAO scale derived from these and other data is used with Planck,
as summarized in Sect. 5.2. As discussed by Reid et al. (2010,
see their figure 5) there is very little additional information on
cosmology once the BAO features are filtered from the spec-
trum, and hence little to be gained by adding this information to
Planck. The corrections for nonlinear evolution, though small in
the wavenumber range 0.1–0.2 h Mpc�1, add to the complexity
of using shape information from the halo power spectrum.

5.5.2. Cosmic shear

Another key cosmological observable is the distortion of distant
galaxy images by the gravitational lensing of large-scale struc-
ture, often called cosmic shear. The shear probes the (nonlinear)
matter density projected along the line of sight with a broad ker-
nel. It is thus sensitive to the geometry of the Universe and the
growth of large-scale structure, with a strong sensitivity to the
amplitude of the matter power spectrum.

The most recent, and largest, cosmic shear data sets are
provided by the CFHTLenS survey (Heymans et al. 2012;
Erben et al. 2012), which covers26 154 deg2 in five optical
bands with accurate shear measurements and photometric
redshifts. The CFHTLenS team has released several cosmic
shear results which are relevant to this paper. Benjamin et al.
(2012) present results from a two-bin tomographic analysis,
Heymans et al. (2013) from a finely binned tomographic anal-
ysis, and Kitching et al. (2013) from a 3D analysis.

Heymans et al. (2013) estimate shear correlation func-
tions associated with six redshift bins. Assuming a flat,
�CDM model, from the weak lensing data alone they find
�8 (⇥m/0.27)0.46±0.02 = 0.774 ± 0.04 (68% errors) which is con-

26Approximately 61% of the survey is fit for cosmic shear science.
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the
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4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum does not fit the data, and that at least the first two terms,
As and ns, in the expansion of the primordial power spectrum in
powers of ln(k) given in Eq. 10 are needed. Here we consider
whether the data require the next term known as the running of
the spectral index (Kosowsky & Turner, 1995), defined as the
derivative of the spectral index with respect to ln k, dns ,t/d ln k
for scalar or tensor fluctuations. In slow-roll single-field infla-
tion, the running is second order in the Hubble slow-roll param-
eters, for scalar and for tensor perturbations (see Eqs. 17 and
18, respectively) (Leach et al., 2002), and thus is typically sup-
pressed with respect to, e.g., ns � 1 and nt, which are first order.
If the slow-roll approximation holds and the inflaton has reached
its attractor solution, dns/d ln k and dnt/d ln k are related to the
potential slow-roll parameters as in Eqs. 17 and 18. Given the
tight constraints on the first two slow-roll parameters ✏V and ⌘V
(✏1 and ✏2) from the present data, typical values of the running to
which Planck is sensitive (Pahud et al., 2007) would generically
be dominated by the contribution from the third derivative of the
potential, encoded in |⇠2V | (or ✏3).

While it is easy to see that the running is invariant under a
change in pivot scale, the same does not hold true for the spectral
index and the amplitude of the primordial power spectrum. It is
convenient to choose k⇤ such that dns/d ln k and ns are decorre-
lated (Cortês et al., 2007). This approach minimizes the inferred
variance of ns and facilitates comparison with constraints on ns
in the power law models. Note however that the decorrelation
pivot scale kdec⇤ depends both on the model and data set consid-
ered in the analysis.

We consider a model parameterizing the power spectrum us-
ing As(k⇤) , ns(k⇤), and dns/d ln k, where k⇤ = 0.05 Mpc�1. The
joint constraints on ns and dns/d ln k at the decorrelation scale
of kdec⇤ = 0.04 Mpc�1 are shown in Fig. 4. The Planck+WP con-
straints on the running do not change significantly when com-
plementary data sets such as Planck lensing, CMB high-`, and
BAO data are included. We find

dns/d ln k = �0.013 ± 0.009 (68% CL, Planck+WP) , (45)

which is negative at the 1.5� level. This reduces the the uncer-
tainty compared to previous CMB results. Error bars are reduced
by 60% compared to the WMAP 9-year results (Hinshaw et al.,
2012a), and by 20-30% compared to WMAP supplemented by
SPT and ACT data (Hou et al., 2012; Sievers et al., 2013). Planck
finds a smaller scalar running than SPT+WMAP7 (Hou et al.,
2012), and larger then ACT+WMAP7 (Sievers et al., 2013). The
best-fit likelihood improves by only ��2

e↵ ⇡ 1.5 (3 when high-`
data are included) with respect to the minimal case in which ns is
scale independent, indicating that the deviation from scale inde-
pendence is not very significant. The constraint for the spectral
index in this case is 0.9630 ± 0.0065 at 68% CL at the decor-
relation pivot scale k⇤ = 0.038 Mpc�1. This result implies that
the third derivative of the potential is small, i.e., |⇠2V | ⇠ 0.007,
but compatible with zero at 95% CL, for inflation at low energy
(i.e., with ✏V ⇡ 0).

We also test the possibility that the running depends on the
wavelength so that d2ns/d ln k2 is nonzero. With Planck+WP
data, we find d2ns/d ln k2 = 0.020+0.016

�0.015. This result is stable
with respect to the addition of complementary data sets. When
d2ns/d ln k2 is allowed in the fit, we find a value for the running
dns/d ln k consistent with zero.

Finally we allow a non-zero primordial gravitational wave
spectrum together with the running. The tensor spectral in-
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Fig. 2. Marginalized joint 68% and 95% CL for (dns/d ln k , ns)
using Planck+WP+BAO, either marginalizing over r or fixing
r = 0 at k⇤ = 0.038 Mpc�1. The purple strip shows the prediction
for single monomial chaotic inflationary models with 50 < N⇤ <
60 for comparison.

dex and its running are set by the slow-roll consistency re-
lations to second order, with nt = �r(2 � r/8 � ns)/8 and
dnt/d ln k = r(r/8 + ns � 1)/8. Planck measures the running to
be dns/d ln k = �0.016 ± 0.010 when tensors are included (see
Table 5 and Fig. 4). The constraints on the tensor-to-scalar ra-
tio are relaxed compared to the case with no running, due to an
anti-correlation between r and dns/d ln k, as shown in Fig. 4 for
Planck+WP+BAO.

Varying both tensors and running, Planck+WP implications
for slow-roll parameters are ✏V < 0.015 at 95% CL, ⌘V =
�0.014+0.015

�0.011, |⇠2V | = 0.009 ± 0.006.
In summary, the Planck data prefer a negative running for

the scalar spectral index of order dns/d ln k ⇡ �0.015 at the
1.5� significance level, alone and in combination with other
astrophysical data sets. Weak statistical evidence for non-zero
negative values of dns/d ln k has been claimed in several previ-
ous investigations with the WMAP data and smaller scale CMB
data (e.g., Spergel et al., 2003; Peiris et al., 2003; Dunkley et al.,
2011; Hinshaw et al., 2012a; Hou et al., 2012).

If primordial, negative values for dns/d ln k of order 10�2,
would be interesting for the physics of inflation. The running of
the scalar spectral index is a key prediction for inflationary mod-
els. It is strictly zero for power law inflation, whose fit to Planck
was shown to be quite poor in the previous section. Chaotic
monomial models with V(�) / �n predict dns/d ln k ⇡ �8(n +
2)/(4N+n)2 ⇡ (ns�1)2, and the same order of magnitude (10�3)
is quite typical for many slow-roll inflationary models, such as
natural inflation or hilltop inflation, to name a few. It was pointed
out that a large negative running of dns/d ln k . �10�2 would
make it difficult to support the N⇤ ⇡ 50 e-foldings required from
inflation (Easther & Peiris, 2006), but this holds only without
nonzero derivatives higher than the third order in the inflation-
ary potential. Designing inflationary models that predict a neg-
ative running of O(10�2) with an acceptable ns and number of
e-folds is not impossible, as the case with modulated oscilla-
tions in the inflationary potential demonstrates (Kobayashi &
Takahashi, 2011). This occurs, for instance, in the axion mon-
odromy model when the instanton contribution is taken into ac-



Planck Collaboration: Constraints on inflation 13

Model Parameter Planck+WP Planck+WP+lensing Planck+WP+high-` Planck+WP+BAO

⇤CDM + dns/d ln k

ns 0.9561 ± 0.0080 0.9615 ± 0.0072 0.9548 ± 0.0073 0.9596 ± 0.0063
dns/d ln k �0.0134 ± 0.0090 �0.0094 ± 0.0085 �0.0149 ± 0.0085 �0.0130 ± 0.0090

�2� lnLmax -1.50 -0.77 -2.95 -1.45

+ d2ns/d ln k2

ns 0.9514+0.087
�0.090 0.9573+0.077

�0.079 0.9476+0.086
�0.088 0.9568+0.068

�0.063
⇤CDM + dns/d ln k dns/d ln k 0.001+0.016

�0.014 0.006+0.015
�0.014 0.001+0.013

�0.014 0.000+0.016
�0.013

d2ns/d ln k2 0.020+0.016
�0.015 0.019+0.018

�0.014 0.022+0.016
�0.013 0.017+0.016

�0.014

�2� lnLmax -2.65 -2.14 -5.42 -2.40

⇤CDM + r + dns/d ln k

ns 0.9583 ± 0.0081 0.9633 ± 0.0072 0.9570 ± 0.0075 0.9607 ± 0.0063
r < 0.25 < 0.26 < 0.23 < 0.25

dns/d ln k 0.021 ± 0.012 0.017 ± 0.012 �0.022+0.011
�0.010 �0.021+0.012

+0.010

�2� lnLmax -1.53 -0.26 -3.25 -1.5

Table 5. Constraints on the primordial perturbation parameters for ⇤CDM+dns/d ln k, ⇤CDM+dns/d ln k+r and
⇤CDM+dns/d ln k+d2ns/d ln k2 models from Planck combined with other data sets. Constraints on the spectral index and its de-
pendence on the wavelength are given at the pivot scale of k⇤ = 0.05 Mpc�1.
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Fig. 3. Marginalized joint 68% and 95% CL regions for
(d2ns/d ln k2 , dns/d ln k) using Planck+WP+BAO.

count (McAllister et al., 2010) giving the potential

V(�) = µ3� + ⇤4 cos
 

�

f

!

. (46)

4.4. Open inflation

Most models of inflation predict a nearly flat spatial geome-
try with small deviations from perfect spatial flatness of order
|⌦K | ⇠ 10�5. Curvature fluctuations may be regarded as local
fluctuations in the spatial curvature, and even in models of infla-
tion where the perturbations are calculated about a spatially flat
background, the spatial curvature on the largest scales accessible
to observation now are subject to fluctuations from perfect spa-
tial flatness (i.e., ⌦K = 0). This prediction for this fluctuation is
calculated by simply extrapolating the power law spectrum to the
largest scale accessible today, so that ⌦K as probed by the CMB
roughly represents the local curvature fluctuation averaged over
our (causal) horizon volume. Although it has sometimes been
claimed that spatial flatness is a firm prediction of inflation, it
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Fig. 4. Marginalized joint 68% and 95% CL regions for (r , ns),
using Planck+WP+BAO with and without a running spectral in-
dex.

was realized early on that spatial flatness is not an inexorable
consequence of inflation, and large amounts of spatial curvature
(i.e., large compared to the above prediction) can be introduced
in a precise way while retaining all the advantages of inflation
(Gott, 1982; Gott & Statler, 1984) through bubble nucleation by
false vacuum decay (Coleman & De Luccia, 1980). This pro-
posal gained credence when it was shown how to calculate the
perturbations in this model around and beyond the curvature
scale (Bucher et al., 1995; Bucher & Turok, 1995; Yamamoto
et al., 1995; Tanaka & Sasaki, 1994). See also (Ratra & Peebles,
1995, 1994; Lyth & Stewart, 1990). For more refined later cal-
culations see for example Garriga et al. (1998, 1999); Gratton &
Turok (1999) and references therein. For predictions of the ten-
sor perturbations see for example Bucher & Cohn (1997); Sasaki
et al. (1997); Hertog & Turok (2000).

An interesting proposal using singular instantons and not
requiring a false vaccum may be found in Hawking & Turok
(1998), and for calculations of the resulting perturbation spectra
see (Hertog & Turok, 2000; Gratton et al., 2000). Models of this
sort have been studied more recently in the context of the string
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