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This talk mostly follows chapter 2 of [1] and [6].

1 Motivation

Beyond any doubt, inflation is an essential ingredient in modern cosmology. In the
simplest realisation, a scalar field ϕ, called the inflaton, is postulated and is governed
by

L =
√

−detgµν

(

−1

2
(∂µϕ)

2 − V (ϕ)

)

. (1)
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However, not all potentials V (ϕ) are allowed, but we need the slow-roll parameters

ǫ :=
1

2

(

MP l
V ′

V

)2

, η := M2
P l

V ′′

V
, (2)

where MP l is the four-dimensional Planck mass, to be very small, ǫ, η ≪ 1, to get the
correct number of e-folds.
Why should we try to embed this framework into string theory? First of all, the nature
of the particle ϕ remains elusive when just postulating its existence. Furthermore, string
theory is sometimes claimed to be a theory of everything. Since inflation is something, it
should somehow be included in string theory. While these are aesthetical reasons, there
is a more severe problem and that is the UV-sensitivity of inflation. Indeed, consider a
Planck-suppressed operator contributing to the inflaton potential,

∆V =
ϕ2

M2
P l

O4. (3)

If the vev of O4 is of the order of the inflaton potential, 〈O4〉 ∼ V , this gives a contri-
bution of order one to η, which potentially spoils the slow-roll behaviour. String theory,
being the most promising candidate for a UV-complete theory at the Planck scale, is
therefore the most natural candidate to study inflation.

2 Inflation in String Theory

The aim of embedding inflation in string theory can be stated as follows: Start from a
full ten-dimensional string theory and specify the background data (compactification,
fluxes,. . . ) in such a way that the four-dimensional low-energy effective action gives rise
to slow-roll inflation. At first sight, this seems easy enough - string compactifications
naturally come with scalar fields, so-called moduli, which describe the parameters of the
internal manifold (size, shape, brane positions,. . . ). Therefore, we find natural inflaton
candidates and there are several known possibilities to find flat enough potentials for
one of the moduli. However, we face an embarrassment of riches - in general we have
many moduli, all of which enter the scalar potential,

Vinf = Vinf(ϕ, ϕ
⊥), (4)

where ϕ⊥ denotes all moduli which are not our inflaton candidate. The problem now is
that while we may have a flat potential in ϕ, the potential in ϕ⊥ can be very steep. Then
the theory would of course follow the steep ϕ⊥-direction, completely spoiling slow-roll
inflation. Therefore, we need to stabilise the ϕ⊥-directions, i.e. find a mechanism that
introduces a stabilising potential Vstab such that

m2
ϕ⊥ > 0. (5)

The total potential would then be given by

Vtot = Vinf + Vstab. (6)
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However, in general Vstab depends on ϕ, as well. There is no reason why this additional
potential should be compatible with slow-roll inflation. Therefore, we face a strong
interplay between inflation and moduli stabilisation and neglecting the latter would lead
to questionable results.
The aim of this talk is to study one specific setup (D3/D3-inflation), highlight the
features and problems mentioned above and find one explicit realisation of inflation in
string theory.

3 Lightning review: IIB and its moduli

3.1 Particle content and action

The low-energy dynamics of type IIB string theory is given by type IIB SUGRA with the
bosonic spectrum given by ten-dimensional metric gMN , a NSNS 2-form B(2), a dilaton
φ and the RR p-forms C(p) with p = 0, 2, 4, with field strengths

H(3) := dB(2), F(3) := dC(2), F̃(5) := dC(4) +
1

2
B(2) ∧ F(2) −

1

2
C(2) ∧H(3). (7)

With the combinations τ := C(0) + ie−iφ (“axion-dilaton”) and G(3) := F(3) − τH(3), the
bosonic part of the IIB action is given by

SIIB =
1

2κ2
10

∫

d10x
√−g

{

R− ∂Mτ∂M τ̄

2(Imτ)2
− G(3) · Ḡ(3)

12Imτ
−

F̃ 2
(5)

4 · 5!

}

+
1

8iκ2
10

∫

C(4) ∧G(3) ∧ Ḡ(3)

Imτ
,

(8)
where κ2

10 is the ten-dimensional gravitational coupling. In addition, in IIB we have
stable p-branes when p is odd. Those are embedded in the ten-dimensional space-time
by the action

S = SDBI + SCS =− µp

∫

dp+1ξe−P [φ]
√

−det
(

P [g + B(2)] + 2πα′F(2)

)

+ µp

∫

σp+1

eP [B(2)]+2πα′F(2) ∧
∑

q

P [C(q)]. (9)

We will compactify the additional six dimensions on a Calabi-Yau threefold, which breaks
3
4
of the present SUSY, so that N = 2 SUSY remains for IIB. To get the phenomenolog-

ically more interesting N = 1 case, we have to do an additional orientifold projection.
Then, the metric will be of the product form

ds2 = gµνdx
µdxν + g̃mndy

mdyn. (10)

3.2 Moduli

After compactifying IIB as described above, we find several scalar fields in the four-
dimensional low-energy theory:
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• Axion-dilaton τ

• Complex structure moduli Ua → describe deformations of complex structure of
the CY3 (i.e. deformations of Ω)

• Kähler moduli → describe size-deformations of CY3 (e.g. sizes of cycles)

We will always find a Kähler modulus T , describing the overall volume of the CY3 in
the sense that ImT ∼ (Vol(M6))

2
3 . For simplicity, we will assume in the following that

this is the only Kähler modulus. Each modulus lives in a N = 1 chiral supermultiplet
with potentials of the general N = 1 SUGRA form

V = eK/M2
Pl

[

KIJ̄DIWDJ̄W̄ − 3
|W |2
M2

P l

]

, (11)

with I, J labeling the moduli fields zI = {Ua, T, τ}. In Eq.(11), we introduced the
following quantities:

• K = K(z, z̄) is the Kähler potential

• KIJ̄ := ∂I∂J̄K, also enters in kinetic terms of zI : Lkin = −√−gKIJ̄

(

∂µz
I
) (

∂µz̄J̄
)

• W = W (z) is the superpotential

• DIW := ∂IW + (∂IK) W
M2

Pl

It is a known result that a critical point of V preserves N = 1 iff DIW = 0 for all I.

4 D3/D3-inflation

4.1 Setup

For now, this is enough background to explain our model of inflation. We start with
type IIB on a CY3. We then add a pair of D3/D3-branes which we choose to be space-
time filling in the non-compact dimensions and localised in the CY3. Their distance d
in the internal manifold will be identified with the inflaton later on. It is known that
in the backgrounds we are interested in the forces from gravity and the form field C(4)

cancel for D3-branes to leading order in α′. This, however, is not true for D3-branes,
since their charges under the form fields is opposite to that of a D3-brane. Therefore,
a D3-brane is driven to special locations in the CY3, where the forces cancel. The D3-
brane is then only moving due to the “Coulomb”-attraction with the D3-brane. For this
reason, this is a very clean and simple setup. An additional virtue of this setup is that
once the separation d between the branes is smaller than the string length ℓs, there is a
tachyonic mode between the branes that leads to brane-antibrane annihilation, leading
to an automatic endpoint of inflation.
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In the six-dimensional space, the interaction potential between the branes is given by

VCoulomb ∼ 2T3

(

1− 1

2π2T3d4

)

, (12)

where the first term describes the potential energy due to the presence of the D3-brane,
while the second term describes the Coulomb interaction (i.e. tree-level exchange of
gravitons and C(4)-quanta between the branes). To get a canonically-normalised scalar
field, we define ϕ :=

√
T3d and find for the potential Eq.(12)

VCoulomb ∼ 2T3

(

1− T3

2π2φ4

)

. (13)

Plugging

M2
Pl =

T 2
3

π
Vol(M6), (14)

which follows from M8
Pl,10Vol(M6) = M2

Pl,4, in Eq.(13) and using the definition of η, we
find

η ∼= −.3
Vol(M6)

d6
. (15)

This shows that η ≪ 1 is only possible if d ≫ Vol(M6)
1
6 , where the last quantity can

be interpreted as the diameter of the CY3, i. e. the branes would need to be separated
larger than the diameter of the CY3, which is impossible! Therefore, our setup is too
simple and needs to be modified.

4.2 More on IIB: fluxes

To make sense of our setup described in the last section, we need an additional ingredient
in the compactification. The three-form fields H(3), F(3) can lead to non-trivial behaviour
if their integral along three-cycles in the CY3 is non-vanishing,

∫

Σ3

F(3) 6= 0,

∫

Σ3

H(3) 6= 0. (16)

This is called a flux of the corresponding three-form. Since energy is stored in those
fluxes, this leads to a back reaction of the geometry. In our case, this back reaction is
rather mild: the metric attains a warping factor,

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)gmndy

mdyn. (17)

Then the internal manifold is still conformally equivalent to a CY3. Changing the size
of the cycle Σ3 will change the energy stored in the flux, and should therefore lead to a
modification of the scalar potential. Indeed, it can be shown that the fluxes lead to a
contribution to the superpotential as

Wflux = Wflux(U
a, τ) =

∫

M6

G(3) ∧ Ω, (18)
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Figure 1: D3-brane in a warped background. Taken from [1].

which is independent of the Kähler modulus T . Together with the tree-level Kähler
potential

K(Ua, T, τ) = K(Ua) +K(τ)− 3 log(−i(T − T̄ )) (19)

this leads to the scalar potential

V = eK(zi)+K(T )
[

Kij̄DiWDj̄W
]

, (20)

where zi = Ua, τ . This is manifestly non-negative and is minimised for DiW = 0.
These are exactly as many equations as we have complex structure moduli plus the
axion-dilaton. Therefore, these moduli will be stabilised at the minimum of the scalar
potential! However, the volume modulus T remains unfixed.

4.3 D3/D3-inflation in warped background

To study D3/D3-inflation in a warped background, we choose a specific background
called the Klebanov-Strassler background. This background, shown in figure 1, has a
throat-like geometry. The tip of the throat is smoothed into a S3, while the bottom is
smoothly glued into a CY3. The background fluxes are chosen such that

1

(2π)2α′

∫

A

F(3) =: M,
1

(2π)2α′

∫

B

H(3) := −K, (21)

where A is the S3 at the tip and B is the Poincaré-dual cycle to A. Inside the throat,
the internal metric has the general form

ds2int =
√

h(r)
(

dr2 + r2ds2X5

)

, (22)

where r is cut off at both ends, r0 < r < rmax. The X5 is a five-dimensional manifold,
whose structure is irrelevant for our purposes, just note that it is parametrised by 5
angles. The exact metric in the throat is known. However, we will only need the form
well inside the throat, which is given by

h(r) ∼= R4

r4
log

(

r

rmax

)

. (23)
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Note that r0 and h0 := h(r0) depend exponentially on M and K.
In this background, the D3-brane is moved to the tip of the throat. The D3-brane is
then attracted by the D3-brane and moves along the throat. We can then repeat the
analysis of the Coulomb-potential, still neglecting volume stabilisation, and obtain

VCoulomb =
2h−1

0 T3

U2

(

1− 27h−1
0

32π2T3r4

)

, (24)

where U ∼ (Vol(M6))
2
3 . This shows that

η ∼ h−1
0 , (25)

which can be made arbitrarily small by the choice of fluxes. But VCoulomb is much steeper
in U than in r. Therefore, instead of the D3-brane moving along the throat r → r0, we
would see that U → ∞, i.e. the internal manifold would decompactify! Wee see that
there is no way around it - we need to stabilise the volume modulus, as well.

5 Volume stabilisation

5.1 General considerations

To stabilise the volume modulus T , we need to consider quantum corrections to the su-
perpotential W . Due to a non-renormalisation theorem, the superpotential only receives
non-perturbative corrections, for which two possible sources are known: Euclidean D3-
branes or gaugino condensation on a stack of D7-branes wrapping a four-cycle Σ4 in the
CY3. In both cases, the superpotential can be written as

W = W0 + AeiaT , (26)

where a depends on which non-perturbative corrections are considered andW0 and A are
constants up to a possible ϕ-dependence. Let us remark that up to now our approach is
very similar to the KKLT setup [7]. This, of course, is no surprise, because we want to
end up in a de Sitter-vacuum at the end of inflation. However, in [7], there is no mobile
D3-brane. Therefore, A is a constant and the superpotential only depends on T . This
is no longer true in our setup. In fact, including a mobile D3-brane the Kähler potential
changes and now reads

K(T, γ) = −3 log(−i(T − T̄ ))− k(γ, γ̄), (27)

where γa with a = 1, 2, 3 parametrises the position of the D3-brane in the internal
manifold and where k is the Kähler potential of the original CY3. Technically, it is this
mixing of T and γa in the Kähler potential that leads to the strong interplay between
inflation and moduli stabilisation. Of course, this introduces additional complications.
In our case, however, this is a virtue, since assuming that W = W (T ) only, [2] show
that the inflaton field acquires a mass

m2
ϕ
∼= 2H2, (28)
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Figure 2: Internal manifold after introduction of the volume-stabilising D7-branes.
Taken from [4].

where H is the Hubble parameter, which leads to

η ∼= 2

3
, (29)

which is much too large to get slow-roll inflation. An additional dependence of the
superpotential on the D3-brane position introduces corrections and might cancel the 2

3

in Eq.(29) to get η ≪ 1. Indeed, [2] claim that with sufficient fine-tuning it should
be possible to find vacua in which η ≪ 1. However, it is conceivable that the correc-
tions introduced by a position-dependence have the same sign as those from the volume
stabilisation. Therefore, one needs to calculate the precise position-dependence of the
superpotential to know for sure.

5.2 Explicit results

The explicit calculation of the superpotential in the case of gaugino condensation was
carried out in [3]. Since the calculation is very technical, let us just motivate why this
effect leads to a position-dependent superpotential and then just state the result.
We introduce a stack of n D7-branes that are space-time filling in the non-compact
dimensions and that wrap a four-cycle Σ4 in the CY3 as shown in figure 2. On the
worldvolume of those branes, we find a SU(n) N = 1 SYM theory. When settling to
the energetic minimum, the gauginos of the SYM will condense. Note that this is a non-
perturbative effect1. The introduction of the D7-branes also leads to additional vector
fields which in the four-dimensional theory have kinetic terms

Lvec
kin = −1

4

√

−detgµνRe(f(z))FµνF
µν . (30)

The structure of this term is constrained by N = 1 SUSY such that the prefactor of the
canonical term has to be the real part of a holomorphic function of the moduli. f(z) is

1Just compare this situation with the corresponding situation in QCD in which calculating qq̄-

condensation is only accessible via lattice calculations or holography.
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called gauge kinetic function and a comparison with the canonical form for vector fields
shows that we can identify

Re(f(z)) = g−2(z, z̄), (31)

where g is the moduli-dependent gauge coupling. In pure SU(n) SYM gaugino conden-
sation leads to a non-perturbative contribution to the superpotential of the form

Wnp = Ae−
8π2

n
f(z), (32)

in which the gauge kinetic function enters, as well. Consider now the embedding of the
D7-branes, given by the DBI-action

SDBI = −T7

∫

Σ4

d4σ
√

detP [g̃mn + . . . ]

∫

d4x
√

−det(gµν + 2πα′F(2) + . . . )

= −T7
(2πα′)2

4

∫

Σ4

d4σh
√

detP [gmn]

∫

d4x
√

−detgµνFµνF
µν +O(α′2). (33)

The first integral in the second line of Eq.(33) is nothing but the volume of the four-cycle
in the warped geometry. Therefore, we can identify

g−2 = T7(2πα
′)2Vol(Σ4). (34)

The upshot of all this is that the presence of a mobile D3-brane leads to a deforma-
tion of the warpfactor h which enters in Vol(Σ4). Therefore, the D3-brane leads to a
modification of the gauge coupling g−2 and, via Eqs.(34),(32) to a modification of the
superpotential, depending on the position of the D3. This is exactly what we wanted.
The exact result depends on the analytic embedding equation g(xα) of the D7-branes as

A(xα) = A0

(

g(xα)

g(0)

)1/n

, (35)

where xα with α = 1, 2, 3 are isotropic coordinates parametrising the internal manifold.
Since

∑ |xα|2 = r2, the xα scale as ϕ3/2. Therefore, Eq.(35) will generate powers of
ϕ3/2, but no purely quadratic term in ϕ and it is impossible to cancel the contribution
Eq.(28) exactly, i.e. we cannot have slow-roll inflation over the whole range of ϕ.

6 One specific example

We can now finally consider a fully-explicit example. To do so, we choose the embedding
equation g(xα) = µ, where µ ∈ R

+, the so-called Kuperstein embedding. [4] then identify
a radial trajectory of the D3-brane that is stable in the angular directions and which
demands x1 = − 1√

2
r3/2. Plugging this into the general equation for the potential Eq.(20)
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Figure 3: The single-field potential V after stabilising the volume modulus. It is always
possible to tune the parameters such that we get an inflection point. Taken
from [5].

and using σ = 1
2
(T + T̄ ), we find

V (ϕ, σ) =
a|A0|2

3

e−2aσ

U2(ϕ, σ)
g(ϕ)2/n

[

2aσ + 6− 6eaσ
|W0|
|A0|

1

g(ϕ)1/n
+

3c

n

ϕ

ϕ0

1

g(ϕ)2

− 3

n

1

g(ϕ)

ϕ3/2

ϕ
3/2
0

]

+
D

U2(ϕ, σ)
. (36)

The only parameter of relevance in Eq.(36) is ϕµ, which describes the minimal value
of the radius which the D7-branes reach in the throat. For more details on the other
parameters see [5]. [4] then demand that at each value of ϕ the potential attains its
minimum in σ. This gives rise to a function σ∗(ϕ) such that ∂V

∂σ

∣

∣

σ∗(ϕ)
= 0. This leads to

a single-field potential V(ϕ) = V (ϕ, σ∗(ϕ)) shown in figure 3. Generically, this potential
has a metastable minimum. Indeed, it is possible to show that V has negative curvature
near the tip and positive curvature far away. Therefore, η must vanish at one point
in between. Furthermore, ϕµ can always be tuned such that the minimum becomes an
inflection point. This is a big virtue, because at an inflection point both η and ǫ become
small, leading to slow-roll inflation.
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7 Conclusions

Let us conclude our findings. We see that it is possible to find an explicit realisation
of slow-roll inflation in string theory. However, finding a working example turned out
to be very difficult. For example, there are whole classes of embeddings other than
the Kuperstein embedding that can never produce potentials that are flat enough for
slow-roll inflation. Furthermore, the solution is very different than expected - no fine-
tuning can cancel the quadratic mass term Eq.(28) and the non-perturbative contribution
completely changes the character of the potential as compared to the naive Coulomb-
potential Eq.(13).

References

[1] J. Erdmenger (Ed. ), String Cosmology, Wiley (2009).

[2] S. Kachru et al., JCAP 10, 013 (2003).

[3] D. Baumann et al., JHEP 11, 031 (2006).

[4] D. Baumann et al., Phys. Rev. Lett. 99, 141601 (2007).

[5] D. Baumann et al., JCAP 01, 024 (2008).

[6] D. Baumann, TASI Lecture Notes, arXiv:0907.5424 (2009).

[7] S. Kachru et al., Phys. Rev. D 68, 046005 (2003).

11


