τ -Polarization in H/Z-Decays

 ${\it Michaela~Roggendorf} \\ {\it (Supervised~by~Juergen~Kroseberg~\&~Thomas~Schwindt)}$

Physikalisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn

11th Workshop of the mtautau Analysis Working Group 23.09.2013

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Sample

Single Tau Polarization

Tau Pair Polarization

Introduction

• τ -lepton is the heaviest of the leptons (1,777 GeV) \Rightarrow only lepton that can decay into hadrons (hadronic decays: \sim 65%, leptonic: \sim 35%)

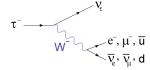


Figure: tau-decay modes

- \bullet also due to hadronic decay mode the $\tau\text{-lepton}$ decay is a good spin analyser
- ullet can use previous work as starting point, e.g. master thesis "Measurement of the Tau Polarization in $Z \to \tau au$ Decays with the ATLAS Detector" by Ingrid Deigaard

 $http://discovery center.nbi.ku.dk/teaching/thesis_page/MasterThesis_Ingrid.pdf (a) and (b) and (b) are also become a constant of the constan$

 τ -Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Samples

Single Tau Polarization

Tau Pair Polarization

Introduction

• possible application: distinction between $H \to \tau^+ \tau^-$ (total spin 0) and $Z \to \tau^+ \tau^-$ (total spin 1)

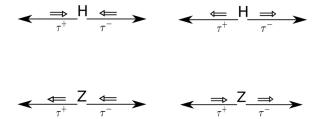


Figure: tau-helicities in H/Z decays

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

 τ -Decay

Sample

Single Tau Polarization

Tau Pair Polarization

Helicity/Polarization in ATLAS MC

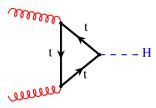
- In ATLAS simulation tau-decays are e.g. handled by TAUOLA, which assigns helicity to the taus and decays them accordingly.
- BUT tau helicity was not saved
 ⇒ no truth information available
- estimation: TauSpinner-Tool:
 - "TauSpinner program for studies on spin effect in tau production at the LHC" by Z. Czyczula, T. Przedzinski, Z. Was arXiv:1201.0117 [hep-ph]
 - using polarimetric vectors (can be obtained from kinematics) to calculate weights for spin-configurations
 - \Rightarrow returns for each event a variable called "polari" with value -1 or 1 based on probability
 - Input: four-vectors of
 - mother particle (H/Z)
 - τ⁺
 - τ
 τ⁺-decay products (pion or kaon endstate)
 - \bullet au^- -decay products (pion or kaon endstate)
 - ullet for Z/ γ^* -decays polari is equal to the helicity of au^-

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Samples


Single Tau Polarization

Tau Pair Polarization

ckup

Samples (Monte Carlo 2012):

- H
- $gg \rightarrow H \rightarrow \tau^+ \tau^-$
- $m_{\rm H} = 125 \, {\rm GeV}$
- Z
 - π^0 reconstruction from 01.07.2013 (no latest versions)
- due to preselection of H analysis
 - $p_T(e) \ge 17 \,\mathrm{GeV}$
 - $p_T(\mu) \ge 17 \,\mathrm{GeV}$
 - $p_T(\tau_{\text{vis}}) \ge 20 \text{ GeV}$ $(p_T(\tau_{\text{vis}}) \text{ for each } \pi^0 \text{ algorithm separately})$
 - BDT medium tau

gluon-gluon-fusion

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Samples

Single Tau Polarization

Tau Pair Polarization

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Samples

Single Tau Polarization

Tau Pair Polarization

- Measurement of Helicity/Polarization for Single Tau Leptons
 - Fraction Of Visible Energy
 - π-Channel
 - → best distinction power
 - I-Channel
 - → no other observable available in reconstruction
 - Charged Energy Asymmetry
 - ρ -Channel
 - → best distinction power
 - Polarimetric Vector
 - Hadronic Channels

Reminder: Fraction Of Visible Energy: π -Channel: $\tau^- \to \pi^- \nu_\tau$ tau: negative helicity

tau rest frame, low-energy pion

tau rest frame, high-energy pion

$$\Rightarrow$$
 $x = \frac{E_{\pi}}{E_{\tau}}$ is a spin sensitive quantity

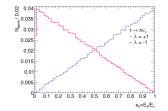


Figure: Distribution of fraction of visible energy, x, for τ^- in pion decays divided into left-handed (pink) and right-handed (blue) samples.[Ingrid Deigaard]

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Samples

Single Tau Polarization

au Pair Polarizatio .

Reminder: Truth x and Reconstruction of x

truth:

Monte Carlo samples without detector simulation

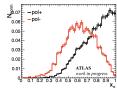
reconstruction:

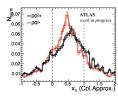
using detector simulation

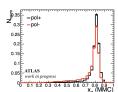
- Collinear Approximation
 - · neutrinos go in the same direction as the visible decay products
 - · all the missing energy is due to neutrinos from tau decays
- Missing Mass Calculator (MMC)
 - complex tool to reconstruct the mass of the original resonance (H/Z)
 - requirement: mutual orientations of the neutrinos and other decay products are consistent with the mass and decay kinematics of a au lepton
 - minimizing likelihood functions

 τ -Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)


au-Decay


Samples


Single Tau Polarization

Tau Pair Polarization

Truth x_{π} and Reconstruction of x_{π} , Z sample

Truth

• preselection deforms distributions of τ^- with positive helicity / τ^+ with negative helicity due to low π^\pm energy

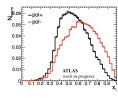
Collinear Approximation

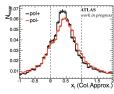
 curves are shifted towards smaller values of x

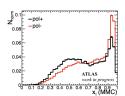
MMC

• curve peaks are at $x \approx 0.8$ independent of helicity (caused by internal PDFs/parametrization)

au-Polarization in H/Z-Decays


Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)


au-Decay


Samples

Single Tau Polarization

Truth x_l and Reconstruction of x_l , Z sample

Truth

- preselection deforms distributions for both helicites
- ullet less distinction power than for x_π

Collinear Approximation

(neutrino sum reconstruction)

ullet curves look similar to x_π curves

ммс

(neutrino sum reconstruction)

 curves very deformed (caused by internal PDFs/parametrization) au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Sample

Single Tau Polarization

Tau Pair Polarization

$$\Upsilon = \frac{E_{\rm ch} - E_{\pi^0}}{E_{\rm ch} + E_{\pi^0}} \tag{1}$$

$$= \frac{p_{\mathsf{T}}^{\mathsf{Trk}} - (E_{\mathsf{T}\tau} - p_{\mathsf{T}}^{\mathsf{Trk}})}{p_{\mathsf{T}}^{\mathsf{Trk}} + (E_{\mathsf{T}\tau} - p_{\mathsf{T}}^{\mathsf{Trk}})}$$
(2)

$$= \frac{2\rho_{\mathsf{T}}^{\mathsf{Trk}}}{E_{\mathsf{T}\tau}} - 1 \tag{3}$$

 \Rightarrow not usable for lepton or single pion channel (no π^0)

definitions:

- truth upsilon (1) from truth information
- upsilon (3) from transverse calorimeter energy and transverse momentum of the charged tracks
- upsilon using π^0 reconstruction (1) from tracks and reconstructed π^0
 - \bullet cluster based π^0 reconstruction algorithm: Michel Trottier-McDonald
 - ullet cell based π^0 reconstruction algorithm: Benedict Winter

 τ -Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Samples

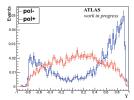
Single Tau Polarization

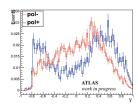
Υ in ρ -decays

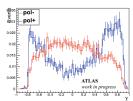
Figure: The distribution of the charged energy asymmetry Υ from rho decays divided into left-handed (pink) and right-handed (blue) samples. Each sample is normalized to one. [Ingrid Deigaard]

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)


 τ -Decay


Sample


Single Tau Polarization

Tau Pair Polarization

Υ in ρ -decays

Truth

- asymmetry due to preselection
- ullet overlap (61 \pm 2)%

Cluster Based

- ullet default π^0 reconstruction method
- ullet overlap $(75\pm2)\%$

Cell Based

- ullet overlap $(71\pm2)\%$
- performs better than cluster based algorithm (see Backup)

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Sample

Single Tau Polarization

Tau Pair Polarization

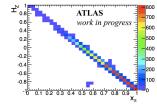
Reminder: Relation Between Matrixelement and Polarimetric Vector

- spin vector S, polarimetric vector H
- partial decay width for any decay mode $d\Gamma \propto (1+S\cdot H)$ \Rightarrow most likely configuration for a given S is H pointing in the direction of S best estimate of spin direction ist the direction of H for which $d\Gamma$ is maximal
- helicity estimation (H/Z rest frame)
 - $H_z < 0$: right-handed τ^- (lh τ^+)
 - $H_z > 0$: left-handed τ^- (rh τ^+)

au-Polarization in H/Z-Decays

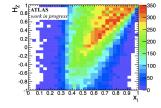
Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay


Samples

Single Tau Polarization

Tau Pair Polarization


ickup

Correlation of H_z with x and Υ , Truth Information

Single Pion Channel

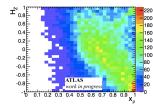
- strong correlation between H_z and x
- preselection suppresses events with high H_z values

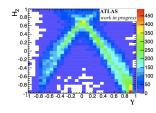
Lepton Channel

- only low level correlation betweeen H_z and x
- preselection suppresses events with high negative H_z values

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)


 τ -Decay


Sample:

Single Tau Polarization

au Pair Polarization

Correlation of H_z with x and Υ , Truth Information

Rho Channel

and Υ

- due to ρ spin spin information splitted between x and Υ
 ⇒correlation between H_z and x not as strong as in single pion channel
 ⇒ clear correlation between H_z
- influence of preselection on H_z more difficult identify

- au-Polarization in H/Z-Decays
- Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)
- τ -Decay

Sample

Single Tau Polarization

Tau Pair Polarization

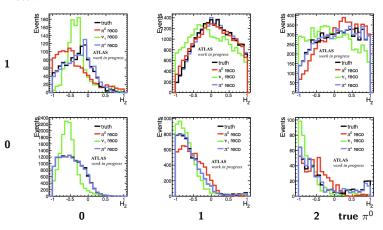
Reconstruction of H_z - Needed Information

- Hadronic τ decay
 - track four-vector
 - \bullet π_0 four-vector \to π_0 reconstruction algorithms
 - ν_{τ} four-vector \rightarrow MMC
- Leptonic τ decay
 - track four-vector
 - $\nu_{ au}$ AND $\nu_{ extstyle I}$ four-vector
 - \Rightarrow not available \Rightarrow H_z can only be calculated on truth level

τ-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Deca


Sample

Single Tau Polarization

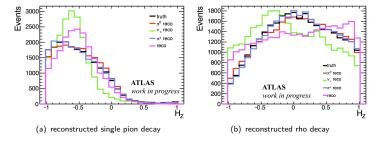
Tau Pair Polarization

 H_z in Hadronic Decays: Reconstruction of Particles (using Z sample)

reco π^0

truth reco π^0 (cluster based), true neutrino & track reco ν_{τ} (MMC), true π^0 & track reco track (π^{\pm}), true π^0 & ν_{τ} (all decay modes: 1 track)

au-Polarization in H/Z-Decays


Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Single Tau Polarization

Tau Pair Polarization

H_z in Hadronic Decays: Reconstruction (using Z sample)

truth reco π^0 (cluster based), true ν_{τ} & track reco ν_{τ} (MMC), true π^0 & track reco track (π^{\pm}), true π^0 & ν_{τ} all components reconstructed (all decay modes: 1 track)

- combination of reconstruction effects leads to contortions not seen in single particle reconstruction
- not only shape deviations but event-by-event deviations are important for H/Z distinction (Backup)

 τ -Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

 τ -Decay

Sampl

Single Tau Polarization

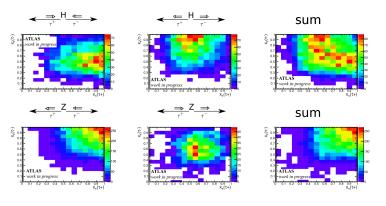
Tau Pair Polarization

Helicity/Polarization Correlation between the Tau Leptons on Truth Level

- Fraction Of Visible Energy
 - $\rightarrow \pi\pi$ -Channel
- Charged Energy Asymmetry
 - ightarrow
 ho
 ho-Channel
- Polarimetric Vector

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)


au-Decay

Sample

Single Tau Polarization

Tau Pair Polarization

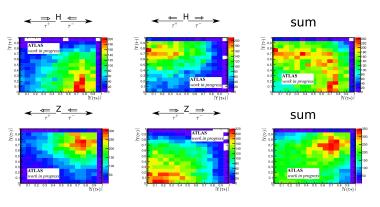
Correlation of Xs for H/Z on Truth Level ($\pi\pi$ -Channel)

x axis: x of τ^+ , y axis: x of τ^-

τ-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay


Samples

Single Tau Polarization

Tau Pair Polarization

ckup

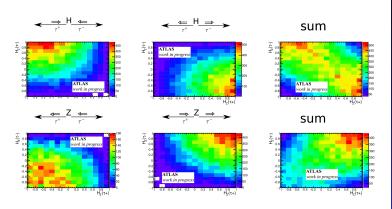
Correlation of Υ s for H/Z on Truth Level ($\rho\rho$ -Channel)

x axis: Υ of τ^+ , y axis: Υ of τ^-

 τ -Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay


Samples

Single Tau Polarization

Tau Pair Polarization

kup

Correlation of Polarimetric Vectors for H/Z on Truth Level (lephad-Channel)

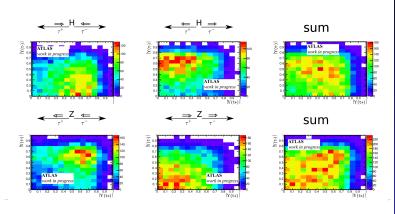
x axis: H_z of τ^+ , y axis: H_z of τ^-

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Sample


Single Tau Polarization

Tau Pair Polarization

ckup

Correlation of Υ s for H/Z on Reconstruction Level ($\rho\rho$ -Channel)

using cluster based π^0 reconstruction algorithm

x axis: Υ of τ^+ , y axis: Υ of τ^-

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Sample

Single Tau Polarization

Tau Pair Polarization

Conclusion / Outlook

- TauSpinner Tool
 - can be used to get polarimetric vectors
 ⇒ estimator for spin direction
- studied most promising polarization variables
 - fraction of energy x for π^\pm -channel **BUT** reconstruction with MMC or Col. Approx. very difficult only choice for reconstruction in the lepton-channel
 - charged energy asymmetry Υ for $\rho\text{-channel}$ also looks more promising than x after reconstruction (several methods available)

improved π_0 reconstruction (e.g. cell based - Benedict Winter (Bonn), pantau - Christian Limbach (Bonn))

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Deca

Sample

Single Tau Polarization

Tau Pair Polarization

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

 τ -Decay

Sample

Single Tau Polarization

Fau Pair Polarization

Backup

x_{π} after preselection, Z sample

helicity

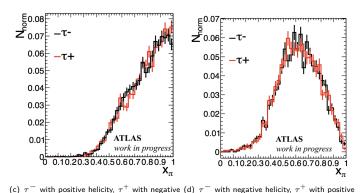


Figure: Fraction of visible energy for $au o
u_{ au} \pi$ decays

helicity

 \Rightarrow preselection deforms distributions of τ^- with positive helicity / τ^+ with negative helicity due to low π^\pm energy

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

au-Decay

Sampl

Single Tau Polarization

Tau Pair Polarization

↑ Reconstruction Difference, Z sample

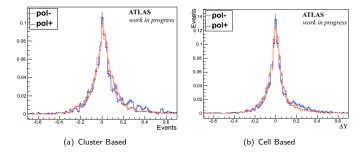


Figure: Differences $\Upsilon_{truth} - \Upsilon_{reco}$ for reconstructed rho decays

- \bullet only small differences between Υ_{truth} and Υ_{reco}
- Cell Based better than Cluster Based

τ-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

 τ -Decay

Sample

Single Tau Polarization

Tau Pair Polarization

H_Z Reconstruction Difference, Z sample

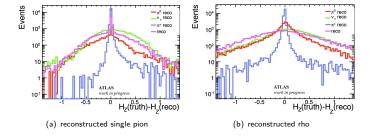


Figure: Differences $H_{\rm Z,\ truth}-H_{\rm Z,\ reco}$ for reconstructed decay modes

- \bullet larger reconstruction differences than for Υ
- main differences due to neutrino reconstruction
- single pion channel looks slightly better

au-Polarization in H/Z-Decays

Michaela Roggendorf (Supervised by Juergen Kroseberg & Thomas Schwindt)

 τ -Decay

Sampl

Single Tau Polarization

Tau Pair Polarization