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Plan of the talk

• The MiNLO prescription

− The choice of scale in NLO calculations

− The CKKW prescription

− The MiNLO prescription

− Extending the MiNLO accuracy

• Recent progress in the POWHEG BOX: Reweighting, Parallelized runs, Elec-
troweak processes, resonance decay, MiNLO, etc.
Applications to the Z2jj and W2jj generators.
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Scale choice in QCD processes

An NLO result looks like

R=Bαs
N(µR)+

[

Nb0 log
µR
2

Q2
B+C

]

αs
N+1(µR)

where µR dependence is shown explicitly. The µR dependence of the αs
N+1

coefficient is as required by RG invariance:

∂R

∂ log µR
2 =−Nb0αs

N+1(µR)B+Nb0αs
N+1(µR)B+O(αs

N+2)

If µR is largely different from the physical scales entering the process we expect
unphysically large contributions.

Common practice: guess the magnitude of the “physical scale”;
vary µR by a factor of two above and below this value

but also: refine the choice (µR=Q in e+e−→ 3 jets; why not Q/3?)
(bias to values of µR that reduce the NLO corrections unavoidable here)
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Scale stability

It is always possible to choose the scale in such a way that the NLO correction
vanishes. This value is also near a point where the scale dependence vanishes.

If µ0 solves Nb0 log
µ0
2

Q2
B+C =0, then

[

∂R

∂ log µR
2

]

µR=µ0

=−Nb1αs
N+2(µR)B.

Stevenson (1981): solve
∂R

∂ log µR
2
=0 for µR (Principle of Minimal Sensitivity)

PMS (or µ0) would certainly work if the scale logarithm was the only source of
large NLO corrections ...
But we know there are others: large color factors, π2 terms,
new channels opening up, large Sudakov double logarithms ...
By using PMS and the like we would end up resumming these large corrections
as if they were RG logs.
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BLM, PMC

It is true that the common use of the scale dependence to assess theoretical errors
has limitations (for example, it does not work for conformal invariant theories, it is
of no value in QED, where photon polarization corrections can be fully resummed,
etc.). In QCD it seems to work well in practice, and it is simple.

Some (Brodsky, Lepage, Mackenzie (1983)) have suggested to resum all β func-
tion terms arising in NLO calculations (can be done exactly in QED), for example
by choosing µR so that the nf dependence of the C term is cancelled (b0 contains
an nf term), or to resum all β function terms arising in NLO calculations (can be
done exactly in QED), for example by choosing µR so that the nf dependence of
the C term is cancelled (b0 contains an nf term) (Brodsky, Lepage, Mackenzie
(1983)), or to resum all non-conformal (β � 0) terms (Principle of Maximal
Conformality, Brodsky, Giustino (2012)).

The present proposal is totally unrelated to these efforts; it only deals with the
production of associated jets.
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MiNLO:

• Assume only physically motivated scale (i.e. no PMS, BLM, PMC)

• Consider processes where many physical scales are present

• Focus on scales arising in collinear branching processes
(will not consider small x scales.)

The problem we address is the choice of scales in the framework of processes
with associated jets, near the kinematic region where it is most likely that
associated jets are produced.

Consider H+ jet production. The jet will most likely have small pT .

Two scales are present: the Higgs mass mH and the pT
H.

The choice of either scales leads to nearly incompatible results.
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MH= 120GeV (perhaps we should upgrade our benchmark points ...)

H PWG: POWHEG gg_H generator interfaced with PYTHIA

HJ RUN: HJ NLO calculation with µR= µF = pT
H

HJ FXD: HJ NLO calculation with µR= µF =mH

Ratio plots: ratio over H PWG
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• Error bands obtained varying µR and µF by a factor of two above and
below their common central value, with the constraint

1

2
6

µR

µF
6 2.

• Bands don’t overlap at pT . 30GeV.

• NLO shapes differ from LL resummed result (POWHEG) at small pT .

The MH scale choice performs better. Can we find reasons to favour MH?
Or should we use some intermediate scale?
Scale choices in Matrix-Elements + Parton Shower approaches
(Catani,Krauss,Kuhn,Webber 2001): at leading order use αs

2(MH
2)×αs(pT

H)

Easy to argue that: pT
H is right:

• Factorization scale: no jet >pT
H in PDF evolution; µF = pT

H.

• Virtuality of intermediated gluon .pT
H by kinematics.

• Virtuality of initial gluons .µF = pT
H.

So: also µR= pT
H. Does this contradict CKKW? (we will see it does not...)
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CKKW: ME+PS matching

CKKW is a prescription for interfacing LO matrix element calculations with
Parton Shower generators. Cannot fully review it here!

I only need to review CKKW in the context of IR finite field theories (like φ3 in
6 dimentions, or Yukawa theories).
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Shower basics:

Matrix elements computed in collinear
approximation (Leading Log)
Splitting vertices computed using the
Altarelli-Parisi approximation
Leading Log virtual corrections
also included by inserting RG improved
vertices and self-energy corrections.

At leading log: Γ(q, q ′, q ′′)≈Γ(q=max (q, q ′, q ′′)) (the largest scale), and

Γ(q)
(

Σ(q)
√ )

3=λ(q)

So, virtual corrections are included by inserting in the squared amplitude:

• λ2(q) at each vertex (instead of λ2), where q is the incoming virtuality

• Σ(q ′)/Σ(q) in each intermediate line beginning at a scale q and ending
at a scale q ′. Σ(q)=∆(q), “Sudakov” form factor.
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CKKW basics:

• Use LO matrix elements, rather than LL approximation;

• Consider only configurations with the smallest relative transverse
momentum >Q0.

• Reconstruct a branching history from the kinematic of the event,
using a clustering algorithm (for example, by recursively merging the pair
of partons with smallest relative transverse momentum).

• Assign running couplings and Sudakov form factors as in the Parton
Shower approximation to include LL virtual corrections.

• Feed the kinematics of the event to a parton shower to generate
splittings with transverse momenta below Q0.

What we learn: scale choice in the couplings is intertwined with the presence
of the Sudakov form factors, that take care of large scale mismatch in nearby
vertices. Scale assignment in multiscale processes must be complemented with
the inclusion of Sudakov form factors.
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The MiNLO approach

In order to deal with multi-scale processes, use the following strategy:

• Compute the Born term according to the CKKW prescription

• Include virtual and real corrections in such a way that

− NLO accuracy is preserved

− CKKW LL (NLL?) virtues are not spoiled

Problems to solve:

1. In CKKW, several renormalization scales are present in the Born term,
in the argument of the coupling constant associated to each node of the
branching history. The virtual correction coefficient is generally computed
for a single renormalization scale.

2. CKKW requires a Q0 scale. What do we choose in our case?

3. The Sudakov form factor in the Born term already contain terms of NLO
order.

4. How do we chose the scales of the αs’s in the NLO term?
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How to set µR

From:

R=Bαs
N(µR)+

[

Nb0 log
µR
2

Q2
B+C

]

αs
N+1(µR)=

So, if the scales in each αs power in the Born term is different, we use

Bαs(µ1)	αs(µn)+

[

∑

i=1

N

b0 log
µi
2

Q2
B+C

]

αs
N+1(µR)=

Bαs(µ1)	αs(µn)+

[

Nb0 log
µ̄

Q2
B+C

]

αs
N+1(µR)

where µ̄ is the geometric average of µ1	 µN. So: set µR to µ̄.
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How to pick Q0

Born term: pick the scale of the first clustering.
(Usual choice in CKKW for the highest multiplicity sample,
where we want that the parton shower generates all softer jets.)

In our case, a Born kinematic configuration with N partons will be associated
with a virtual term with N partons, and with a real emission term with N +1
partons, where the softest clustering will yield N pseudopartons with the same
kinematic configuration as the Born term. The integration of the softest cluster
plays the role here of the further shower in ME+PS matching, i.e. it represent
inclusive radiation that does not spoil the N jet structure. Q0 is taken as the
clustering scale for going from N to N − 1 jets, i.e. the first clustering scale in
the Born event, and the second clustering scale in the real event.
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Remaining issues

The extra NLO terms present in the Sudakov form factor multiplying the Born
term must be subtracted. We then have to decide what to use for the scales
appearing in the powers of the coupling constant multiplying the NLO correction,
and whether to include Sudakov form factors also in the NLO terms.

Guideline: treat the NLO term as much as possible as the Born term

By doing this we avoid spoiling the good LL features of the CKKW approach.

Notice that, in doing so, the real term has to be clustered once, and some
(somewhat arbitrary) prescription has to be given for the choice of scale in the

αs
N+1 power of αs in the NLO terms.
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Summary of the MiNLO prescription

We deal with a process of associated jet production, of order
N =m+n, where n is the number of associated jets. For example, in Higgs plus
2 jets, m=2 and n=2.

1. Perform the kT clustering of the partons in the event, determine the nodal
scales q1	 qn, the scale of the primary process Q, and eventualy the very
first merging scale q0 for the real process. Set Q0= q1.

2. n powers of the coupling constant will be evaluated at the scales µ1	 .µn,
with µi=KRqi. KR is the renormalization scale factor, that will be varied
between 1/2 and 2 to study scale uncertainties. The remaining m powers
of the strong coupling are evaluated at the primary process scale Q.

3. The (explicit) renormalization scale in the virtual term is set to

µR=((µQ)m× µ1	 µn)
1

n+m.

The factorization scale is taken equal to KFQ0, where KF is the renor-
malization scale factor.
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4. The Sudakov form factor are applied to all internal and external line of
the branching skeleton. For real events, the branching skeleton after the
first clustering is considered. External lines leaving a node at the scale qi
have a Sudakov form factor ∆fi(Q0, qi). Internal lines joining nodes i and
j have the Sudakov form factor

∆fij(Q0, qi)/∆fij(Q0, qj), qi> qj

Note that the line leaving the node q1 has no Sudakov:

∆(Q0, q1)=∆(Q0, Q0)= 1.

5. The subtraction of the NLO contribution already included in the Born
term via the Sudakov form factor amounts to the replacement

B⇒B

(

1−
∑

ij

[

∆fij

(1)
(Q0, qi)−∆fij

(1)
(Q0, qj)

]

−
∑

l

∆fl

(1)
(Q0, qi)

)

the first sum runs over all pairs of nodes connected by a line, and l runs
over external lines. ∆(1) is the first order term in the expansion of ∆.
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6. The (N + 1)th power of αs multiplying the virtual, real and Sudakov
subtraction term is taken equal to the average of the first N powers:

αs
(N+1)=

1

N

(

∑

i=1

n

αs(µi)+mαs(µQ)

)

.

The prescription at 6 is somewhat arbitrary, other options being possible.
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Back to the HJ example

The CKKW factors amount to (Q=MH, Q0= pT)

F =αs
2(Q2)αs(Q0)







exp



−CA

πb0



 log
log

Q2

Λ2

log
Q0

2

Λ2

(

1

2
log

Q2

Λ2
− πb0

CA

)

− 1

2
log

Q2

Q0
2















2

No Sudakov for external lines
meeting at Q0, and two identical
Sudakov for the remaining gluon
lines.

The red term in the exponent yields the factor
(

log
Q2

Λ2
/log

Q0
2

Λ2

)

2
, and

αs
2(Q2)

(

log
Q2

Λ2
/log

Q0
2

Λ2

)

2
=αs

2(Q0
2).

So: no contradiction with intuitive reasoning
but Sudakov form factors cannot be forgotten!
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MiNLO results

The MiNLO prescription has been implemented in the POWHEG BOX in a fully
generic way, in such a way that it can be applied to any process. We have used
the POWHEG-BOX as an NLO calculator for our studies.

For simplicity, we have used a variant of the kT-clustering procedure: for real
emission events, the first clustering is performed using the internal POWHEG-BOX
mapping of the real emission event into the underlying Born configuration.

We have considered Higgs plus up to 2 jets (Campbell, Ellis, Frederix, Oleari,
Williams, P.N. 2012), and Z in association with up to 2 jets (Z+J , Alioli, Oleari,
Re, P.N. 2011). For Z + 2J , an implementation was built by us (Hamilton,
Zanderighi, P.N.) using the MadGraphStuff interface of the POWHEG-BOX, and
the virtual corrections from MCFM (see also Re, 2012).

For comparison we are also showing POWHEG results showered with PYTHIA6.
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HJ results
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• H PWG: the (showered) gg_H POWHEG BOX result.

• RUN and FXD need a generation cut (or Born suppression) at small pT.
The MiNLO result is instead FINITE (up to a cut-off ≈Λ)

• We can thrust the MiNLO result at small pT only as a LO result (see the
widening of the MiNLO uncertainty band at small pT). However, at least
we get a result that is sensible also at low pT rather than divergent.
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• The MiNLO result is tracked closely by the fixed scale NLO result down
to pT ≈ 30. We now explain this as due to the fact that the unphysical
choice of a larger scale in the FXD result compensates the effect of the
large Sudakov double logs.

• The fixed order results approach at low pT a region where the large neg-
ative NLO Sudakov logarithm causes the full NLO correction to vanish.
Under these conditions the scale uncertainty is reduced, leading to a fake
impression of stability.
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yk,k+1= log10 (qk,k+1/1GeV)
qk,k+1: kT merging scale for going from a (k+1)-jet to a k-jet configuration.
The q01 scale is inclusive in the real radiation (that is clustered in the 12 step),
and is thus well predicted by MiNLO, while the NLO result with standard scale
choices are problematic.
The q21 scale: clustering the real radiation. RUN, FXD and MiNLO perform alike,
none of them include resummed virtual effects for real radiation
(but POWHEG HJ would perform well in all three cases!).
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HJJ results
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Notice: RUN and FXD scale results not available for these distributions.
The Born term alone is divergent, since it is integrated in the second
jet with no restriction.

However: the MiNLO result is still sensible, and is sensible also at very low pT
(although with larger scale uncertainty: no longer NLO!)

The HJ PWG result here refers to the fully showered HJ POWHEG result, with the
computation of the underlying Born improved with MiNLO.
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Now: FXD: µR= µF =mH,

RUN: µR= µF = ĤT= MH
2 + pT

H 2
√

+
∑

i
pT
i

y12 is predicted by all approaches; the MiNLO is qualitatively closer to the HJ

POWHEG (showered) result.

Notice: ĤT band barely intersects the MiNLO band; better to choose ĤT/2 as
central value (as usually done in W/Z production)
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The integrated result of HJJ in MiNLO is also fairly compatible with the inclusive
H cross section. Why is it so?

We have the (so called!) Unitarity relation:

∆i(Q0, Q)+
∑

j

∫

dz

∫

Q0

Q dq2

q2
αS(q2)Pij(z)∆i(Q0, q)= 1

since

∆i(Q0, q)= exp



−
∑

j

∫

dz

∫

Q0

q dq ′2

q ′2
αS(q

′2)Pij(z)



.

This implies that integrating over the final splittings in a Shower we get 1, so
that integrating recursively the whole shower we get the inclusive cross section
for the primary process. A property of this kind remains true in ME with CKKW
improvements, but it is no longer exact. MiNLO inherits this property.

What is the real error on this procedure, in the MiNLO case?
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(Hamilton,Oleari,Zanderighi,P.N. 2012)Focus upon H/W/Z +1 jet.The NNLL
resummed the transverse momentum distribution of the vector boson is

dσ

dydqT
2
= σ0

d

dqT
2
{[C ⊗ fA](xA, qT)× [C ⊗ fB](xB , qT)× expS(Q, qT)}+Rf

S(Q, qT)=−
∫

qT
2

Q2

dq2

q2

[

A(αs(q
2))log

Q2

q2
+B(αs(q

2))

]

,

A(αs)=
∑

i=1

∞

Aiαs
i , B(αs)=

∑

i=1

∞

Biαs
i , Rf = finite terms

This formula yields the correct NLO dB/dy when integrated over dqT
2 .

To make contact with the MiNLO result, take explicitly d/dqT
2 , and get:

∼σ0
1

qT
2 [αS , αS

2 , αS
3 , αS

3 , αS
4 , αSL, αS

2L, αS
3L, αS

4L]× expS(Q, qT)+Rf ,

(L= logQ2/qT
2 ). We have:

∫ dqT
2

qT
2
Lmαs

n expS(Q, qT)≈ [αs(Q
2)]

n−
m+1

2

Thus, if we drop all α3 and higher terms, NLO accuracy upon integration is still
preserved (worse term: α3L→ αs

2(Q), NNLO).
Same accuracy as in MiNLO! Only difference: B2 term missing in MiNLO S!
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∼σ0
1

qT
2
[αS , αS

2 , αS
3 , αS

3 , αS
4 , αSL, αS

2L]× expS × exp

[

−
∫

qT
2

Q2

dq2

q2
B2αS

2

]

�

1

qT
2 [αS

3 L2]× expS� [αs(Q
2)]

3−
2+1

2 = [αs(Q
2)]1.5

So, MiNLO yields an accuracy that is more than LO, but less than NLO, in the
inclusive cross section, the neglected term having a power of αS greater than 1
but less than 2.

In case of H/W/Z + 1 jet, it is in fact possible to modify the MiNLO Sudakov
form factor by carefully including the B2 term in such a way that integrating over
the radiated jet we achieve NLO accuracy for inclusive H/W/Z distributions.
(Hamilton,Oleari,Zanderighi,P.N. 2012)
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Using this method inclusive observables computed with the HJ generator match
very well those computed with the H generator.
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CAVEAT

When using MiNLO in NLO calculations, care is needed in understanding whether
the observables we are considering are going to be improved.
Even apparently harmless observables sometimes may not satisfy the MiNLO

requirement. An example (G.Salam): in HJ, the transverse momentum of the
hardest jet found in a given rapidity interval around the Higgs rapidity.
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Notice: hardest jet in given y range NOT insensitive to first merging ...
So: fixed order slightly better than MiNLO in left plot; right plot not so bad ...
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MiNLO and NLO+PS

When MiNLO is used in standard fixed order calculations, by construction we
expect an improvement for quantities that can be built out of the jet kinematics
after the first clustering. MiNLO does not provide an improved description of
the real radiation. Including by hand Sudakov form factors for the real radiation
destroyes NLO accuracy.

On the other hand, NLO+PS methods do include these Sudakov effects, using
appropriate methods that maintain NLO accuracy.

So, we expect the MiNLO method to be best suited in the MC+NLO context.
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MiNLO and NNLO+PS

At the present stage, MiNLO for processes of 1 associated jet production of colour
neutral systems (Higgs, W/Z, HW , etc), allows for full NLO accuracy for inclu-
sive quantities involving and not involving the extra jet. It is possible (and not
difficult) to extend the present framework in such a way that a true NNLO+PS
generator is built, without the use of any matching scales.

In the example of Higgs production: the MiNLO HJ generator can be promoted to
a NNLO+PS generator by simply reweighting the events with the factor

dσ(NNLO)

dyH
/
dσ(HJ)

dyH
=1+O(αS

2 )

or with alternative procedures where the reweighting takes place mostl for events

with pT
(H)

.MH.
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To merge or not to merge

So: we have generators for B, BJ, BJJ (B=W,Z,H).

What do we use? Shall we merge them?

Not difficult to do; but there are several reasons not to do it:

• Difficulties in establishing rigorously a valid merging scale

• Trying to increase the accuracy of the MiNLO approach seems more

promising (already done for B+ jet).

• It ain’t interesting

So: if you are interested up to 1 jet, use the BJ 2nd MiNLO (it recovers NLO
accuracy when used inclusively). If you are interested in two jets, use BJJ, and
check it against the BJ one for inclusive quantities.
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Difficulties in establishing rigorously a valid merging scale

Consider the B generator. We have
∫

dpT
dσ(B)

dpT
=NLO× (1+O(αs))

If we introduce a matching cut Q below which we use the B generator, and above
which we use the BJ one, then

∫ Q

dpT
dσ(B)

dpT
=NLO× (1+O(αs))−

∫

Q

dpT
dσ(B)

dpT

If Q is large (∼MB), the subtraction has NLO× (1 +O(αs)) accuracy. But if
Q≪MB (isn’t this what we want?) the accuracy is always less than that:

dσ(B)

dpT
=α

L

pT
+α

1

pT
+α+α2L

3

pT
+α2L

2

pT
+α2 L

pT
+α2 1

pT
+α2 L= log

MB

pT

Unless we have control over up to the 1/pT term, the accuracy of the result is
NLO× (1+O(LQ

Mαs)), LQ= logMB/Q, less than true NLO.
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Current merging approaches:

• SHERPA, [Hoeche, Krauss, Schonherr, Siegert, arXiv:1207.5030], tradi-
tional merging with matching scales.

• aMCNLO, [Frederix, Frixione, arXiv:1209.6215], traditional merging with
matching scales; scales kept high to avoid above problems.

• [Platzer, arXiv:1211.5467], [Lönnblad, Prestel, arXiv:1211.7278], force
unitarity by subtracting appropriate terms.

• GENEVA, [Alioli, Bauer, Berggren, Hornig, Tackmann, Vermilion, Walsh,
Zuberi, arXiv:1211.7049], increase precision in LL resummation to reach
accurate matching

36



POWHEG BOX progress
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POWHEG BOX improvements: towards Version 2

Several enhancements of the original package have been introduced for particular
processes. Now time to merge all these enhancements to head towards a new
version of the framework:

1. Reweighting: a feature used to perform studies on scale variation and PDF
dependence without the need to replicate the sample generation

2. Parallelized grid generation; for complex processes, for which grid adap-
tation is a bottleneck for the calculation, it is now possible to perform all
steps in parallel, including grid adaptation.

3. In the framework of W and Z production including EW corrections
(Barzè, Montagna, Nicrosini, Piccinini, 2012; +Vicini, 2013), an exten-
sion including the treatment of photons has been implemented

4. MiNLO

5. NLO corrections to decaying resonances

At the moment 1,2 and 4 are merged into a preliminary Version-pre2-1, and
have been tested in the new Z2jet and W2jet generators.
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The Z2jet and W2jet generators

Several ZJJ generators: first by E.Re 2011 (originally interfaced to Black Hat).
Since the Black Hat code is not public, in the 1st MiNLO paper we built new
(Z/W)JJ generators using the MadGraphStuff MadGraph-POWHEG-BOX interface
(Frederix, 2011), and the MCFM virtual amplitudes.
Later (Ellis,Campbell,Zanderighi,P.N.2013) we built the Z2jet and W2jet gener-
ators. These use MCFM also for the real graphs, and are much faster. The programs
were extensively validated using ATLAS data (arXiv:1111.2690,arXiv:1201.1276)

• Validation with MiNLO and Ht/2 scale choice.

• Solved problems arising with (rare) events near the singular region at
the underlying Born level, being promoted to non-singular events after
radiation (improvement in the POWHEG BOX separation of singular regions)

• Events that are near the singular region at the POWHEG level, even after
radiation, may become hard after MPI: unless the generator maintains
some validity near the singular regions, these effects cannot be properly
modelled. In our case, MiNLO works, Ht/2 does not.
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MiNLO versus HT/2
We find good agreement between the two choices for all distributions considered
by ATLAS (except of course for observables that are inclusive in the second jet,
and cannot be computed with traditional scale choices).
Notice: while some data bias in the HT/2 choice cannot be excluded, this is not
the case for MiNLO.

Two examples:

100

101

102

103

104

σ
(W

+
N

j
e
t
)
[p
b
]

pj

T
> 20 GeV

0.5

1

1.5

0 1 2 3 4 5#
/M

IN
L
O

Njet

WJJ-MiNLO
HT/2

10−1

100

101

102

d
σ
/d

pj
2

T
[p
b
/G

eV
]

pj

T
> 20 GeV

0.5

1

1.5

20 40 60 80 100 120 140 160 180#
/M

IN
L
O

pj2

T
[GeV]

WJJ-MiNLO
HT/2

40



PYTHIA 6 versus PYTHIA 8

We have considered PYTHIA 8 showering for all observables. There are some
differences, but the quality of the agreement with data is similar.
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More distributions
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Conclusions

• Our study aimed at choosing in a proper way µR and µF in an NLO
calculation. We concluded that one MUST include Sudakov form factors
in order to do that, and developed the MiNLO prescription.

• We realized that in MiNLO, when integrating out m jets in a process with
N associated jets, we get a fair description of the corresponding process
with N −m associated jets.

• In particular, integrating out one jet in processes with one associated jet,
we get a description that includes the NLO corrections, but with errors of
relative order α

√
.

• By improving certain features of the Sudakov form factor, the O(α) error
can be eliminated, and one reaches full NLO accuracy in processes char-
acterized by the production of a neutral system with one associated jet.
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• The MiNLO prescription in processes with one associated jet opens up
the possibility of building NNLO+PS generators for processes of hadronic
production of a (color) neutral system, like H , W , Z, HW , etc.

• Whether the MiNLO prescription can be generalized in order to constitute
a general solution to the “Merging wihtout merging scale” problem is a
subject of current study.

The MiNLO prescription is included in the POWHEG BOX framework, within a sub-
package that can be used to implement a set of new features (reweighting,
parallelized grid computation) that will form at some point the Version 2 of the
POWHEG BOX package.
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Z2jet results
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