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Neutrino flavour and oscillations

◮ Contrary to the SM, neutrinos have mass and undergo flavour
oscillations due to non-trivial mixing between the mass eigenstates
and the flavour states.

◮ In the minimal scenario, the oscillation probability depends upon
two mass squared splittings

∆m2
21 ≡ m2

2 − m2
1 and ∆m2

31 ≡ m2
3 − m2

1.

◮ The remaining parameters describe the mapping between bases,
expressed as a 3 × 3 unitary matrix, such that να = (UPMNS)αi νi

where

UPMNS =
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0 c23 s23
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What we know

◮ Thanks to decades of experimental
work, including the discovery last year
of θ13, we now know all three of the
angles which parameterize the PMNS
matrix.#
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sin2 θ12 ≈ 0.31,

sin2 θ23 ≈ 0.52,

sin2 θ13 ≈ 0.02.

Θ12

Θ13

Θ23

◮ We also know the magnitudes of both
mass squared differences and the sign
of one.
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∆m2
21 ≈ 7.59 × 10−5

∣

∣∆m2
32

∣

∣ ≈ 2.50 × 10−3.
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12, ∆m2
13, δCP

Is that all there is? Do we
need to extend the 3ν-mixing

paradigm?
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Candidate designs: superbeams, neutrino factories

◮ Superbeams are more powerful
conventional neutrino beams. There
are a number of proposed
experiments: LBNE, LAGUNA-LBNO
and T2HK (see e.g 1110.6249,

SPSC-EOI-007, 1109.3262).

T. Patzak

◮ A Neutrino Factory derives its
beam from the decay of stored
muons. This provides a very well
understood and low background
signal: wrong-sign muons. (see

IDS-NF-020).



Prospects: mass hierarchy

◮ Current generation offers
reasonable reach: 40% at
2σ. Next generation:
100% at 3σ.



Prospects: CP violation

◮ Trying to exclude δCP ∈ {0, π} is now the central focus of
many next-generation experiments.

◮ Current generation has little
sensitivity. Different
proposed facilities offer
varied chances to make the
measurement. Potentially as
high as 90% of parameter
space.
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Discrete leptonic flavour symmetries

◮ The distinctive mixing angles of the PMNS matrix have motivated
many authors to look for models which use discrete symmetries in
the leptonic sector. (for a recent review see 1301.1340)

e.g UTBM =
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◮ Proposes some symmetry GF, which is usually spontaneously
broken by a set of flavons.

◮ The combination of the choice of particle representations, VEV
alignment and the symmetry-compatable couplings shapes the
resultant mass terms.



Discrete leptonic flavour symmetries

◮ Models of discrete flavour symmetries make predictive statements
of correlations amongst the neutrino flavour parameters.

◮ With such a large body of theoretical predictions, constraining and
excluding these correlations should be an aim of any
next-generation facility.

◮ To focus our discussion, we have restricted our attention to a class
of models based on a bottom-up approach due to Hernandez and
Smirnov (see 1204.0445 and 1212.2149).
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Hernandez-Smirnov approach (see 1204.0445 and 1212.2149)

◮ Attempts to constrain the PMNS from a bottom-up version of
the symmetry breaking scenario. By specifying Gν and Gℓ, and
making a few assumptions about GF, we can derive constraints
on UPMNS.

◮ The subgroups Gν and Gℓ are chosen from the symmetries of
the leptonic mass terms.

Lν =
1

2
νc

LmννL, and Lℓ = ERmℓℓL.

◮ The symmetry of the neutrino mass term is Z2×Z2, whilst for
the charged leptons it is U(1)3.

◮ It is assumed that the residual symmetries of these sectors are
Gν = Z2 and Gℓ = Zm, and that the remaining symmetries are
accidental.



Hernandez-Smirnov approach (cont.)

◮ Reversing the broken-symmetry scenario, these subgroups must be
combined in some way to form the supergroup GF. For any finite

group we require the generators to obey (gνgℓ)
p = 1 for p ∈ N.

◮ This assumption leads us to the von Dyck groups D(2,m, p) given
by the presentation

〈S ,T ,W |S2 = Tm = W p = 1〉.

◮ Assuming finiteness, the only permissible groups turn out to be
small order groups already popular in the literature

D(2, 2, 3) = S3, D(2, 3, 3) = A4,

D(2, 3, 4) = S4, D(2, 3, 5) = A5.



Constraints and correlations

◮ In the framework that I’ve discussed, the symmetries can be
shown to fix a column of the PMNS matrix. This leads to two
constraints on the PMNS matrix parameters

e.g.





|Ue1|2
|Uµ1|2
|Uτ1|2



 =





1−η
2

1−η
2
η



 .

◮ For the models that we are interested in, these constraints can
be expressed as a definition of θ12 in terms of θ13, called a solar

sum-rule, and a correlation between θ23, θ13 and cos δ, which is
called the atmospheric sum-rule

e.g. |Ue1|2 =
1 − η

2
=⇒ cos2 θ12 =

1 − η

2 cos2 θ13
.



Atmospheric sum-rules

◮ To simplify our expressions we introduce the following parameters
(King 2007)

sin θ12 ≡ 1 + s√
3

, sin θ23 ≡ 1 + a√
2

, sin θ13 =
r√
2
,

which have the following 1σ ranges (Fogli 2012)

−0.07 ≤ s ≤ −0.01, 0.21 ≤ r ≤ 0.23, −0.15 ≤ a ≤ −0.07.

◮ We then expand the atmospheric sum-rule to first order in r , this
allows us to express all phenomenologically interesting models by
the constraint

a = a0 + λr cos δ + O(r2, a2).



Viable atmospheric sum-rules

Type Group Sum-rule

λ ≈ 1
S4 a = r cos δ

A5 a =
√

1+ϕ
2 r cos δ

λ ≈ −1
2

A4 a = −1
2 r cos δ

S4 a = − 1
√

6
r cos δ ± 2

3 (
√

3 − 2)

A5 a = − 1√
2(1+ϕ)

r cos δ

A5 a = −
√

3+2ϕ
22 r cos δ ± 2

11(7 + ϕ)s

We find 8 viable sum-rules from the construction discussed
above. These divide neatly into two classes based on their
approximate values of λ.



Sum-rules and current data

◮ The linearized sum-rule can be seen as a prediction of the
model for the parameter cos δ.

cos δ =
a

λr

◮ The grey bands show the
current global-fit data
(NuFit 1.0 2012), whilst
the pink bands show the
projected sensitivity to a

in 2025 with the current
generation of experiments
(Huber et al. 2009).
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Simulation details

◮ We have simulated the measurement of sum-rules for some
representative next-generation facilities using the GLoBES package
(see 0407333 and 0701187).

◮ A superbeam based on the LAGUNA-LBNO proposal of a beam
from CERN to Pyhäsalmi (Finland). This has a baseline distance
of 2300 km and a 100 kton liquid Argon detector (for more info. see

CERN-SPSC-2012-021).

◮ We also consider a Low-Energy Neutrino Factory (LENF) with a
baseline of 2000 km and a stored-muon energy of 10 GeV. We
have run simulations for both a 100 kton MIND and a more
optimistic 70 kton liquid Argon detector (LAr) (for more info. see

IDS-NF-020).



Precision in relevant parameters: a

The 1, 3 and 5σ allowed regions for a =
√

2 sin θ23 − 1 as a function
of the true value of a. Solid regions are for the LENF, empty regions
for the superbeam.



Precision in relevant parameters: cos δ

The 1, 3 and 5σ allowed regions for cos δ as a function of the true
value of cos δ. Solid regions are for the LENF, empty regions for the
superbeam.



Excluding sum-rules

◮ Combining single parameter determinations (as in the previous
slide) can only tell us so much about the ability to exclude
parameter combinations.

◮ In general, parameter correlations can lead these sensitivities to
change.

◮ We have scanned over true values of a and cos δ. For each pair,
we have plotted the ∆χ2 value of the best-fitting solution obeying
a given sum-rule. When this becomes higher than a certain
significance threshold, we can say that the sum-rule hypothesis is
excluded.



Excluding a = r cos δ and a = −1
2
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◮ These plots show 2 and 3σ allowed regions for the given sum-rules
as a function of the true parameters.

◮ There is a central bump which is due to trivial solutions to the
sum-rule close to the origin with a ≈ 0 and cos δ ≈ 0.

PB et al. (2013) in preparation.
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Discriminating between sum-rules

◮ We have seen that the 8 sum-rules of interest can be classified
into one of two types λ ≈ 1 and λ ≈ −1

2 .

◮ What degree of precision would be necessary to discriminate
between close lying sum-rules?

λ ≈ 1
a = r cos δ

=⇒ ∆λ ≈ 0.144
a =

√

1+ϕ
2 r cos δ

λ ≈ −1
2

a = −1
2 r cos δ

=⇒ ∆λ ≈ 0.063
a = − 1√

2(1+ϕ)
r cos δ



Determining λ (for a0 = 0)
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◮ CP fraction is defined here as the fraction of values which obey
a = λT r cos δ for which the sum-rule a = λF r cos δ can be
excluded.

◮ We see for λF = 1, a CP fraction of 50% is possible with the most
optimistic facility only if |∆λ| ≈ 0.4. For λF = −0.5, the required
deviation roughly halves.



Excluding competing sum-rules
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To exclude all sum-rules of this type will be very challenging.
However, for large parts of parameter space the problem may be
reduced to a low-multiplicity degeneracy.
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Conclusions

◮ With increased precision in the neutrino flavour sector, the next
generation of experiments will enable us to start to test a
number of proposed new physics models which address leptonic
flavour.

◮ There is a large literature of models which use discrete
symmetries to predict correlations amongst the parameters of
the PMNS matrix. A quite general class of models can have
these constraints expressed as atmospheric sum-rules.

◮ Individual sum-rules can be excluded for a significant fraction
of the parameter space. Differentiating between the sum-rules
that we have identified will be challenging but possible at a
aggressive facility.



Thank you.
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