SPONSORED BY THE





Federal Ministry of Education and Research

# Phase II Upgrade plans of the CMS Muon System

Kerstin Hoepfner, RWTH Aachen, III. Phys. Inst. A

7<sup>th</sup> Annual Workshop of the Helmholtz Alliance, 2-4 December 2013



Events/GeV ₅01

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

# **Present CMS Muon System**

# Highly hermetic and redundant muon system

- Drift tubes (DT) to η~1.2
- CSC Endcaps 1.0< |η|<2.4</li>
- RPCs to ensure adequate redundancy

J/ψ

μ<sup>+</sup>μ<sup>-</sup> widths:

**CMS Preliminary** 

 $J/\Psi$ 

30 MeV

70 MeV

 $\sqrt{s} = 7 \text{ TeV}, \text{ L}_{int} = 40 \text{ pb}^{-1}$ 

10

ο.ω φ

Trigger coverage up to |η|=2.4.<sup>2</sup>
 Typical threshold of p<sub>T</sub>~20-25
 GeV for inclusive muon trigger

Y(1,2,3S)





# Present CMS Muon System

# Highly hermetic and redundant muon system

- Drift tubes (DT) to η~1.2
- CSC Endcaps 1.0< |η|<2.4</li>
- RPCs to ensure adequate redundancy
- Trigger coverage up to |η|=2.4.<sup>2</sup>
  Typical threshold of p<sub>T</sub>~20-25
  GeV for inclusive muon trigger



Chambers: No indications of aging or detector performance degradation at phase-2 conditions.

**Upgrade:** No plans to rebuild muon (large area gaseous) chambers. Upgrade concentrates on **trigger, readout electronics and additional detectors** for weakly instrumented areas.



# **HL Muon Challenges**

Robust muon triggering and identification are major discovery drivers at the LHC

HL affects muon system performance. Forward region  $|\eta| \ge 2.0$  especially challenging.

- Rates up to MHz/cm<sup>2</sup> and growing with  $\eta$
- Reduced resolution and longevity issues
- Exceeds capabilities of existing electronics
- p<sub>T</sub> mis-measurements and multiple scattering in iron yoke cause rate flattening

Focus on **maximizing the potential** of large datasets to be collected at HL-LHC

- Maintain current performance (η, p<sub>T</sub>)
- Seek acceptance gains where possible





# Phase-2 Muon Trigger Challenges

#### Not loosing trigger coverage is the key

- p<sub>T</sub> mis-measurement drives trigger rate. Increasing threshold would not help.
- Level-1 track trigger helps, but has reduced performance in high-η "corner"

#### Phase-2 objectives:

- Increase purity, reduce p<sub>T</sub> mismeasurements
- 2) Sharpen trigger turn-on
- Keep trigger threshold even at HL (Higgs physics → relatively soft leptons, e.g. H2Tau)

### Large rate reduction using bending angle in forward region (already done in barrel)

- Need good spatial resolution and rate capability
- Larger lever arms using new detectors and existing CSC chambers in the same station
- Must measure bending angle in station 1. Else radial B-field and multiple scattering quickly diminish discrimination.
- Expect x5-10 rate reduction with new detectors.



### **The GEM Extension**







Proposal: double-layered triple-GEM chambers in regions GE1/1 and GE2/1 Plan: Installation of GE1/1 in LS2



# **Triple GEM Detectors for CMS**

GEM foil using PCB manufactering techniques. Large areas ~1m x 2m to be developed. Several large-size prototypes assembled and tested in testbeams.









Smaller size GEM detectors operate e.g. in LHCb



For safe operation and high amplification use 3 layers to form a triple GEM.



# Phase 2 Rates Will be High, especially in the Forward Region



| Detector<br>part | _ | R (cm) | Z (cm) | Flux (cm <sup>-2</sup> s <sup>-1</sup> ) for<br>lumi=10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | Flux (cm <sup>-2</sup> s <sup>-1</sup> ) for<br>lumi=10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup> |           |
|------------------|---|--------|--------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|
| GE1/1            |   | 150    | 560    | $\sim$ 1.4 $\cdot$ 10 $^4$                                                                             | ~1.4 · 10 <sup>5</sup>                                                                                 |           |
| GE1/1            |   | 180    | 560    | ~8.3 · 10 <sup>3</sup>                                                                                 | ~8.3 · 10 <sup>4</sup>                                                                                 |           |
| GE1/1            |   | 250    | 560    | ~1.4 · 10 <sup>3</sup>                                                                                 | ~1.4 · 10 <sup>4</sup>                                                                                 |           |
| GE 2/1           |   | 180    | 800    | ~1.7 ·10 <sup>4</sup>                                                                                  | ~1.7 ·10 <sup>5</sup>                                                                                  |           |
| ME0              |   | 120    | 540    | ~6.3 ·10 <sup>4</sup>                                                                                  | ~6.3 ·10 <sup>5</sup>                                                                                  | Present   |
| ME0              |   | 20     | 540    | ~7.2 ·10 <sup>7</sup>                                                                                  | ~7.2 ·10 <sup>8</sup>                                                                                  | shielding |

Flux estimates with FLUKA, neutrons (80%) + photons + charged particles. Present shielding, sqrt(s)=14 TeV. PU not included.

### GEM detectors tested up 1 MHz rates and 20 C/cm<sup>2</sup> integrated







# How GEMs Help the Trigger

### Forward region $|\eta|$ >1.6 relies entirely on existing CSC

- Lower efficiency (by ~2%) towards higher eta due to tighter cuts to compensate higher background
- Efficiency will reduce further with increasing PU
- Multiple scattering in iron yoke flattens trigger rate → raising threshold cannot lower rate



Combination of GE1/1 & ME1/1 = longer lever arm  $\rightarrow$  use muon bending angle in the high B-field at local trigger level to measure  $p_T$  precisely





### **Going Beyond |**η**|**=2.4 ?

#### Very forward region is one place to gain physics acceptance

Based on plans for tracker extension  $\rightarrow$  also extend muon system up to 3.5....4.0



 $H \rightarrow ZZ \rightarrow 4\mu$ : acceptance increase 60% $\rightarrow$ 94% if  $\eta_{max}$ =2.4 $\rightarrow$ 4.0



θ°

### **Challenges in region** |η|>**2.4**

- **Highest background** rates
- Nearly no B-field in muon system
- Space for chambers

Timeline: TP 06/2014



# **Forward Muon Extension**

- Extend offline muon coverage to  $|\eta|=4$
- MEO: small area, but nearly doubles CMS muon coverage
- Can be optionally integrated into the new forward calorimeter

### Match muon "stubs" and forward pixel extension tracks

 ME0 is a multi-layer detector to suppress neutron backgrounds

#### High efficiency and low fake rate

- Resolution is good enough and multiple scattering is low enough in ME0
- Ongoing studies, if muon system can improve momentum measurement





### Impact of CMS Trigger Upgrade on Muon Electronics

Concept of tracking trigger impacts needed latency and rate



L1 rate needs replacement of the DT on-chamber electronics



Another argument: electronics is old. Wearout failure may increase







### **Upgrade of DT on-chamber electronics**

### **Present Minicrates**

- Highly integrated and complex system
- Many boards with various ASICs for specific tasks
- Trigger primitive generation performed inside each chamber
- Filtered information sent to counting room



### Phase-2 Minicrates

- On-chamber electronics performs time digitization of all chamber signals
- Digital information sent through optical link
  to the counting room
- Complexity is brought into the counting room





### Summary

# HL affects muon system performance. Forward region $|\eta| \ge 2.0$ especially challenging.

- Rates very high and increasing with  $\boldsymbol{\eta}$
- $p_T$  mis-measurements drives the trigger rate

#### Upgrade projects to improve performance

- With new GEM detectors in first station,  $p_T$  will be measured more precisely using bending angle.
- Further extension of muon coverage to |η|<4 under study, in conjunction with tracker extension. Allows physics gain.
- Upgrade of DT on-chamber electronics to cope with increased latency required by tracking trigger and larger rates.

### Challenging... looking forward to phase-2