

←□ → ←□ → ← □

NLO merging with Herwig++

in collaboration with S. Plätzer and S. Gieseke Johannes Bellm | 2.12.2013

Table of Contents

Recap on Tree-Level-Merging

Repair inclusive Observables

Including NLO-calculations

$$PS_{
ho}\left[d\sigma_{N,
ho}^{merged}
ight] = \sum_{k=0}^{N-1} rac{B_k}{
ho}\Delta_{
ho}^k\Delta_k^0 + PS_{
ho}\left[B_N\Delta_N^0
ight]$$

Above the merging scale ρ we want to describe with LO-accuracy, dressed with some PS-history.

$$PS_{
ho}\left[d\sigma_{N,
ho}^{merged}
ight] = \sum_{k=0}^{N-1} rac{B_k}{
ho}\Delta_{
ho}^k\Delta_k^0 + PS_{
ho}\left[B_N\Delta_N^0
ight]$$

Find the underlying process with a cluster algorithm, providing scales of the splittings.

$$PS_{
ho}\left[d\sigma_{N,
ho}^{merged}
ight] = \sum_{k=0}^{N-1} rac{B_k}{
ho}\Delta_{
ho}^k\Delta_{k}^0 + PS_{
ho}\left[B_N\Delta_N^0
ight]$$

 Δ_k^0 accumulates the sudakov-, α_s - and pdf-reweighting, of the past. 'What would the shower do?'

$$PS_{
ho}\left[d\sigma_{N,
ho}^{merged}
ight] = \sum_{k=0}^{N-1} {\color{red}B_{k}}\Delta_{
ho}^{\color{red}k}\Delta_{\color{black}k}^{\color{black}0} + PS_{
ho}\left[{\color{black}B_{N}}\Delta_{N}^{\color{black}0}
ight]$$

 Δ_{ρ}^{k} accumulates the sudakov-reweighting, of the future.

'What would the shower do?'

$$PS^{
ho}_{\mu}\left[PS_{
ho}\left[d\sigma_{N,
ho}^{merged}
ight]
ight]=PS^{
ho}_{\mu}\left[\sum_{k=0}^{N-1}rac{m{B_k}\Delta_{
ho}^k\Delta_{m{k}}^0+PS_{
ho}\left[m{B_N}\Delta_N^0
ight]}{m{B_k}\Delta_{m{k}}^0}
ight]$$

When we reach the merging scale the parton shower is free to do his job towards the infrared cutoff μ .

CKKW(-L)[0109231][0112284] and MLM [0611129] are recipes to get $\Delta_{o}^{k}\Delta_{k}^{0}$.

Our tasks:

- Get something similar working in Herwig++.
- Repair inclusive Observables (unitarisation).[1211.5467][1211.4827]
- Include local K-factors to get NLO-accuracy.

$$PS_{
ho}\left[d\sigma_{N,
ho}^{merged}
ight] = \sum_{k=0}^{N-1} B_k \Delta_{
ho}^k \Delta_k^0 + PS_{
ho}\left[B_N \Delta_N^0
ight]$$

The Futur has been changed for each $B_{k < N}$.

$$\textit{PS}_{\rho}\left[\textit{d}\sigma_{\textit{N},\rho}^{\textit{merged}}\right] = \sum_{k=0}^{N-1} \textit{B}_{\textit{k}} \Delta_{\rho}^{\textit{k}} \Delta_{\textit{k}}^{0} + \textit{PS}_{\rho}\left[\textit{B}_{\textit{N}} \Delta_{\textit{N}}^{0}\right]$$

No emission = 1 - at least one emission

$$PS_{\rho}\left[d\sigma_{N,\rho}^{merged}\right] = \sum_{k=0}^{N-1} \left[B_k \mathbf{1} - \int_{\rho}^{q_k} dq_{k+1} \frac{B_{k+1}}{dq_{k+1}} \Delta_{k+1}^k \right] \Delta_k^0 + PS_{\rho}\left[B_N \Delta_N^0\right]$$

Inclusive Observables stay the same.

Exclusive Observables are discribed with LO-accuracy.

Technicalities: Implementing in Herwig++

- Framework: Matchbox, Dipole Shower.[0909.5593]
- Clustering via Tildekinematics (Catani-Seymour).[9605323]
- Scales of ordered histories stored in 'clusternodes'.
- Watch for singularities of clustered kinematics.
- Stay independent of the process.
- Every process available in Matchbox automatically can be merged.(BLHA2!)
- Sudakov weight with trial showering.
- Evolving beneath merging scale with a vetoed shower.
- α_s and pdf-reweighting.

Repair inclusive Observablesbased on [1211.5467]

- $e^+e^- \rightarrow 2/3$ jets
- Here: not physical exclusive three parton p_{T,23}-distribution.
- Divide above and beneath merging scale.
- Sudakov 'works'.

- lacksquare $e^+e^ightarrow 2/3$ jets
- Here: Up to N-parton cross section (not physical).
- Full inclusive $(N \to \infty)$ is unitarised.
- The difference to the not unitarised merging is $\mathcal{O}(\alpha_s)$ since $B_1 \neq PB_0$.

- Here: parton level (no hadronisation).
- Flat ratio distribution in hard region.

[JADE_OPAL_2000_S4300807]

 The ununitarised 2/3/4 distribution fails.

- Here: integrated 4-jet rate.
- Flat ratio distribution in hard region.

- Here: 4 jet Observable.
- Pure parton level.
- Good angular distributions.[OPAL_2001_S4553896]
- $\theta_{NR} = \angle [\vec{p_1} \vec{p_2}, \vec{p_3} \vec{p_4}]$

Including NLO-calculations

One way to include NLO-Corrections:

$$d\sigma_{k,\rho}^{1,\underline{incl}}(VR)_{k} = V_{k} + \int_{0}^{q_{k}} dq_{k+1} \frac{B_{k+1}}{dq_{k+1}} \theta(q_{k} - \rho)$$

Gives a local K-factor for B_k .

In the unitarisation we only subtract ordered histories. So the real emission contributions where $q_{k+1} > q_k$ is already included.

$$\int_{0}^{q_{k}} dq_{k+1} \frac{B_{k+1}}{dq_{k+1}} \left[\theta(q_{k} - \rho) - \Delta_{k+1}^{k} \theta(q_{k+1} - \rho) \right]$$

First part from real emission, second from unitarisation procedure brings a sudakov motivated continuation from $\mathcal{O}(\phi_k)$ to $\mathcal{O}(\phi_{k+1})$

Including NLO-calculations

$$\begin{array}{lll} PS_{\rho}\left[d\sigma_{N,\rho}^{\textit{merged}}\right] = & B_{0} & -\int_{\rho}^{q_{0}} dq_{1} \frac{B_{1}}{dq_{1}} \Delta_{1}^{0} \\ & +B_{1} \Delta_{1}^{0} & -\int_{\rho}^{q_{1}} dq_{2} \frac{B_{2}}{dq_{2}} \Delta_{2}^{0} \\ & +B_{2} \Delta_{2}^{0} & -\int_{\rho}^{q_{2}} dq_{3} \frac{B_{3}}{dq_{3}} \Delta_{3}^{0} \\ & +PS_{\rho}\left[B_{3} \Delta_{2}^{0}\right] \end{array}$$

 $(VR)_k$ is not produced by the shower! So we can just add it as an ununitarised shower.(It's already $\mathcal{O}(\alpha_s^{n+1})$)

$$\begin{array}{ll} \textit{PS}_{\rho}\left[\textit{d}\sigma^{\textit{merged}}_{\textit{N},\rho}\right] = & \textit{B}_{0} & -\int_{\rho}^{\textit{q}_{0}}\textit{d}\textit{q}_{1}\frac{\textit{B}_{1}}{\textit{d}\textit{q}_{1}}\Delta^{0}_{1} \\ & +\textit{B}_{1}\Delta^{0}_{1} & \dots \\ & +(\textit{VR})_{0}\Delta^{0}_{\rho} & \\ & +\textit{PS}_{\rho}\left[(\textit{VR})_{1}\Delta^{0}_{1}\right] \end{array}$$

At the Merging Scale

		$p_T < ho$	$\rho_T > \rho$	
>3LO	$B_0 = -\int_ ho^{q_0} dq_1 rac{B_1}{dq_1} \Delta_1^0$	$\Delta^{ ho}_{ ho_T} P_{ ho_T} \Delta^{ ho_T}_{\mu}$	↓ R ₂ (n_) ∧ 0	Λ θ
	$-\int_{\rho} dq_1 \frac{dq_1}{dq_1} \Delta_1$	$\Delta_{ ho_T}$ $\Gamma_{ ho_T}$ $\Delta'_{\mu'}$	$egin{array}{c} +B_1(p_T)\Delta^0_{p_T} \ -\int^{p_T}_ ho dq_2rac{B_2}{dq_2}\Delta^0_2 \end{array}$	$\Delta^{ ho}_{\mu} \ \Delta^{ ho}_{\mu}$
1NLO	$+(VR)_0$	$\Delta_{ ho}^0\Delta_{ ho_{ au}}^{ ho}P_{ ho_{ au}}\Delta_{\mu}^{ ho_{ au}}$	$+(VR)_0$	$\Delta^0_{ ho_{ au}} P_{ ho_{ au}} \Delta^{ ho_{ au}}_{ ho} \Delta^{ ho}_{\mu}$
2NLO	$+(VR)_0\Delta^0_ ho$	$\Delta_{p_T}^{ ho} P_{p_T} \Delta_{\mu}^{p_T}$		
	·	,	$+(VR)_1\Delta_{ ho_T}^0$	$\Delta_{\mu}^{ ho_{\mathcal{T}}}$
	reweighted MEs	Shower	reweighted MEs	Shower

At the Merging Scale

- Same behaviour beneath the merging scale.
- The (VR)₁ kicks in at the merging scale.
- $(VR)_0$ is also pushed for [2(N)/3/4] above the merging scale.

Towards LHC-physics (very recent)

$$PS_{\rho}\left[f_{1}(Q,x)B_{n}(Q)\right]_{2Spl.} = \frac{f_{3}(q_{2},x_{2})}{f_{2}(q_{2},x_{1})}P(q_{2})\Delta_{q_{2}}^{q_{1}}\frac{f_{2}(q_{1},x_{1})}{f_{1}(q_{1},x)}P(q_{1})\Delta_{q_{1}}^{Q}f_{1}(Q,x)B_{n}(Q)$$

$$PS_{\rho}\left[f_{1}(Q,x)B_{n}(Q)\right]_{2Spl.} = \frac{f_{2}(q_{1},x_{1})}{f_{2}(q_{2},x_{1})}\Delta_{q_{2}}^{q_{1}}\frac{f_{1}(Q,x)}{f_{1}(q_{1},x)}\Delta_{q_{1}}^{Q}\underbrace{\frac{f_{3}(q_{2},x_{2})P(q_{2})P(q_{1})B_{n}(Q)}{\frac{\alpha_{S}(q_{1})}{\alpha_{S}(q_{2})}\left(\frac{\alpha_{S}(Q)}{\alpha_{S}(q_{2})}\right)^{n}f_{3}(q_{2},x_{2})B_{n+2}(q_{2})}$$

Summary

- We implemented an unitarized (N)LO-Merging in Herwig++/Matchbox.
- We are looking into Observables sensitive to the effects at the merging scale.
- Outlook: With the interface standard BLHA2 an automatized NLO-merging seems possible.

The end

Thanks for your attention!

The end

Backup

- Here: 4 jet Observable.
- Pure parton level.
- Good angular distributions.[OPAL_2001_S4553896]
- $\Phi_{KSW} = \frac{1}{2} (\angle [\vec{p_1} \times \vec{p_4}, \vec{p_2} \times \vec{p_3}] \\ + \angle [\vec{p_1} \times \vec{p_3}, \vec{p_2} \times \vec{p_4}])$

LoopSim

LoopSim - algorithm:

- ① Get some Event for B_1 .
- Fill histograms with +1-kinematic.
- Find way to cluster the particles by a jet-algorithm.
- 4 Cluster $+1 \rightarrow 0$.
- **⑤** Fill $-1 \times$ weight in histograms with 0-kinematic.

but:

- For later usage we need for the shower one event with one kinematic.
- An event with zero weight is not 'healthy' to every sampler.

LoopSim

We need:

- Way to cluster from $N+2 \rightarrow N+1 \rightarrow N$.
- Find kinematics.
- Make it MC-integrable.

The Matchbox framework:

- Dipoles to find appropriate clusterings √
- The tilde-kinematics √
- Subtraction √

Clusternode

- process independent cluster finder
- full information on cluster-steps (scales, kinematics)

Clusternode - w^{α}

$$\underbrace{V_1 u(\phi_1) + B_2 u(\phi_2)}_{\text{finite}} = \left[V_1 + \sum_{\alpha} \int_{\tilde{1}} D_{\alpha} \right] u(\phi_1) + \left[B_2 u(\phi_2) - \sum_{\alpha} D_{\alpha} u(\tilde{\phi}_1^{\alpha}(\phi_2)) \right]$$

Clustering $\phi_2 \to \phi_1^{\alpha}$:

$$\sum_{\alpha} w^{\alpha} B_2 u(\tilde{\phi}_1^{\alpha}) - \sum_{\alpha} D_{\alpha} u(\tilde{\phi}_1^{\alpha})$$

$$\Rightarrow \sum_{\alpha} (\widetilde{B_2 - \sum_{\gamma} D_{\gamma}}) \frac{D_{\alpha}}{\sum_{\gamma} D_{\gamma}} u(\widetilde{\phi}_1^{\alpha})$$

as in POWHEG

Clusternode

Z-production @ nLO

The PDF choice is an open question. $\mathcal{O}(\alpha_s)$

Z-production @ nNLO

 $P_T^{dip} > 3 \text{ GeV}.$

Back-to-back configurations are not logarithmic enhanced but have huge phase space. \rightarrow Cluster them? \rightarrow We think the ordering of the cluster scales give us the answer. \rightarrow Unordered histories are seen as new hard processes.

Z-production @ nNLO on Data

