

Search for $t\bar{t}(H \rightarrow b\bar{b})$ using the Matrix Element Method with ATLAS at 7 TeV

Olaf Nackenhorst

supervised by K. Kröninger, A. Quadt, E. Shabalina

University of Göttingen

Motivation, Strategy & Introduction

Discrimination Studies

NN Studies & First Glance at Limits

Summary & Outlook

Olaf Nackenhorst 7th Helmholtz Alliance Workshop, 03.12.2013

GEFÖRDERT VOM

Motivation

- Search for a Higgs in $t\bar{t}H \rightarrow I+jets+b\bar{b}$ with MEM?
 - In ttH channel no sign yet for a Higgs
 - Direct top-Higgs Yukawa coupling measurement
 - Any deviations from SM hint for new physics
 - Small signal (σ ~ 90 fb), large background
 - ttbb similar kinematic signature after selection
 - Event reconstruction / jet-to-parton assignment challenging
 - Not very powerful discriminating variables for MVA

- Goal:
 - Use MEM in order to construct a Higgs mass dependent discriminator
 - Likelihood ratio most powerful discriminant for separating BG from signal:
 - Neyman-Pearson:

$$r_{\rm sig}\left(\vec{x}|\vec{a}\right) = \frac{P_{\rm sig}\left(\vec{x}|\vec{a}\right)}{\sum_{\rm bkg} f_{\rm bkg} P_{\rm bkg}\left(\vec{x}|\vec{a}\right)}$$

Discriminator can then be further used in current MVA or standalone

Top and Higgs Physics

- Higgs boson production at the LHC
 - Four production mechanism
 - Dominated by gluon fusion, ttH suppressed
- Higgs boson decay
 - Dominated by bb (not yet observed) and WW
- Top quark decay
 - Almost 100 % to b-quark and W-boson

Analysis Outline

Search for $H \rightarrow b\overline{b}$ in VH

ATLAS Preliminary

----- Observed (CLs)

± **1**σ

 $\pm 2\sigma$

\s = 8 TeV

----- Expected (CLs) $\sqrt{s} = 7 \text{ TeV}$ Ldt = 4.7 fb⁻¹

110 115 120 125 130 135 140

 $\mu = 0.2 \pm 0.5 \text{ (stat)} \pm 0.4 \text{ (syst)}$

 $Ldt = 20.3 \text{ fb}^{-1}$

145

150 m_H [GeV]

limit on $\sigma/\sigma_{\text{SM}}$

с. С

95%

ATLAS-CONF-2013-079

- Full 7 and 8 TeV data (4.7 fb⁻¹ / 20.3 fb⁻¹)
- Leptonic W/Z decays: 0/1/2 leptons in final state
- Signal (2 b-tags) and control regions (0/1 b-tags)
- Split in sub channels: # lepton, # jets, p_{τ}^{\vee} interval
- Calculate di-jet mass: b-tags and highest p_T
- Perform simultaneous profile likelihood fit
- Main uncertainties: tt modeling, c-tagging, multijet

Olaf Nackenhorst 7th Helmholtz Alliance Workshop, 03.12.2013

the ATLAS Experiment

Overview tt(H→bb) I+jets

- Basic Strategy for 7 and 8 TeV
 - Selection: similar to standard tt selection (symmetric in e/mu)
 - Split in sub channels dependent on jet and b-tag multiplicity
 - Simultaneous profile likelihood fit in all channels
 - H_{T} in BG regions to constrain systematics
 - NN output in signal regions to extract signal

Matrix Element Method

the ATLAS Experiment

- Obtain event probability to be a ttH decay
 - Normalized by total xsec (considering efficiency & acceptance)
 - PDFs account for production mechanism
 - Differential cross section proportional to |M|², consider only LO ME
 - Transfer functions map detector response to parton level

Looking at Signal Diagrams

Gluon Fusion: 8 Diagrams

diagram 1 QCD=2, QED=6

diagram 7 QCD=2, QED=6

diagram 8 QCD=2, QED=6

diagram 4

diagram 6

QCD=2, QED=6

QCD=2, QED=6

qq-Annihilation: 2 Diagrams

diagram 1 QCD=2. QED=6

the ATLAS Experiment

diagram 2 QCD=2, QED=6

in ttH: gg/qq production ~ 50/50!

Transfer Functions and PDFs

- Transfer Functions W ($E_{det} | E_{parton}$)
 - map detector response to parton level object
 - double-Gaussian parameterization in
 - different η regions (detector geometry) ۲

10⁰

붠 뷥 10⁻¹

10-2

- E intervals ۲
- \rightarrow take asymmetric tails into account
- Separately for e, μ, light and b-jets
- Parton Density Function CTEQ6M
 - Energy distribution of hadronic ۲ content of proton
 - Probability density to find a parton ۲
 - at momentum fraction x
 - at energy scale Q
 - small $x \rightarrow$ gluons dominate
 - large $x \rightarrow$ light quarks dominate

the ATLAS Experiment

Neyman-Pearson Likelihood

the ATLAS Experiment

Neyman-Pearson Likelihood ratio for different normalizations

Olaf Nackenhorst 7th Helmholtz Alliance Workshop, 03.12.2013

Invariant m_{bb}

Invariant $m_{b\overline{b}}$ of non tt b-jets in best permutation

Max-L (ttH)

- Forced to find two jets which mimic H mass
- Signal has slightly sharper peak
- Correlation to D1

Max-L (ttbb)

- In signal Higgs peak visible
- Broad combinatorial shoulder
- Good discrimination power

 \rightarrow Use BG hypothesis!

the ATLAS Experiment

Other Discriminants

Other discriminating variables for best permutation

$\Delta\eta$ between tops

- Maximized for ttH
- Full event reconstr.
- Additional boost by radiated Higgs

Hadronic top mass

- Maximized for ttH
- Good mass reconstruction
- Better for ttH due to additional constraint

Table 1: Variables used as input to NN ordered by their importance

Variable	Significance(σ)
 D1_mod (mH=125 GeV)	28.72
H_{T} (jets)	17.69
Aplanarity	19.89
mW_{jj}(max L(ttH)) [GeV]	9.1
Number of Jets (p_{T}>40 GeV)	7.7
#Delta #eta_{jjblnb}(max L(ttH))	7.12
m (bj^{max p_{T}})	6.56
#Delta #eta_{jjb}(max L(ttH))	5.14
<pre>#Delta #eta_{bb}(max L(ttH))</pre>	5.23
#Delta #eta_{jj}(max L(ttH))	3.46

ATLAS work in progress

the ATLAS Experiment

Total correlation to the target: 37.15% Total significance: 42.84

NN Output

the ATLAS Experiment

- Statistical limits (95% CL on σ/σ_{SM}) set in 6ji/4bi using best ranked variables
 - 5 MVA variables (only MVA)
 - 4 MVA variables + 1 MEM (5 Var)
 - 4 MVA variables + 6 MEM (10 Var)
 - 10 MEM variables (only MEM)
- Including MEM variables improves the exp. limit and degrades the uncertainties
- MEM only can compete with highly optimized MVA only limit
- Improvements in the limit including systematic uncertainties are significant

ATLAS work in progress

	5MVA	4MVA1MEM	4MVA6MEM	10MEM
expected	6.00	5.67	5.59	5.92
+- 1 sigma	[4.32, 8.52]	[4.08, 8.08]	[4.03, 7.96]	[4.27, 8.42]
+- 2 sigma	[3.22, 11.85]	[3.04, 11.29]	[3.00, 11.14	[3.18, 11.71]

the ATLAS Experiment

Summary

- MEM is powerful tool for discriminating ttH from BG
 - First application of MEM at LHC to search (complex channel)
 - Good balance between precision & reasonable CPU time needed (4 m/evt)
 - Development of large computing framework was needed
 - Multi-user submission, automated monitoring, etc
 - Complex method with high potential for good discrimination
 - Neyman-Pearson likelihood ratio shows impressive separation power
 - MEM variables in NN improves sensitivity
 - 20-30% relative improvement in discrimination
 - Expected statistical only limit degrades

Outlook

- Significant gain in sensitivity including systematics (7TeV)
- Run on 8 TeV with current description and full systematic
 - Possibility of using lookup tables for systematic breakdowns
 - Use permutation ranking to simultaneously run on 0/3 b-tag

BACKUP

Olaf Nackenhorst 7th Helmholtz Alliance Workshop, 03.12.2013

the ATLAS Experiment

- Realization with MEMTool in ≥ 6 jets, ≥ 4 b-tags channel
 - Model:
 - LO PDFs: CTEQ6L1
 - Use optimized MadGraph LO ME (ttH / ttbb diagrams)
 - KLFitter TF
 - Default options:
 - Veto b-tag method
 - Selection: 4 jets b-tagged ranked, 2 jets in pt order (light jets)
 - Kinematic transformation to m_w and m_H :
 - No lep int., NWA for lept. M_w , no NWA for hadr. m_w and m_H
 - Test signal and background hypothesis
 - Max[L(tt
 H) | m_{H}] permutation which maximizes tt
 H likelihood
 - Max[L(ttbb)] permutation which maximizes ttbb likelihood
 - Goal of MEM:
 - Neyman-Pearson likelihood ratio as m_H dependent discriminator

the ATLAS Experiment

Event Reconstruction

Correlations MVA+MEM

	Out ge4b 6jets Combined							ATLAS work in progress		
ME_D1_mod_mH125	1	0.02	0.23	0.09	0.08	0.14	0.19	0.13	0.06	0.1
HT_jet	0.02	1	-0.16	-0.21	0.63	0.08		0.05	0.18	
apla	0.23	-0.16	1	0.15	0.02	0.17	0.15	0.17	0.07	0.17
ME_Sig_Max_MWjj	0.09	-0.21	0.15	1	-0.17	0.05	0.09	0.14		0.38
num_jet_40	0.08	0.63	0.02	-0.17	1	0.03	-0.02	0.01	0.17	
ME_Sig_Max_dEta_MTTjjblnb	0.14	0.08	0.17	0.05	0.03	1	0.11	0.1	0.02	0.06
mbj_maxPt	0.19		0.15	0.09	-0.02	0.11	1	0.13	0.04	0.11
ME_Sig_Max_dEta_MTjjb	0.13	0.05	0.17	0.14	0.01	0.1	0.13	1	0.01	0.21
ME_Sig_Max_dEta_Mbb	0.06	0.18	0.07		0.17	0.02	0.04	0.01	1	0.03
ME_Sig_Max_dEta_MWjj	0.1		0.17	0.38		0.06	0.11	0.21	0.03	1
	ME_D1_mod_mH125	HT_jet	apla	ME_Sig_Max_MWjj	num_jet_40	_Max_dEta_MTTjjblnb	mbj_maxPt	_Sig_Max_dEta_MTjjb	:_Sig_Max_dEta_Mbb	_Sig_Max_dEta_MWjj

Table 1: Variables used as input to NN ordered by their importance

-	Variable	Significance(σ)
	D1_mod (mH=125 GeV)	28.72
	HT_{all}(max L(ttH)) [GeV]	14.07
	#Delta #eta_{jj}(max L(ttH))	10.45
	#Delta #eta_{jjblnb}(max L(ttH))	9.43
	<pre>#Delta #eta_{bb}(max L(ttH))</pre>	8.18
	#Delta #eta_{jjb}(max L(ttH))	7.33
	mW_{jj}(max L(ttH)) [GeV]	5.05
	#Delta #eta_{bb}(max L(ttbb))	4.7
	cos((j_{1}j_{2})#angle(b_{1}b_{2}))(max L(ttbb))	4.53
	#Delta cos(#phi)_{lnu}(max L(ttH))	3.41

ATLAS work in progress

Total correlation to the target: 32.69% Total significance: 37.7

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Correlations only MEM

the ATLAS Experiment

	Out	<u>ge4b_6jets_Combined</u>					ATLAS work in progress				
ME_D1_mod_mH125	1	0.04	0.1	0.14	0.06	0.13	0.09	0.04	0.05	0.04	
ME_Sig_Max_EtTTbb	0.04	1	0.01	0.13	0.19	0.07	-0.18	0.04	-0.01	0.23	
ME_Sig_Max_dEta_MWjj	0.1	0.01	1	0.06	0.03	0.21	0.38			0.02	
ME_Sig_Max_dEta_MTTjjblnb	0.14	0.13	0.06	1	0.02	0.1	0.05	0.05	0.02	0.1	
ME_Sig_Max_dEta_Mbb	0.06	0.19	0.03	0.02	1	0.01		0.27	0.03	0.02	
ME_Sig_Max_dEta_MTjjb	0.13	0.07	0.21	0.1	0.01	1	0.14	0.06	0.01	0.03	
ME_Sig_Max_MWjj	0.09	-0.18	0.38	0.05		0.14	1	-0.04			
ME_Bkg_Max_dEta_Mbb	0.04	0.04		0.05	0.27	0.06	-0.04	1	0.02	0.03	
ME_Bkg_Max_CP_bb_mbb	0.05	-0.01		0.02	0.03	0.01		0.02	1		
/IE_Sig_Max_dCosPhi_MWlnu	0.04	0.23	0.02	0.1	0.02	0.03		0.03		1	
	ME_D1_mod_mH125	ME_Sig_Max_EtTTbb	_Sig_Max_dEta_MWji	_Max_dEta_MTTjjblnb	Sig_Max_dEta_Mbb	.Sig_Max_dEta_MTjjb	ME_Sig_Max_MWjj	_Bkg_Max_dEta_Mbb	kg_Max_CP_bb_mbb	Max_dCosPhi_MWInu	
				~						A fitterest	

Olaf Nackenhorst 7th Helmholtz Alliance Workshop, 03.12.2013

石街

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Theory vs Reality

- Paper by MadWeight authors:
 - Discussing analyses at 14 TeV
 - Analysis simplified by theorist, important experimental affects not taken into account, MadEvents
 - Not optimized in terms of CPU power

Unravelling ttH via MEM (arXiv:1304.6414)

FIG. 1: Left: Normalized distributions of events with respect to the MEM-based observable D for the di-lepton (top) and single-lepton (bottom) channels. Right: Efficiency of selecting signal vs. background using a $D > D_{min}$ cut.

MEMTool

the ATLAS Experiment

• I might be biased, but I think we are better...

Sum D1 for [m_µ:125], [α = <L(ttH)> / <L(ttbb)>]

- Method:
 - Probability of observing an event in the detector to be consistent with model:

$$P_{ev}(\boldsymbol{x}|\boldsymbol{a}) = \sum_{i} f_{i} P_{i}(\boldsymbol{x}|\boldsymbol{a})$$

- Observed quantity x
- Model parameters a (theoretical & instrumental)
- fractions f, of different process / production channel (non interfering)
- Calculate probability P_i to measure x with given a for each channel i
- Combine all event probabilities into one likelihood function for n events:

$$L(\boldsymbol{a}) = \prod_{j=1}^{n} P_{ev}(\boldsymbol{x}|\boldsymbol{a})$$

- Extract model parameters **a** by maximizing the likelihood function
 - Model parameters might be, e.g.: $m_{_{\rm H}}$, JES, bJES, signal fraction $f_{_{\rm tH}}$
 - \rightarrow Allows to further reduce the systematical uncertainties

Reconstruction Max L(perm|ttH)

Reconstruction Max L(perm|ttH)

Reconstruction Max L(perm|ttbb)

Looking at Signal Diagrams

Gluon Fusion: 8 Diagrams

diagram 1 QCD=2, QED=6

diagram 2 QCD=2, QED=6

diagram 7 QCD=2, QED=6

diagram 8

QCD=2, QED=6

QCD=2, QED=6

diagram 6

QCD=2, QED=6

qq-Annihilation: 2 Diagrams

diagram 1 QCD=2, QED=6

diagram 2 QCD=2, QED=6

in ttH: gg / qq production ~ 50 / 50!

26

Looking at BG Diagrams

Gluon Fusion: 16 Diagrams (1-12)

diagram 1

QCD=4, QED=4

QCD=4 QED=

diagram 2

QCD=4. QED=4

QCD=4, QED=4

QCD=4, QED=4 diagram 7

QCD=4. QED=4 diagram 8

diagram 3

diagram 4

diagram 10 QCD=4 QED=

QCD=4, QED=4 diagram 11

the ATLAS Experiment

diagram 12 QCD=4, QED=4

Looking at BG Diagrams

Gluon Fusion: 16 Diagrams (13-16)

diagram 3 QCD=4, QED=4

Olaf Nackenhorst 7th Helmholtz Alliance Workshop, 03.12.2013

MEMTool

- MEMTool
 - Tool for ME calculation, developed in Göttingen for ttbar \rightarrow ljets
 - Modular designed
 - Can handle all kinds of ME, including c++ generated MadGraph ME
 - All kinds of phase space transformations
 - A lot of different input interfaces exist
 - A set of PDFs in a library available (LHAPDF)
 - Lots of different integration techniques included (via GSL, default is VEGAS)
 - Different sets of transfer functions, including latest KLFitter TFs
 - Generalization of tool and lots of development
 - Can handle all kinds of event topologies (model particle, perm. tables, etc.)
 - Optimizations on ME calculation (helicity states): 20 times faster!
 - MadGraph ME can be automatically implemented including optimizations

the ATLAS Experiment

- Optimization of the integration (break up conditions, PS volume, etc.)
- A lot of nice tools (plotting, grid / batch submission, etc.)
- Several other groups are interested in the tool

