

HERAFitter

Open Source QCD Fit Platform to determine **PDFs**

Voica Radescu (DESY) For the HERAFitter team

PHYSICS AT THE TERASCALE

Helmholtz Alliance

Outline:

- Motivation
- Project Overview
- Functionality
- Application and Results

Motivation

- Parton Distribution Functions are essential for precision physics at the LHC:
 - PDFs are one of the main theory uncertainties in Higgs production
 - PDF uncertainties also affect substantially theory predictions for BSM high mass production

- There are several active PDF groups:
 - MSTW, CT, NNPDF, HERAPDF, ABM, JR
 - Current benchmarking of PDFs
 - different treatment of heavy quarks
 - inclusion of various data sets and account for possible tensions
 - different alphas assumption

[G. Watt, Nov 2012]

On one hand it is crucial to understand the theoretical differences, on the other hand it is important to provide accurate data with full information on correlations!

Proton Structure

- PDF extraction relies on the factorisation theorem:
 - cross sections: PDFs (X) hard scattering coefficients
- Main information on PDFs comes from DIS data at HERA which probes linear combination of quarks:

$$F_2 \sim 0.44x(u+ar{u}+c+ar{c})+0.11x(d+ar{d}+s+ar{s}+b+ar{b})$$
No flavour decomposition of the sea

LHC data is introducing new observables to be used for 103 PDF constraints to help provide flavour decomposition and better understood gluon:

Measurement at LHC	PDF sensitivity	
Inclusive jets and dijets	high x quarks and gluons (alphas)	
Inclusive W, Z and asymmetries	quark flavour separation (u,d,s)	
Off peak Drell-Yan at low and high mass	quarks at low and high x (u,d)	
W with charm quarks	Direct sensitivity to s-quark	
Isolated photons	medium - x gluons	
Single top productoon	u,d and b quark	
ttbar production (total, differential)	Medium-x gluon (alphas)	
W,Z production with jets	Medium-x gluon	
Z+b production	sensitive to b-quark	

Coverage in x is essential QCD evolution is in Q2

Schematics of extraction PDFs

A flow diagram of a PDF extraction in a QCD fit machinery (such as HERAFitter):

- Important to provide correlation information
- Important to have fast tools to perform PDF fits i.e. APPLGRID, FASTNLO
 - → grid techniques, rely on factorisation theorem
- To determine PDFs a full coverage in x is needed
- Differential measurements in rapidity provide more sensitivity due to x coverage

HERAFitter Project

HERAFitter is an open source QCD fit platform with a continuing rapid development

HERAFitter:

- is a unique framework to address the theoretical differences
- provides means to the experimentalists to assess impact of new data

HERAFitter in a glance

experiments:

HERA, Tevatron, LHC, fixed target

NC, CC DIS, jets, diffraction, heavy quarks (c,b,t) Drell-Yan, W production

theoretical calculations/tools

Heavy quark schemes: MSTW, CTEQ, ABM Jets, W, Z production: fastNLO, Applgrid Top production NNLO (Hathor) QCD Evolution DGLAP (QCDNUM)

k_T factorisation

Alternative tools NNPDF reweighting Other models Dipole model

- + Different error treatment models
- + Tools for data combination (HERAaverager)

HERAFitter

 $\alpha_{\rm S}$ (Mz), $m_{\rm c}$, $m_{\rm b}$, $m_{\rm t}$, $f_{\rm s}$,...

Theory predictions

Benchmarking

Comparison of schemes

Heavy Flavour Schemes

For the DIS process, several schemes are available for heavy quark treatments:

- VFNS (Variable Flavour Number Schemes):
 - ∇ RT-VFNS schemes (RT STandard, RT Optimal) as used by MSTW group (as well as variants based on k-factors RT FAST, RT OPT FAST runs 15min)
 - v Zero Mass VFNS [qcdnum, ACOT variant]
 - v ACOT Full, ACOT Chi, ACOT ZM, they are all based on k-factors as used by CT group
- FFNS (Fixed Flavour Number Scheme)
 - via QCDNUM
 - v via ABM (openqcdrad-1.6) as used by ABM
- → used in F2 charm HERA combined paper [Eur. Phys. J. C73 (2013) 2311]

Alternative formalisms

- As an alternative to DGLAP, HERAFitter includes also Dipole models:
- GBW (Golec-Biernat Wüsthoff) parametrization

$$\hat{\sigma}(r,x) = \sigma_0 \left(1 - \exp(-r^2/R_s^2)\right), \qquad R_s^2 = 4 \cdot (x/x_0)^{\lambda} \text{ GeV}^2$$
 F_L 0.4 \[\frac{1}{2} \frac{1}{2

BGK (Bartels-Golec-Kowalski) parametrization

$$\hat{\sigma}(r,x) = \sigma_0 \left\{ 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2) / (3\sigma_0) \right] \right\}$$

 \blacksquare R_s^2 is replacing by a gluon density with explicit DGLAP evolution

(contribution of the valence quarks taken from the PDF fits can be added to the original BGK model)

Unintegrated PDFs based on the kT-factorisation (CCFM) evolution.
 (applicable only to NC ep scattering)

https://www.herafitter.org/HERAFitter/HERAFitter/HERAFitter/HERAFitter/HERAFitter/Meetings/Meeting2012-Oct-29? action=AttachFile&do=get&target=updf.pdf

Diffractive DIS PDF fits.

Experimental Uncertainties

HERAFitter allows for various types of data uncertainty treatment:

Hessian and toy Monte Carlo error propagation

- Regularisation methods: to constrain PDFs in a flexible parametrisation style:
 - Data Driven Regularisation (as used by NNPDF): fit and control samples
 - External Regularisation based on a penalty term in chisq

Parametrisation Studies

[PLB 695 (2011) 238]

- Monte Carlo Method for error estimation compared to Hessian error propagation:
 - Benchmarking exercise with NNPDF group [arXiv:0901.2504]
- Flexible Chebyshev parametrisation to study the effect of parametrisation bias:
 - Study of adding explicit smoothness prior for external regularisation

Chi square definitions

- Typical measurements sensitive to PDFs are precise, with statistical uncertainties below 10%, so they follow normal distribution which allows use of chi square minimization for determining optimal PDF parameters.
- The HERAFitter package allows for various types of data uncertainty treatment:
 - Various chi square representations:
 - Simple form:

$$\chi_{\text{exp}}^{2}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\left(\delta_{i, \text{stat}} \mu^{i}\right)^{2} + \left(\delta_{i, \text{uncor}} \mu^{i}\right)^{2}} + \sum_{j} b_{j}^{2}.$$

Scaled form:

$$\chi_{\exp}^{2}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta_{i,\text{stat}}^{2} \mu^{i} \left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right) + \left(\delta_{i,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2} + \log \text{ penalty}$$

Mixed form (covariance and nuisance parameter):

$$\chi^{2}_{\exp}(\mathbf{m}, \mathbf{b}) = \sum_{ij} \left(m^{i} - \sum_{l} \Gamma^{i}_{l}(m^{i})b_{l} - \mu^{i} \right) C^{-1}_{\text{stat. } ij}(m^{i}, m^{j}) \left(m^{j} - \sum_{l} \Gamma^{j}_{l}(m^{j})b_{l} - \mu^{j} \right) + \sum_{l} b_{l}^{2}.$$

Quantitative Comparison between data and theory

HERAFitter provides a quantitative assessment of level of agreement between data and theory by taking into account theoretical and experimental uncertainties

$$\chi^{2} = \sum_{i} \left(\frac{\mu_{i} - m_{i} \left[1 + \sum_{j} b_{j}^{\text{exp}} \gamma_{ji}^{\text{exp}} + \sum_{j} b_{j}^{\text{theo}} \gamma_{ji}^{\text{theo}} \right]}{\Delta_{i}} \right)^{2} + \sum_{j} (b_{j}^{\text{exp}})^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2}$$

Ex: 30 points from ATLAS WZ 2010 vs NNLO predictions

PDF set	Central PDF	With PDF uncertainties
CT10	34.1	32.0
MSTW08	72.0	49.7
HERAPDF1.5eig	43.1	39.2

Phys. Lett. B 725 (2013) 223

Phys. Rev. D 85 (2012) 072004

Determination of the strange quark in the proton:

- Using W+, W-, Z (35/pb) inclusive cross sections - ATLAS [PRL 109 (2012) 012001]
 (kinematic region probed is at x~0.01)
- NNLO QCD Analysis:

$$r_s = 1.00 \pm 0.20 \exp \pm 0.07 \mod_{-0.15}^{+0.10} \operatorname{par}_{-0.07}^{+0.06} \alpha_s \pm 0.08 \text{th.}$$

v NLO result is in agreement with NNLO

- Using W+charm (5/fb) and W muon asymmetry (4.7/fb) CMS [SMP-12-021]
- NLO QCD Analysis: Rs(x) is determined

(see R. Placakyte's talk)

Sensitivity to gluon and strong coupling:

Study sensitivity to the gluon PDF:

- Using ratio of jets at different beam energies –
 ATLAS [EPJC (2013) 73 2509]
 - Compare the gluon for PDF fit using just HERA I and a fit using HERA I + ATLAS 2.76, 7 TeV jet data (2010)

- Using inclusive jet cross section at 7 TeV CMS data from 2011 (5/fb) [SMP-12-028]:
 - PDFs are extracted and compared to fits using just HERA I and fits using HERA I + CMS 7 TeV jet data

Extraction of the strong coupling:

From PDF and alphas simultaneous fit:

$$\alpha_S(M_Z) = 0.1192^{+0.0017}_{-0.0015}$$

(see G. Sieber's talk)

Impact studies of LHeC on PDFs

[Journal of Phys. G 39 (2012)]

HERAFitter provides the possibility to perform impact studies using simulated data:

LHeC can provide a complete PDF set with precise gluon, valence, and strong coupling:

LHeC promises per mille accuracy on alphas – using HERAFitter

case	$\operatorname{cut}\ [Q^2\ \operatorname{in}\ \operatorname{GeV}]$	relative precision in %
HERA only (14p)	$Q^2 > 3.5$	1.94
HERA+jets (14p)	$Q^2 > 3.5$	0.82
LHeC only (14p)	$Q^2 > 3.5$	0.15
LHeC only (10p)	$Q^2 > 3.5$	0.17
LHeC only (14p)	$Q^2 > 20$.	0.25
LHeC+HERA (10p)	$Q^2 > 3.5$	0.11
LHeC+HERA (10p)	$Q^2 > 7.0$	0.20
LHeC+HERA (10p)	$Q^2 > 10.$	0.26

NNLO pp-Higgs Cross Sections at 14 TeV

14 TeV gg → H total cross section at the LHC calculated for a variety of PDFs at 68% CL

 precision from LHeC can add a very significant constraint on the mass of the Higgs

Results using HERAFitter

- Following PDF grids have been generated since the start of the project:
 - HERAPDF1.0, HERAPDF1.5, ATLAS-epWZ12, LHeC-NLO
- HERAFitter has been used in the following publications:

- "Determination of the strange quark density of the proton from ATLAS measurements of the W and Z cross sections" [PRL 109 (2012) 012001]
- "Measurements of the inclusive jet cross section in pp collisions at 2.76 TeV and comparison to the inclusive jet cross section at 7 TeV using the ATLAS detector" [EPJC (2013) 73 2509]
- "Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at 7 TeV with the ATLAS detector" [PLB 725 (2013) 223]

- "Measurement of the muon charge asymmetry in pp W production at 7 TeV" [SMP-12-021]
- "PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV" [SMP-12-08]

- "Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep Inelastic ep Scattering at HERA" [EPJC (2013) 73 2311]
- "Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised" [JHEP 1209 (2012) 061]

LHeC impact studies [Journal of Phys. G 39 (2012)]

"Parton Distribution Uncertainties using Smoothness Prior" [PLB 695 (2011) 238]

HERAFitter Perspectives

HERAFitter has a modular structure facilitating fast developments

Many new developments are planed to be implemented in future releases:

Summary

- PDF groups are active and eager to include new avalanche of data to better constrain PDFs that still represent one of the dominant uncertainties.
- Successful releases of the HERAFitter package an open source QCD
 Framework designed to help address the theoretical differences, but mostly provides means for various tests within experimental data analysis
 - HERAFitter platform has grown into a multi-functional QCD platform:
 - v Various treatments for heavy flavours;
 - v Various options for data uncertainties treatment;
 - Various parametrisation techniques;
 - v Various physics cases.
- Next release is a stable release (coming soon)
- Next User's Meeting is on the 10th of December, 2013 (monthly meetings)
 - www.herafitter.org
 - herafitter-help@desy.de

We welcome new developments!

EXTRA

HERAFitter perspectives in a list

A list of planned developments:

Theory (short and long terms):

- Consistent implementation of scale variations.
- ACOT NNLO
- Nuclear PDFs.
- ACOT in QCDNUM, using fast convolution engine.
- Improvements in Hathor cross-section calculation for fits, other ttbar codes
- EW corrections.
- DYNNLO in APPLGRID.
- Photon PDF.
- Different evolution schemes:
 - e.g. matched to MC showering, mixed Dipole-DGLAP fits.

Data treatments:

- Additional tools to transform covariance matrix to nuisance parameter representation
- Alternative to MINUIT minimization package

uPDFs in HERAFitter

- $rac{d\sigma}{dxdQ^2} = \int dx_g igl[dk_\perp^2 x_g \mathcal{A}_i(x_g,k_\perp^2,p) igr] \hat{\sigma}(x_g,k_\perp^2,x,Q^2) \, .$
- $\hat{\sigma}(x_g,k_\perp^2,x,Q^2)$ is (off-shell, k, dependent) hard scattering cross section
- uPDFs for gluons and quarks needed:
 - Until now: only gluon uPDF determined
- valence quarks: use starting distribution CTEQ6
- method:

$$\sigma_r(x,Q^2) = \int_x^1 dx_g \mathcal{A}(x_g,k_\perp,p) \hat{\sigma}(x,x_g,Q^2)$$

- calculate $\int_{x/x'}^1 dx'' \tilde{\mathcal{A}}(x'',k_\perp,p) \cdot \hat{\sigma}(x,x'\,x'',Q^2)$ in a grid of x'',Q2
- starting distribution: $\mathcal{A}_0(x) = N_q x^{-B_g} (1-x)^{C_g} (1-D_q x)$
- calculate $\sigma_r(x,Q^2)$ by 1-dim Gauss integration (fast!)
 - external input:
 - kernel evolution grid for gluon
 - evolved valence quark distribution (as uPDF)
 - convolution of kernel with off-shell ME done in herafitter

uPDFs in HERAFitter

Low Q² F₂

NC cross section HERA-I H1-ZEUS combined e+p.

from herafitter output

Q² = 18 GeV² $Q^2 = 6.5 \text{ GeV}^2$ $Q^2 = 10.0 \text{ GeV}^2$ $Q^2 = 12 \text{ GeV}^2$ $Q^2 = 15 \text{ GeV}^2$ $Q^2 = 8.5 \text{ GeV}^2$ χ^2 / npts = 23.2 / 14 χ^2 / npts = 14.6 / 12 $\chi^2 / \text{npts} = 9.7 / 8$ χ^2 / npts = 12.6 / 11 χ^2 / npts = 24.9 / 11 $\chi^2 / \text{npts} = 6.6 / 10$ Q² = 27 GeV² Q² = 70 GeV² $Q^2 = 60 \text{ GeV}^2$ I Q2 = 22 GeV2 $Q^2 = 45 \text{ GeV}^2$ $Q^2 = 35 \text{ GeV}^2$ χ^2 / npts = 8.3 / 7 χ^2 / npts = 12.6 / 11 χ^2 / npts = 12.6 / 8 χ^2 / npts = 13.4 / 8 $\chi^2/npts = 14.2/6$ χ^2 / npts = 8.6 / 5 Q2 = 120 GeV2 Q2 = 150 GeV2 Q2 = 90 GeV2 $Q^2 = 200 \text{ GeV}^2$ $Q^2 = 250 \text{ GeV}^2$ $Q^2 = 300 \text{ GeV}^2$ $\chi^2 / \text{npts} = 20.3 / 6$ $\chi^2 / \text{npts} = 4.2 / 7$ $\chi^2/npts = 1.1/5$ χ^2 / npts = 5.0 / 6 χ^2 / npts = 1.1 / 5 104 103 102 101 1 104 103 102 101 1 104 103 102 101 1 $Q^2 = 400 \text{ GeV}^2$ $Q^2 = 500 \text{ GeV}^2$ $Q^2 = 650 \text{ GeV}^2$

H, Jung, HERAFitter Us meeting Oct :

104 103 102 101 1 104 103 102 101 1 104 103 102 101 1

Fit performed in

 $\chi^2/\text{npts} = 5.4/3$

 $Q^2 > 5 \text{ GeV}, \ x < 0.01$

 χ^2 / npts = 1.2 / 2