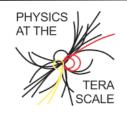
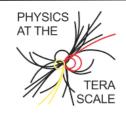

Determination of the CP parity of Higgs bosons in their tau decay channels at the ILC

Stefan Berge Rheinisch-Westfälische Technische Hochschule Aachen


3.12. 2013 7th Annual Helmholtz Alliance Workshop on "Physics at the Terascale"

Introduction


- □ LHC: At least one scalar boson, probably Spin-0, with $m_h = 126 \text{ GeV}$
- □ If it is one boson: h^0 , H^0 (*CP*-even), A^0 (*CP*-odd) or h_1 (*CP*-mixed) - It is not a pure *CP*-odd state A^0 ($h \rightarrow ZZ$: CMS-PAS-HIG-13-002, ATLAS-CONF-2013-013; and 1211.1980)
 - No large an amolous A^0ZZ coupling (because of $h \to ZZ$)
 - \rightarrow large cross section in $e^+e^- \rightarrow hZ$
- □ If there is more than one Higgs boson (e.g. 2HDM), degenerated in mass
 - E.g. A^0 and $H^0: \to H^0$ is produced in $ee \to ZH^0$ with large cross section at ILC
 - E.g. h^0 and H^0 : or several CPmix: $\rightarrow ee \rightarrow Zh$ with large cross section at ILC
- $\hfill\square$ Either case: h will be produced with SM like cross section in $e^+e^- \to hZ$

Introduction

- $\square \quad h \to \tau \bar{\tau} \text{ decay (in general fermion pairs) is especially suitable as tau leptons couple at tree level to scalar and pseudo-scalar components of the Higgs boson$
- $\hfill\square$ Large branching fraction of $h\to \tau\bar\tau$
- $h \to f\bar{f}$: Direct test of the Higgs CP nature possible
- Degenerated states of scalar and pseudo-scalar bosons can be distinguished from a CP-mix state
- $\hfill\square$ Radiative corrections to $h\to \tau\bar\tau$ are small
- Method shown here: CP property of scalar bosons can be measured in the tau-tau decay channel, if the Higgs production vertex can be reconstructed $(Z \rightarrow e^+e^-)$ (or if one projects onto the transverse plane)

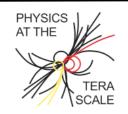
Introduction

CP quantum numbers and possible CP violation of neutral Higgs bosons can be measured in a variety of Higgs decays or Higgs production processes, (e.g. hep-ph/0608079)

$$c e^+e^- \to Z h \to Z + \tau \bar{\tau} \text{ and } \tau \to \text{hadrons}$$
 (Reinhard, uses 30% of

$$\bullet \quad e^+e^- \to Z h \to Z + \tau \bar{\tau} \quad \text{and} \quad \tau \to \rho + \nu$$

•
$$e^+e^- \to Z h \to Z + \tau \bar{\tau}$$
 and $\tau \to \rho + \nu$


 $e^+e^- \to Z h \to Z + \tau \overline{\tau}$ and $\tau \to all$

(Reinhard, Videau, 2009) uses 30% of events

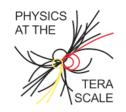
(Desch, Was, Worek hep-ph/ 0307331) uses 6.5% of events

(R. Primulando et al., Phys.Rev. D88 (2013) 076009), 6.5% of events

(S.B., Bernreuther, Spiesberger, Phys. Lett. B 727 (2013) 488)

Π

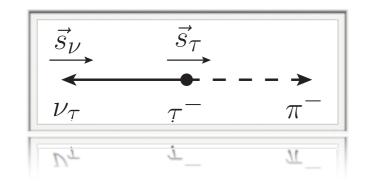
Higgs decay into tau lepton pairs

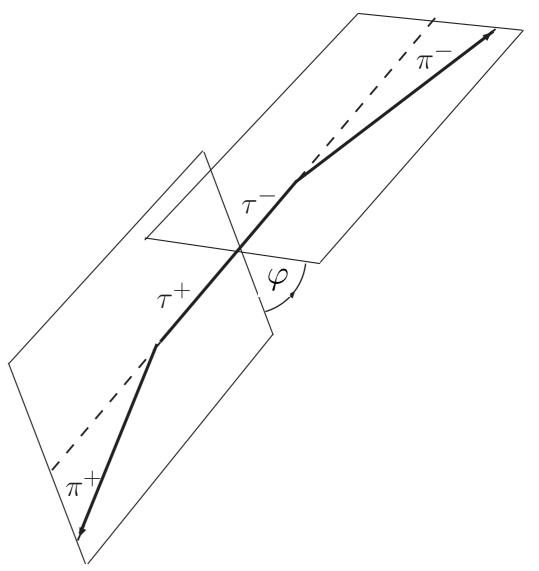

- Consider Lagrangian: $\mathcal{L}_Y = -N(\cos\phi\,\bar{\tau}\tau + \sin\phi\,\bar{\tau}i\gamma_5\tau)\,h$
- Higgs decays via $h \to \bar{\tau}\tau$, where the $\bar{\tau}\tau$ pair has $P = (-1)^{L+1}$ and $C = (-1)^{L+S}$

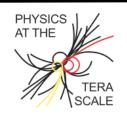
if
$$\tau \bar{\tau}$$
 is in ${}^{1}S_{0}$ state :
 $\rightarrow J^{PC} = 0^{-+}$
 $\rightarrow A^{0}$
 $\rightarrow \langle s_{\tau^{-}} \cdot s_{\tau^{+}} \rangle = -\frac{3}{4}$
 $\rightarrow \phi = \frac{\pi}{2}$

• if
$$\tau \bar{\tau}$$
 is in ${}^{3}P_{0}$ state :
 $\rightarrow J^{PC} = 0^{++}$
 $\rightarrow H^{0}, h^{0}$
 $\rightarrow \langle s_{\tau^{-}} \cdot s_{\tau^{+}} \rangle = \frac{1}{4}$
 $\rightarrow \phi = 0$

CP mixing

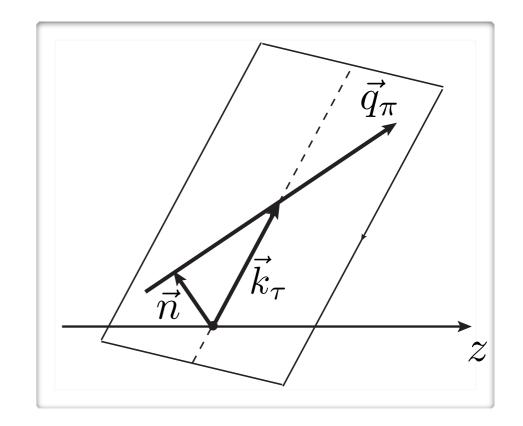

angle

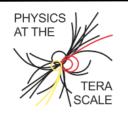



Higgs decay into a pair of tau leptons

- Consider $\tau^- \to \pi^- + \nu_{\tau}$: Higgs decay probability can be written as *(Barger et al. '79)* $\Gamma(H, A \to \tau^- \tau^+) \sim 1 - s_z^{\tau-} s_z^{\tau+} \pm s_{\tau}^{\tau-} s_{\tau}^{\tau+}$
- Pion is preferably emitted in the direction of the tau-Spin in the tau rest frame

- $\hfill\square \ensuremath{\ensuremath{\square}}\ensuremath{\varphi}$ is sensitive to $\tau\tau$ spin correlation
 - \rightarrow Problem: need to reconstruct $\tau\text{-momenta}$

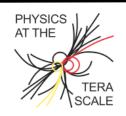




Our Method:

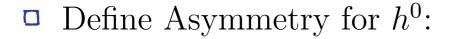
(S.B., Bernreuther; Phys.Lett. B671 (2009) 470-476 [arXiv: 0812.1910])

- $\hfill\square$ No reconstruction of τ momenta necessary
- Use normalized impact parameter vectors \hat{n}_{-} , \hat{n}_{+} , measured in lab frame
- Boost \hat{n}_{\pm} into $\pi^{-}\pi^{+}$ -ZMF (denoted by *) $(n^{\mu}n_{\mu} = -1)$:
- **Define** $\varphi^* = acos(\hat{n}^*_{-\perp} \cdot \hat{n}^*_{+\perp})$
- Measurement of Primary Vertex (PV) necessary (e.g. from $Z \rightarrow e^+e^-$)



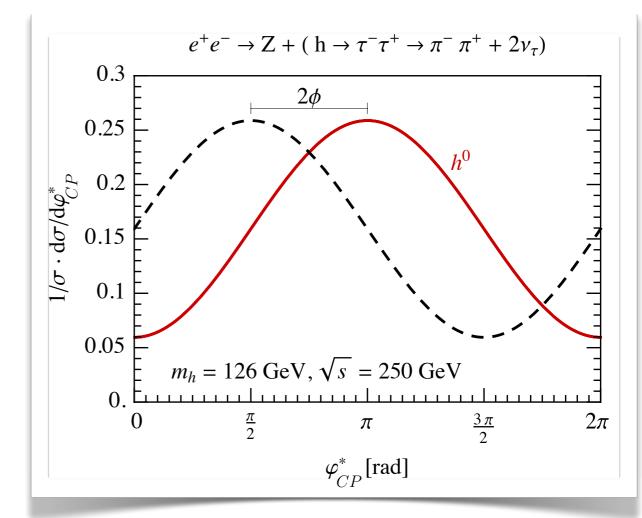
Definition of observables

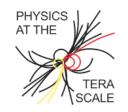
7th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale" 2. - 4. December 2013, Karlsruhe, Germany



 \mathcal{Z}

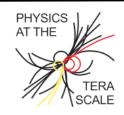
Higgs decay into tau lepton pairs

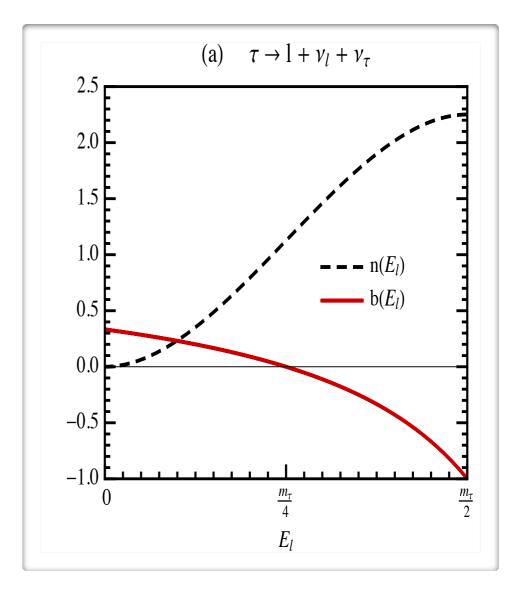

• Example:
$$h \to \tau \bar{\tau} \to \pi^+ \pi^- + \nu_\tau + \bar{\nu}_\tau$$
 decay:


$$\Box \quad \frac{1}{\Gamma} \frac{d\Gamma(h \to \pi^+ \pi^- + 2\nu)}{d\varphi_{CP}^*} = \frac{1}{2\pi} \left[1 - \frac{\pi^2}{16} \cos(\varphi_{CP}^* - 2\phi) \right]$$

$$A = \frac{\sigma(\cos\varphi_{CP}^* < 0) - \sigma(\cos\varphi_{CP}^* > 0)}{\sigma}$$

E.g.
$$A(h^0 \to \pi^+\pi^- + 2\nu) = 40\%$$



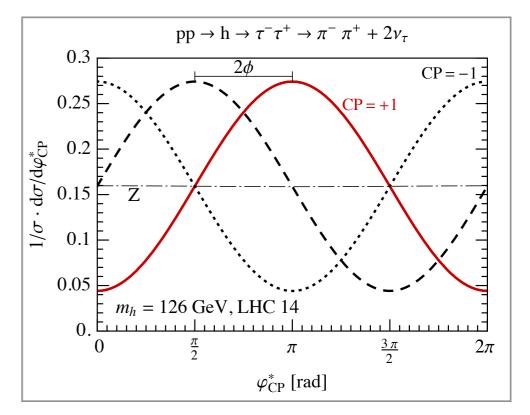

Higgs decay into tau lepton pairs

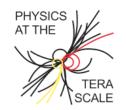
- **D** Differential decay width: $\frac{d\Gamma(\tau(k,s) \to i(q) + X)}{\Gamma/(4\pi) \ dE_i d\Omega_i} = n\left(E_i\right)\left(1 + b\left(E_i\right) \ \hat{s} \cdot \hat{q}\right)$
- **D** Branching ratios:

decay mode	BR_{PDG} [%]
$\tau^- \to \pi^-$	11
$\tau^- \to \rho^- \to \pi^- \pi^0$	25.5
$\tau^- \to a_1^- \to \pi^- 2\pi^0$	9.3
$\tau^- \to a_1^- \to \pi^- \pi^+ \pi^-$	9
$\tau^- ightarrow e^-, \mu^-$	35.2

- Energy variable in 3-body decay modes: $\tau^{\pm} \rightarrow l^{\pm} + X$ and $\tau^{\pm} \rightarrow \rho^{\pm}/a_1^{\pm} + X \rightarrow \pi^{\pm} + X$
- **D** b(E) spin analyzer quality
- $\hfill\square$ n(E) determines relativ contribution to σ

Differential distribution

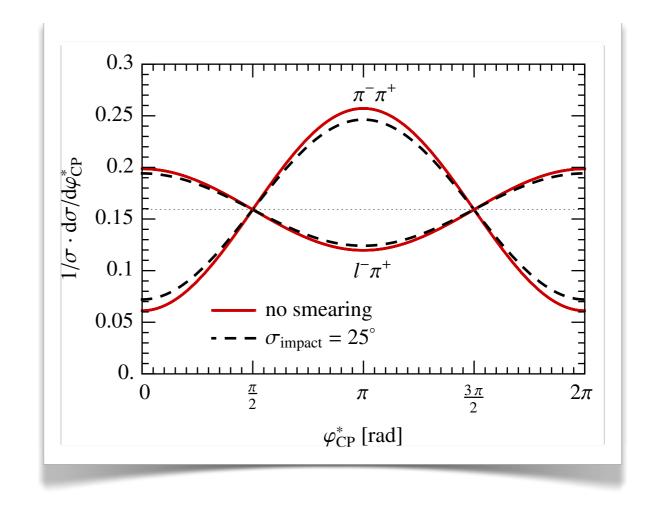

D Differential cross section:

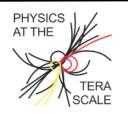

$$d\sigma \sim d\Omega_{\tau} \ dE_{a^{-}} \ dE_{a'^{+}} d\varphi_{CP}^{*} \left[v + u \cdot \cos\left(\varphi_{CP}^{*} - 2\phi\right) \right]$$
$$u = -n \left(E_{a^{-}}\right) b \left(E_{a^{-}}\right) n \left(E_{a'^{+}}\right) b \left(E_{a'^{+}}\right) \frac{\pi^{2} p_{h}^{2}}{8} \frac{g_{\tau}^{2}}{\sqrt{2} G_{F} m_{\tau}^{2}}$$
$$v = 4n \left(E_{a^{-}}\right) n \left(E_{a'^{+}}\right) N$$

□ Asymmetry, characterizing expected precision:

$$A = \frac{-4u}{2\pi v}$$

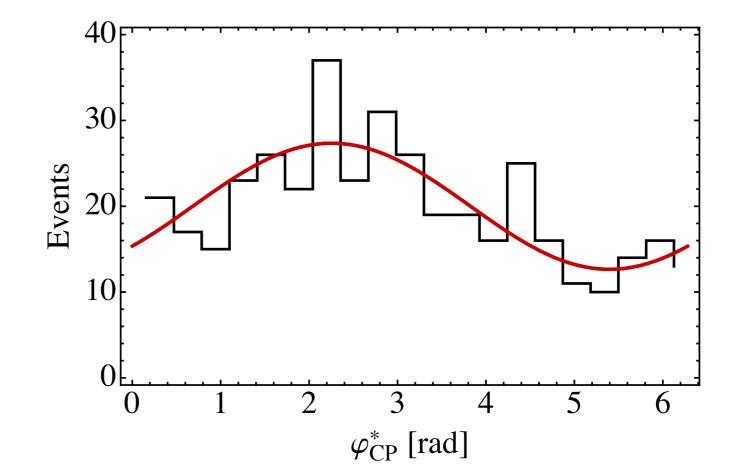
- \rightarrow Large spin analyzer functions b(E) generate large asymmetries.
- \rightarrow Need to separate b(E) > 0 and b(E) < 0 contributions.



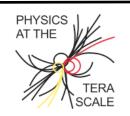


Measurement uncertainties

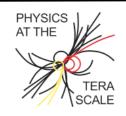
- □ Gaussian smearing of impact parameter measurement with $\sigma_{impact} = 25^{o}$ as suggested in hep-ph/0307331
 - \rightarrow reduction of the asymmetry by a factor of ≈ 0.9
- Initial state radiation and Beamsstrahlungs effects lower the center of mass energy, $s_{e^+e^-}$
 - \rightarrow negligible effect on the normalized φ^*_{CP} distribution



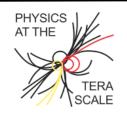
Asymmetry and Precision

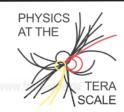

- Example: 400 Events A = 20%20 bins $\phi = -\pi/8$
- **—** Fit distribution:
 - $u \cdot \cos(\varphi_{CP}^* 2\phi) + v$

 $A = 10\% \quad \rightarrow \quad \Delta \phi = 15.5^{\circ}$ $A = 15\% \quad \rightarrow \quad \Delta \phi = 9.0^{\circ}$ $A = 20\% \quad \rightarrow \quad \Delta \phi = 6.6^{\circ}$

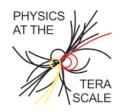


• $h\tau\tau$ -coupling: $\mathcal{L}_Y = -N\left(\cos\phi\,\bar{\tau}\tau + \sin\phi\,\bar{\tau}i\gamma_5\tau\right)h$


- Assuming signal to background ratio of S/B = 4.5 as suggested in Reinhard'09 with a flat background in φ_{CP}^* for $Z \to \tau \bar{\tau}$
- Taking into account the impact parameter uncertainty by multiplying the theoretical asymmetry by 0.9
- Assuming certain energy cuts for the charged prongs in the Higgs rest frame or the τ rest frame as stated in Phys.Lett. B727 (2013) 488
- Assuming efficiencies for $\tau \to \pi, \rho, a_1$ reconstruction suggested by Reinhard'09 of 0.55


Asymmetry and Precision

$\tau \tau$ -decay channel	A [%]	# of events for	$\Delta \phi$ [°]	$\begin{array}{ c } \Delta \phi \ [^{\circ}] \\ \mathcal{L} = 500 \mathrm{fb}^{-1} \end{array}$
		$\mathcal{L} = 1 \mathrm{ab}^{-1}$	$\mathcal{L} = 1 \mathrm{ab}^{-1}$	$\mathcal{L} = 500 \mathrm{fb}^{-1}$
$(\pi + a_1^{\lambda})(\pi + a_1^{\lambda})$	28.9	269	5.5	7.9
$\rho\rho$	18.0	443	7.0	10
$\rho(\pi + a_1^{\lambda})$	22.8	686	4.4	6.3
$a_1(\pi + a_1^{\lambda}) + \rho a_1 + a_1 a_1$	10	638	11	18
all had-had:			3.0	4.3
ll	4.8	454	30	36
$l(\pi + a_1^{\lambda})$	11.8	706	8.7	13
l ho	6.0	723	19	27
la_1	3.4	292	38	42
all lep-had:			7.7	11
all:			2.8	4.0



- Determination of the CP quantum numbers of neutral, Spin-0 resonances is possible in the tau decay channel, where all dominant tau-decay channels can be included
- Assuming an integrated luminosity of 1 ab^{-1} and Higgs-boson production at $\sqrt{s} = 250 \text{ GeV}$, the mixing angle ϕ can be determined with a statistical uncertainty of $\Delta \phi = 2.8^{\circ}$.

