MC's, Matching and all that

Simon Plätzer

DESY

A loose collection of some recent work @ Herwig++

Outline.

- NLO calculations with Matchbox
- A fresh look at NLO matching
- Controlling inclusive cross sections in $\mathsf{ME}{+}\mathsf{PS}$ merging
- Conclusions & Outlook

NLO Calculations with Matchbox.

$$\begin{split} \sigma_{\mathsf{NLO}} &= \int_{n} \mathrm{d}\sigma_{\mathsf{LO}} \begin{pmatrix} |\mathcal{M}_{n,0}\rangle \\ |\mathcal{M}_{n,0}|^{2} \end{pmatrix} &+ \int_{n} \left[\mathrm{d}\sigma_{\mathsf{V}} \begin{pmatrix} |\mathcal{M}_{n,0}\rangle, |\mathcal{M}_{n,1}\rangle \\ 2\mathrm{Re}(\langle\mathcal{M}_{n,0}|\mathcal{M}_{n,1}\rangle) \end{pmatrix} + \int_{1} \mathrm{d}\sigma_{\mathsf{A}} \begin{pmatrix} |\mathcal{M}_{n,0}\rangle \\ |\mathcal{M}_{n,0}^{\dagger}|^{2} \end{pmatrix} \right] \\ &+ \int_{n+1} \left[\mathrm{d}\sigma_{\mathsf{R}} \begin{pmatrix} |\mathcal{M}_{n+1,0}\rangle \\ |\mathcal{M}_{n+1,0}|^{2} \end{pmatrix} - \mathrm{d}\sigma_{\mathsf{A}} \begin{pmatrix} |\mathcal{M}_{n,0}\rangle \\ |\mathcal{M}_{n,0}^{\dagger}|^{2} \end{pmatrix} \right] \end{split}$$

Interfaces at amplitude level

- Color bases provided, including interface to ColorFull.
 [M. Sjödahl, SP]
- Spinor helicity library and caching facilities.
- Some in-house calculations and parts of HJets++.
 [F. Campanario, T. Figy, SP, M. Sjödahl]

Interfaces at squared amplitude level

- Dedicated interfaces.
 [nlojet++ & J. Kotanski, J. Katzy, SP]
- BLHA2. [GoSam & J. Bellm, S. Gieseke, SP, C. Reuschle] [NJet & SP] [VBFNLO & K. Arnold, S. Gieseke, SP]

Matchbox infrastructure based on [SP & S. Gieseke - Eur. Phys. J. C72 (2012) 2187]

- Process generation and bookkeeping, integration, analysis.
- Automatic crossing if required, various caching facilities.
- Automated Catani-Seymour dipole subtraction, alternative choices possible.
- Diagram-based mutli-channel phase space, straightforward interface for alternatives.

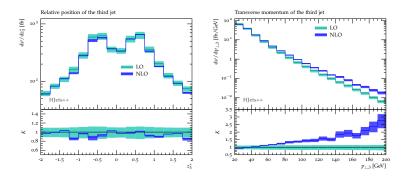
See Higgs session tomorrow for a recent application.

NLO Calculations with Matchbox.

Electroweak H+Jets production with HJets++

[F. Campanario, T. Figy, SP, M. Sjödahl - PRL 111 (2013) 211802]

- Employs all of Matchbox's infrastructure for a hadron collider 2 \rightarrow 4 process.
- Hybrid interfaces of amplitude and squared amplitude infrastructure, internal cross checks possible.



 $pp \rightarrow H+3$ jets @ 14 TeV – inlcudes all VBF and Higgs-strahlung contributions Have $pp \rightarrow H+2$ jets available as well.

[validated against Cicccolini, Denner, Dittmaier - Phys.Rev.Lett. 99 (2007) 161803]

Some Aspects of NLO Matching.

[SP - in progress]

NLO Matching.

Basic structure of NLO matching is settled.

[Not even attempting a list of references.]

$$\mathrm{PS}_{\mu}\left[\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}}\right] = \mathrm{d}\sigma_{\mathsf{NLO}} + \mathcal{O}(\alpha_s^2)$$

$$d\sigma_{\mathsf{NLO}}^{\mathsf{matched}} = \left[d\sigma_B(\phi_n) + d\sigma_{V+I}(\phi_n) \right] u(\phi_n) \\ + \left[d\sigma_{\mathsf{PS}}(\phi_{n+1})\theta(q-\mu) - d\sigma_A(\phi_{n+1}) \right] u(\tilde{\phi}_n) \\ + \left[d\sigma_R(\phi_{n+1}) - d\sigma_{\mathsf{PS}}(\phi_{n+1})\theta(q-\mu) \right] u(\phi_{n+1})$$

NLO Matching.

Basic structure of NLO matching is settled.

[Not even attempting a list of references.]

$$\mathrm{PS}_{\mu}\left[\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}}\right] = \mathrm{d}\sigma_{\mathsf{NLO}} + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\mu^2/Q^2)$$

$$\begin{aligned} \mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} &= \left[\mathrm{d}\sigma_B(\phi_n) + \mathrm{d}\sigma_{V+I}(\phi_n)\right] u(\phi_n) \\ &+ \left[\mathrm{d}\sigma_{\mathsf{PS}}(\phi_{n+1}) - \mathrm{d}\sigma_A(\phi_{n+1})\right] u(\tilde{\phi}_n) \\ &+ \left[\mathrm{d}\sigma_R(\phi_{n+1}) - \mathrm{d}\sigma_{\mathsf{PS}}(\phi_{n+1})\right] u(\phi_{n+1}) \end{aligned}$$

NLO Matching.

Basic structure of NLO matching is settled.

[Not even attempting a list of references.]

$$\mathrm{PS}_{\mu} \left[\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} \right] = \mathrm{d}\sigma_{\mathsf{NLO}} + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\mu^2/Q^2) + \mathcal{O}(1/N_c^2)$$

$$\begin{aligned} \mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} &= \left[\mathrm{d}\sigma_B(\phi_n) + \mathrm{d}\sigma_{V+I}(\phi_n)\right] u(\phi_n) \\ &+ \left[\mathrm{d}\sigma_{\mathsf{PS}}(\phi_{n+1}) - \mathrm{d}\sigma_A(\phi_{n+1}) + \mathrm{d}\sigma_{\mathsf{PS}}^{\mathsf{repair}}(\phi_{n+1})\right] u(\tilde{\phi}_n) \\ &+ \left[\mathrm{d}\sigma_R(\phi_{n+1}) - \mathrm{d}\sigma_{\mathsf{PS}}(\phi_{n+1}) - \mathrm{d}\sigma_{\mathsf{PS}}^{\mathsf{repair}}(\phi_{n+1})\right] u(\phi_{n+1}) \end{aligned}$$

Ways out? \rightarrow Improve shower for at least the first emission.

- Powheg-type matchings do not have these troubles.
- All correlations for the hardest emission. [S. Hoeche, F. Krauss, M. Schönherr, F. Siegert JHEP 1209 (2012) 049]
- Use shower with colour matrix element corrections. [SP & M. Sjödahl -JHEP 1207 (2012) 042]

Are there other ways to get rid of the correlation problem?

- Accept the intrinsic limitation of IR cutoff effects.
- Use this freedom to cast the matched calculation into a different form: Very much inspired by recent work on NLO merging. [SP – JHEP 1308 (2013) 114]

 $\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} = \mathrm{d}\sigma_{B+V+A}(\phi_n)u(\phi_n) + \mathrm{d}\sigma_{R-A}^{\mathsf{S}} + \mathrm{d}\sigma_{R-A}^{\mathsf{E}} + \mathrm{d}\sigma_{R}^{\mathsf{F}}$

Are there other ways to get rid of the correlation problem?

- Accept the intrinsic limitation of IR cutoff effects.
- Use this freedom to cast the matched calculation into a different form: Very much inspired by recent work on NLO merging. [SP – JHEP 1308 (2013) 114]

$$\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} = \mathrm{d}\sigma_{B+V+A}(\phi_n)u(\phi_n) + \mathrm{d}\sigma_{R-A}^{\mathsf{S}} + \mathrm{d}\sigma_{R-A}^{\mathsf{E}} + \mathrm{d}\sigma_{R}^{\mathsf{F}}$$

$$d\sigma_{R-A}^{S} = \left[1 - \prod_{\alpha} (1 - \theta_{\mathsf{cuts}}(\phi_{n}^{\alpha}))\right] \times \left[d\sigma_{R}(\phi_{n+1})\theta_{\mathsf{cuts}}(\phi_{n+1}) \left[1 - \prod_{\alpha} \theta_{\mu}^{\alpha}(\phi_{n+1})\right] \sum_{\alpha} w_{\alpha}(\phi_{n+1})u(\phi_{n}^{\alpha}) - \sum_{\alpha} \left(d\sigma_{A}^{\alpha}(\phi_{n+1}) - d\sigma_{\mathsf{PS}}^{\alpha}(\phi_{n+1})\theta_{\mu}^{\alpha}(\phi_{n+1})\right) \theta_{\mathsf{cuts}}(\phi_{n}^{\alpha})u(\phi_{n}^{\alpha})\right]$$

– Singular real emission below shower cutoff \rightarrow full subtraction terms

Are there other ways to get rid of the correlation problem?

- Accept the intrinsic limitation of IR cutoff effects.
- Use this freedom to cast the matched calculation into a different form: Very much inspired by recent work on NLO merging. [SP – JHEP 1308 (2013) 114]

$$\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} = \mathrm{d}\sigma_{B+V+A}(\phi_n)u(\phi_n) + \mathrm{d}\sigma_{R-A}^{\mathsf{S}} + \mathrm{d}\sigma_{R-A}^{\mathsf{E}} + \mathrm{d}\sigma_{R}^{\mathsf{F}}$$

$$d\sigma_{R-A}^{E} = \left[1 - \prod_{\alpha} (1 - \theta_{\mathsf{cuts}}(\phi_{n}^{\alpha}))\right] \times \left[d\sigma_{R}(\phi_{n+1})\theta_{\mathsf{cuts}}(\phi_{n+1}) \prod_{\alpha} \theta_{\mu}^{\alpha}(\phi_{n+1}) - \sum_{\alpha} d\sigma_{\mathsf{PS}}^{\alpha}(\phi_{n+1})\theta_{\mathsf{cuts}}(\phi_{n}^{\alpha})\theta_{\mu}^{\alpha}(\phi_{n+1})\right] u(\phi_{n+1})$$

- Singular real emission below shower cutoff \rightarrow full subtraction terms
- Singular real emission above shower cutoff \rightarrow shower subtraction only

Are there other ways to get rid of the correlation problem?

- Accept the intrinsic limitation of IR cutoff effects.
- Use this freedom to cast the matched calculation into a different form: Very much inspired by recent work on NLO merging. [SP – JHEP 1308 (2013) 114]

$$\begin{split} \mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} &= \mathrm{d}\sigma_{B+\mathsf{V}+\mathsf{A}}(\phi_n)u(\phi_n) + \mathrm{d}\sigma_{R-\mathsf{A}}^{\mathsf{S}} + \mathrm{d}\sigma_{R-\mathsf{A}}^{\mathsf{E}} + \mathrm{d}\sigma_{R}^{\mathsf{F}} \\ \mathrm{d}\sigma_{R}^{\mathsf{E}} &= \mathrm{d}\sigma_{R}(\phi_{n+1})\theta_{\mathsf{cuts}}(\phi_{n+1})\prod_{\alpha}(1-\theta_{\mathsf{cuts}}(\phi_{n}^{\alpha}))u(\phi_{n+1}) \; . \end{split}$$

- Singular real emission below shower cutoff \rightarrow full subtraction terms
- Singular real emission above shower cutoff \rightarrow shower subtraction only
- Finite, hard large-angle, real emission contribution \rightarrow no shower

Are there other ways to get rid of the correlation problem?

- Accept the intrinsic limitation of IR cutoff effects.
- Use this freedom to cast the matched calculation into a different form: Very much inspired by recent work on NLO merging. [SP – JHEP 1308 (2013) 114]

$$\begin{split} \mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}} &= \mathrm{d}\sigma_{B+V+A}(\phi_n)u(\phi_n) + \mathrm{d}\sigma_{R-A}^{\mathsf{S}} + \mathrm{d}\sigma_{R-A}^{\mathsf{E}} + \mathrm{d}\sigma_{R}^{\mathsf{F}} \\ & \mathrm{PS}_{\mu}\left[\mathrm{d}\sigma_{\mathsf{NLO}}^{\mathsf{matched}}\right] = \mathrm{d}\sigma_{\mathsf{NLO}} + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\mu^2/Q^2) \end{split}$$

- Singular real emission below shower cutoff \rightarrow full subtraction terms
- Singular real emission above shower cutoff \rightarrow shower subtraction only
- Finite, hard large-angle, real emission contribution \rightarrow no shower
- Same accuracy retained. Basically a phase space slicing.

Profiling the Hardest Emission.

Hard shower scale μ_Q (\sim resummation scale) not coinciding with kinematic boundary. Important to resum the right logarithms in *e.g.* DY p_{\perp} spectra.

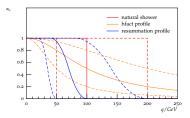
A problem in NLO matching:

 $\left|\mathcal{M}_{B}\right|^{2}\mathcal{K}_{\mathsf{NLO}}(q < \mu_{Q})P(q)\Delta(q|\mu_{Q})\theta(\mu_{Q} - q) + \left|\mathcal{M}_{R}\right|^{2}\theta(q - \mu_{Q})$

- Jump in q-spectrum even if P(q) resembles full real emission matrix element.
- The jump is an NNLO effect.
- Clearly visible when shower scale coincides with physical quantity considered.
- − Otherwise appears 'somewhere' → MVA's?!

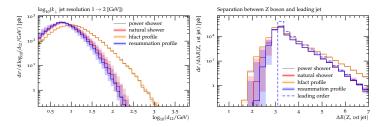
Cure by changing the hard step to something smooth.

 μ_Q variation intimately linked to shower uncertainties.

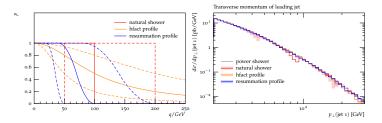


Profiling the Hardest Emission.

NLO matching may hide some features. Validate at LO, e.g. Z+jet

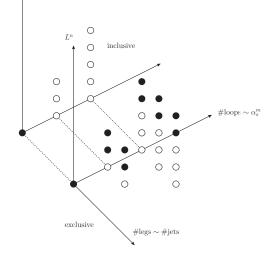


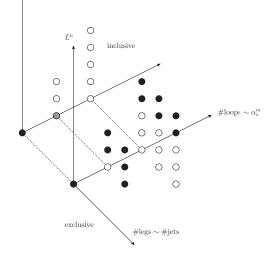
Step problem solved, *e.g.* dipole shower (p_{\perp} ordering):

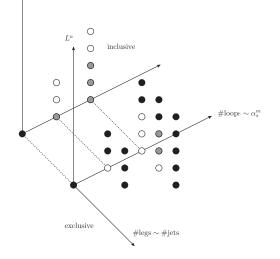


Controlling Inclusive Cross Sections in ME+PS Merging.

[SP - JHEP 1308 (2013) 114] [Lönnblad, Prestel]







Merging condition: LO \times products of splitting kernels \rightarrow exact tree level ME.

$$\begin{split} \mathrm{PS}_{\mu} \left[\mathrm{d}\sigma_{N,\mu}^{\mathrm{merged}} \right] = \\ \sum_{k=0}^{N-1} \mathrm{d}\sigma_{\mu}^{(0)}(\phi_k, q_k) \Delta_k(\mu | q_k | \cdots | q_0) + \mathrm{PS}_{\mu} \left[\mathrm{d}\sigma_{\mu}^{(0)}(\phi_N, q_N) \Delta_{N-1}(q_N | \cdots | q_0) \right] \end{split}$$

- Parton shower infrared cutoff applied to reclustered tree level matrix elements,
- proper Sudakov form factors to account for exclusiveness,
- no merging scale required in the first place.

Cut off matrix elements at $\rho > \mu$:

$$\begin{split} \mathrm{PS}_{\mu} \left[\mathrm{d}\sigma_{N,\rho}^{\mathsf{merged}} \right] &= \\ \sum_{k=0}^{N-1} \mathrm{PS}_{\mu|\rho} \left[\mathrm{d}\sigma_{\rho}^{(0)}(\phi_k, q_k) \Delta_k(\rho|q_k| \cdots |q_0) \right] + \mathrm{PS}_{\mu} \left[\mathrm{d}\sigma_{\rho}^{(0)}(\phi_N, q_N) \Delta_{N-1}(q_N| \cdots |q_0) \right] \end{split}$$

- 'Traditional' ME+PS merging,

[CKKW, /Lönnblad, ...]

- no restriction on showering off the highest multiplicity.

Inclusive cross sections?

Exclusive cross sections are fine by the very definition of the merging condition.

Inclusive cross sections are generally spoiled, say $\geq N - 1$ (parton shower) jets:

$$\begin{aligned} \mathrm{d}\sigma_{\rho}^{(0)}(\phi_{N-1},q_{N-1})\Delta_{N-2}(q_{N-1}|\cdots|q_{0}) + \\ \int_{\rho}^{q_{N-1}}\mathrm{d}q_{N}\left(\frac{\mathrm{d}\sigma_{\rho}^{(0)}(\phi_{N},q_{N})}{\mathrm{d}q_{N}} - \frac{\mathrm{d}\phi_{N}}{\mathrm{d}\phi_{N-1}\mathrm{d}q_{N}}P_{\rho}(\phi_{N-1},q_{N})\mathrm{d}\sigma_{\rho}^{(0)}(\phi_{N-1},q_{N-1})\right) \times \\ & \Delta_{N-1}(q_{N}|\cdots|q_{0}) \end{aligned}$$

Natural consequence of replacing splitting kernels by matrix elements *except for the* Sudakov exponents. [cf. matrix element correction approaches like Vincia, Skands et al.]

Not a problem as long as the shower kernels approximate the singly-unresolved limits of the *tree level matrix elements* sufficiently good.

From nLO merging to NLO merging.

Constrain the matching condition to preserve inclusive cross section: Except for the highest multiplicity, replace

$$\mathrm{d}\sigma^{(0)}_{\rho}(\phi_k, q_k) o \mathrm{d}\sigma^{(0)}_{\rho}(\phi_k, q_k) - \int_{\rho}^{q_k} \mathrm{d}q_{k+1} \frac{\mathrm{d}\sigma^{(0)}_{\rho}(\phi_{k+1}, q_{k+1})}{\mathrm{d}q_{k+1}} \Delta_k(q_{k+1}|q_k)$$

Fixed order expansion is a variant of the LoopSim nLO exclusive k jet cross section. [Rubin, Salam, Sapeta – 1006.2144]

After showering we get precisely this contribution with the proper Sudakov supression. LO merging with inclusive cross sections preserved \rightarrow nLO merging.

From nLO merging to NLO merging.

Replace the nLO approximate α_s correction by the NLO exact α_s correction.

In a nutshell: Where available add

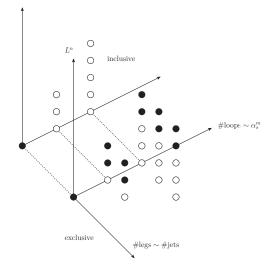
$$\mathrm{PS}_{\rho}^{-1}\left[\left(\mathrm{d}\sigma_{\rho}^{(1)}(\phi_n,q_n)+\int_{0}^{q_n}\mathrm{d}q_{n+1}\frac{\mathrm{d}\sigma^{(0)}(\phi_{n+1},q_{n+1})}{\mathrm{d}q_{n+1}}\theta(q_n-\rho)\right)\Delta_{n-1}(q_n|\cdots|q_0)\right]$$

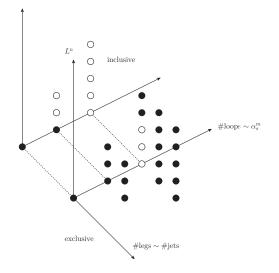
to the merged cross section.

This is NLO merging, as recently discussed in several variants.

[Höche et al. - 1207.5030, Frederix, Frixione - 1209.6215, Lönnblad, Prestel - 1211.7278, Hamilton et al. - 1212.4504]

- Recover exclusive NLO *n*-jet cross sections above the merging scale.
- NLO accuracy below the merging scale by constrained NLO matching.





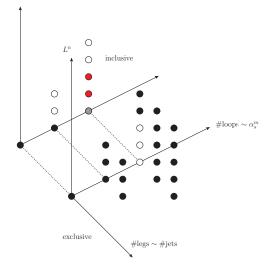
Exclusive cross sections are fine by the very definition of the merging condition.

Inclusive cross sections are generally spoiled, say $\geq N - 1$ (parton shower) jets:

$$\frac{\mathrm{d}\sigma_{\rho,\mathrm{incl}}^{\mathsf{NLO}}(\phi_{\mathsf{N}-1},q_{\mathsf{N}-1})\Delta_{\mathsf{N}-2}(q_{\mathsf{N}-1}|\cdots|q_{0}) +}{\int_{\rho}^{q_{\mathsf{N}-1}}\mathrm{d}q_{\mathsf{N}}} \left(\frac{\mathrm{d}\sigma_{\rho,\mathrm{excl}}^{\delta\mathsf{NLO}}(\phi_{\mathsf{N}},q_{\mathsf{N}})}{\mathrm{d}q_{\mathsf{N}}} - \frac{\mathrm{d}\phi_{\mathsf{N}}}{\mathrm{d}\phi_{\mathsf{N}-1}\mathrm{d}q_{\mathsf{N}}}P_{\rho}(\phi_{\mathsf{N}-1},q_{\mathsf{N}})\mathrm{d}\sigma_{\rho,\mathrm{excl}}^{\delta\mathsf{NLO}}(\phi_{\mathsf{N}-1},q_{\mathsf{N}-1})\right) \times \Delta_{\mathsf{N}-1}(q_{\mathsf{N}}|\cdots|q_{0})$$

Similar to the tree level problems.

But now a serious problem unless we have a shower which knows about the singly unresolved limits of *virtual contributions*.



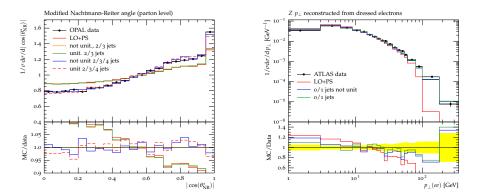
Subtract critical terms by imposing NLO inclusive cross section constraints.

Generates approximate NNLO contribution \rightarrow guide to NNLO matching.

Simon Plätzer (DESY)

The Merging Algorithm in Herwig++.

[J. Bellm, S. Gieseke, SP - work in progress]



Conclusions & Outlook.

Establishing NLO as default accuracy in Herwig++

- Matchbox provides a framework for automatically asembling NLO cross sections
- More general matching algorithm established, including profile scales \rightarrow uncertainties
- Merging multiple NLO calculations in progress \rightarrow maintain inclusive quantities at NLO accuracy

Not covered

- Development on including subleading-N contributions