Top Charge Asymmetry: Discovering Light Axigluons in $\bar{t}+$ jet production at the LHC

Stefan Berge
Rheinisch-Westfälische Technische Hochschule Aachen

3.12. 2013

7th Annual Helmholtz Alliance Workshop on "Physics at the Terascale"

HOCHSCHULE
RWTH

Motivation

- QCD predicts a charge asymmetry for top quark pair production in hadron-hadron scattering
- The corresponding forward-backward asymmetry has been measured at CDF and D0
- Discrepancy to SM prediction remains at $2-3 \sigma$ level
- Sign of new Physics?
- Need to measure the charge

$l+j e t s$	CDF $9.4 \mathrm{fb}^{-1}$ (I308.1120)	$9.4 \pm 3 \%$
$l+\geq 4$ jets, 1 b tag	D0 9.7 fb-1 (D0 Note 6394)	$16.5 \pm 4.7 \pm 1.9 \%$
$l+\geq 4$ jets, $\geq 2 \mathrm{~b}$ tag	D0 $9.7 \mathrm{fb}^{-1}$ (D0 Note 6394)	$1.6 \pm 3.6 \pm 0.4 \%$
	SM, NLO	$3.8 \pm 0.3 \%$

- Problem: predicted SM charge asymmetry in inclusive top pair production at LHC is very small

$t \bar{t}+j e t$ in the $S M$

7th Annual Workshop of the Helmholtz Alliance
"Physics at the Terascale"

Charge asymmetry of $q \bar{q} \rightarrow t \bar{t}+j e t$ in QCD

- Differential charge asymmetry at a certain phase space point:

$$
d \hat{\sigma}_{A}=d \hat{\sigma}_{t \bar{t}}-d \hat{\sigma}_{\bar{t} t}
$$

- Symmetric differential cross section : $d \hat{\sigma}_{S}=d \hat{\sigma}_{t \bar{t}}+d \hat{\sigma}_{\bar{t} t}$

preferred

suppressed

Charge asymmetry of $q \bar{q} \rightarrow t \bar{t}+j e t$ in QCD

(S.B., S. Westhoff, JHEP 07(2013)179
S.B., S. Westhoff, arXiv 1307.6225)

Differential charge asymmetry:
$d \hat{\sigma}_{A}=d \hat{\sigma}_{t \bar{t}}-d \hat{\sigma}_{\bar{t} t}$

$$
\begin{aligned}
\frac{\mathrm{d} \hat{\sigma}_{A}(q \bar{q} \rightarrow t \bar{t} j)}{\mathrm{d} \varphi \mathrm{~d} \theta_{j} \mathrm{~d} E_{t} \mathrm{~d} E_{\bar{t}}}=-\left[N_{1}+\right. & \left.\sin ^{2} \theta_{j}\left(N_{1}^{j}+\cos ^{2} \varphi N_{1}^{\varphi}\right)\right] \cos \varphi \\
+ & {\left[N_{2}+\cos ^{2} \varphi N_{2}^{\varphi}\right] \sin \theta_{j} \cos \theta_{j} }
\end{aligned}
$$

$N_{1}^{i}\left(E_{t}, E_{\bar{t}}\right)$ - symmetric in E_{t} and $E_{\bar{t}}$
$N_{2}^{i}\left(E_{t}, E_{\bar{t}}\right)$ - antisymmetric in E_{t} and $E_{\bar{t}}$

$q \bar{q} \rightarrow t \bar{t}+g$

- Partonic asymmetries for $q \bar{q} \rightarrow t \bar{t} g$ in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}, E_{j} \geq 20 \mathrm{GeV}$.
- Incline Asymmetry $d \hat{\sigma}_{A}^{\varphi}=d \hat{\sigma}_{A}(\cos \varphi \geq 0)$

Fwba Asymmetry $\quad d \hat{\sigma}_{A}^{\theta_{t}}=d \hat{\sigma}_{A}\left(\cos \theta_{t} \geq 0\right) \quad, d \hat{\sigma}_{A}=d \hat{\sigma}_{t \bar{t}}-d \hat{\sigma}_{\bar{t} t}$
Energy Asymmetry $\quad d \hat{\sigma}_{A}^{E}=d \hat{\sigma}_{A}(\Delta E \geq 0)$
$\cos \theta_{t}=\sin \theta_{j} \cos \varphi \sin \xi+\cos \theta_{j} \cos \xi, \quad \cos \xi=f\left(E_{t}, E_{\bar{t}}\right), \quad \Delta E=E_{t}-E_{\bar{t}}$
$q \bar{q} \rightarrow t \bar{t}+g$

- Partonic asymmetries for $q \bar{q} \rightarrow t \bar{t} g$ in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}, E_{j} \geq 20 \mathrm{GeV}$.
- Incline Asymmetry $d \hat{\sigma}_{A}^{\varphi}=d \hat{\sigma}_{A}(\cos \varphi \geq 0)$

Fwba Asymmetry $\quad d \hat{\sigma}_{A}^{\theta_{t}}=d \hat{\sigma}_{A}\left(\cos \theta_{t} \geq 0\right) \quad, d \hat{\sigma}_{A}=d \hat{\sigma}_{t \bar{t}}-d \hat{\sigma}_{\bar{t} t}$
Energy Asymmetry $\quad d \hat{\sigma}_{A}^{E}=d \hat{\sigma}_{A}(\Delta E \geq 0)$
$\cos \theta_{t}=\sin \theta_{j} \cos \varphi \sin \xi+\cos \theta_{j} \cos \xi, \quad \cos \xi=f\left(E_{t}, E_{\bar{t}}\right), \quad \Delta E=E_{t}-E_{\bar{t}}$
$q g \rightarrow t \bar{t}+q$

- Partonic asymmetries for $q g \rightarrow t \bar{t} q$ in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}, E_{j} \geq 20 \mathrm{GeV}$.
- Energy asymmetry in $q g \rightarrow t \bar{t} q$: Quark direction does not need to be determined!
$q g \rightarrow t \bar{t}+q$

- Partonic asymmetries for $q g \rightarrow t \bar{t} q$ in dependence of the jet scattering angle $\theta_{j}, \sqrt{s}=1 \mathrm{TeV}, E_{j} \geq 20 \mathrm{GeV}$.
- Energy asymmetry in $q g \rightarrow t \bar{t} q$: Quark direction does not need to be determined!

Results: LHC @ 14 TeV

Incline Asymmetry

- Incline asymmetry $A^{\varphi, q}$ tests the charge asymmetry of the $q \bar{q}$-channel ($q g$ channel contribution tiny)

$$
A^{\varphi, q} \equiv \frac{\sigma_{A}^{\varphi}\left(y_{t \bar{t} j}>0\right)-\sigma_{A}^{\varphi}\left(y_{t \bar{t} j}<0\right)}{\sigma_{S}}
$$

- LHC Detector cuts have been applied. Furthermore $\left|\hat{y}_{j}\right|<0.5$
- Dashed lines: Luminosity needed to distinguish the asymmetry with 5σ from the null hypothesis (assumed $t \bar{t}+j e t$ reconstruction efficiency 0.05)
- Maximal significance at LHC8: 3.6 σ
- φ... inclination angle
$y_{t t j} \ldots$ boost along z -axis

Results: LHC @ 14 TeV

Energy Asymmetry

- Energy asymmetry A^{E} tests the charge asymmetry of the $q g$-channel, rel. contributions: $q g: 21 \%, q \bar{q}: 4 \%$

$$
A^{E}=\frac{\sigma_{A}(\Delta E \geq 0)}{\sigma_{S}}
$$

- $q \bar{q}$ contribution to A^{E} is exactly zero
- LHC Detector cuts have been applied. Furthermore $\left|\hat{y}_{j}\right|<0.5$
- A lower cut on ΔE implies a larger minimum $p_{T j}$ cut
- Dashed lines: Luminosity needed to distinguish the asymmetry with 5σ from the null hypothesis (assumed $t \bar{t}+$ jet reconstruction efficiency 0.05)
- Maximal significance at LHC8: 3.3σ

ㅁ $\Delta E=E_{t}-E_{\bar{t}}$ $y_{t t j} \ldots$ boost along z -axis

$t \bar{t}+j e t$ with massive color-octet bosons

7th Annual Workshop of the Helmholtz Alliance
"Physics at the Terascale"
2. - 4. December 2013, Karlsruhe, Germany

Lagrangian, contributing diagrams

$$
\mathcal{L}=-g_{s} f_{a b c}\left[\left(\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}\right) G^{b \mu} g^{c \nu}+G^{a \mu} G^{b \nu}\left(\partial_{\mu} g_{\nu}^{c}\right)\right]
$$

$$
-i g_{s} \bar{q}_{i} \gamma^{\mu} G_{\mu}^{a} T^{a}\left[g_{V}^{i}+\gamma_{5} g_{A}^{i}\right] q_{i}
$$

- G_{μ}^{a} - massive gluon field

- q_{V}^{i}, q_{A}^{i} - vector, axial-vector couplings of the massive gluons to quarks
- All combinations of diagrams can contribute
 to the cross sections σ_{A} and σ_{s}
- Asymmetry depends on the heavy gluon mass M_{G}, its width Γ_{G} and products of coupling combinations, e.g. $g_{V}^{q} g_{V}^{t}$ or $g_{A}^{q} g_{A}^{t}$

Axigluon Parameters

- Consider light massive color-octet bosons with masses of $100-400 \mathrm{GeV}$ as motivated in Gross et al. (Phys.Rev. D87 (2013) 014004) to explain the measured Tevatron Top charge Asymmetry
- $g_{V}=0, \rightarrow$ consider pure axigluons
- Define $\alpha_{A}=g_{A}^{u} g_{A}^{t} \alpha_{s}$ with $0.005 \leq \alpha_{A} \leq 0.032$ to explain the Tevatron asymmetry
- Axigluon width $\geq 10 \%$
- Axigluon must decay preferably into more than 3 jets to avoid collider bounds

Energy asymmetry at parton level: $q \bar{q}-$ channel

- Shown is the differential energy asymmetry with $\Delta E=\hat{E}_{t}-\hat{E}_{\bar{t}}$:

Left $d \hat{\sigma}_{A}^{E}=d \hat{\sigma}_{A}(\Delta E \geq 0)$, right $\hat{A}^{\Delta E}$

- Blue: SM, Black: including Axigluons, Red: difference
- Contrary to the SM case, $d \hat{\sigma}_{A}$ exhibits a pole for collinear jets
$\square \rightarrow$ normalized asymmetry is large and finite for collinear jets
- Need to measure θ_{j} dependence or calculate an integrated double asymmetry:

$$
\hat{A}^{\Delta E, j}=\frac{1}{\hat{\sigma}_{S}} \cdot\left(\hat{\sigma}_{A}^{\Delta E, j}\left(\theta_{j}>0\right)-\hat{\sigma}_{A}^{\Delta E, j}\left(\theta_{j}<0\right)\right)
$$

Energy asymmetry at parton level: qg - channel

- Shown is the differential energy asymmetry with $\Delta E=\hat{E}_{t}-\hat{E}_{\vec{t}}$: Left $d \hat{\sigma}_{A}^{E}=d \hat{\sigma}_{A}(\Delta E \geq 0)$, right $\hat{A}^{\Delta E}$
- Blue: SM, Black: including Axigluons, Red: difference
- Contrary to SM, normalized asymmetry large and finite for $\theta \rightarrow \pi$
- Need to measure θ_{j} dependence or calculate an integrated double asymmetry:

$$
\hat{A}^{\Delta E, j}=\frac{1}{\hat{\sigma}_{S}} \cdot\left(\hat{\sigma}_{A}^{\Delta E, j}\left(\theta_{j}>0\right)-\hat{\sigma}_{A}^{\Delta E, j}\left(\theta_{j}<0\right)\right)
$$

Results: Energy Asymmetry at LHC @ 14 TeV

- At the hadron level the quark direction is determined by the boost of the $t \bar{t} j$ system:
$A^{\Delta E, j, q}=\frac{\sigma_{A}^{\Delta E, j, q}\left(y_{t \bar{t} j}>0\right)-\sigma_{A}^{\Delta E, j, q}\left(y_{t \bar{t} j}<0\right)}{\hat{\sigma}_{S}}$
- Detector cuts: $p_{T j}>25 \mathrm{GeV},\left|y_{j}\right|<2.5$
- Minimum cuts on $\Delta E=\hat{E}_{t}-\hat{E}_{\bar{t}}$ and $\left|y_{t \bar{t} j}\right|$ increase the asymmetry.
$\square \rightarrow$ Notice, minimum ΔE implies a larger minimum $p_{T j}$ than 25 GeV
- Dashed lines: minimum Luminosity to measure an asymmetry difference $\Delta A^{\Delta E}=A^{\Delta E, N P}-\Delta A^{\Delta E, S M}$ with 5σ
- Black dot: minimum luminosity required for 5σ

$\Delta A^{\Delta E, j, q}$ for large coupling scenario:

$$
m_{G}=400 \mathrm{GeV}, \alpha_{A}=0.032, \Gamma_{G}=40 \mathrm{GeV}
$$

Results: LHC @ 14 TeV

- Minimum Luminosity required (black dot from last slide) to measure $\Delta A^{\Delta E, j, q}$ at the 5σ level in dependence of the coupling parameter
$\alpha_{A}=g_{A}^{u} g_{A}^{t} \alpha_{s}$
- Green, blue, red, black Lines correspond to $m_{G}=100,200,300,400 \mathrm{GeV}$.
- Upper plot: Incline asymmetry Middle: Energy asymmetry Lower Plot: Rapidity asymmetry

Concluding Remarks

- The top quark charge asymmetry can be tested at the LHC in $t \bar{t}+j e t$ production by investigating the incline and energy asymmetry.
- Assuming light axigluons with masses between 100 and 400 GeV and appropriate couplings to quarks that could explain the Tevatron forwardbackward asymmetry exist:
- Such axigluons can be discovered at the LHC by investigating the top charge asymmetry in $t \bar{t}+j e t$
- The entire parameter range can be tested at the 5σ level for a luminosity of less than $200 \mathrm{fb}^{-1}$

