### Top Charge Asymmetry: Discovering Light Axigluons in tt+jet production at the LHC

Stefan Berge Rheinisch-Westfälische Technische Hochschule Aachen

3.12. 2013 7th Annual Helmholtz Alliance Workshop on "Physics at the Terascale"





- QCD predicts a charge asymmetry for top quark pair production in hadron-hadron scattering
- The corresponding forward-backward asymmetry has been measured at CDF and D0
- Discrepancy to SM prediction remains at  $2 3\sigma$  level
- □ Sign of new Physics?
- Need to measure the charge asymmetry at the LHC

| l + jets                         | CDF 9.4 fb <sup>-1</sup><br>(1308.1120)   | 9.4 ± 3 %        |
|----------------------------------|-------------------------------------------|------------------|
| $l + \ge 4 j ets,$<br>1 b tag    | D0 9.7 fb <sup>-1</sup><br>(D0 Note 6394) | 16.5 ± 4.7±1.9 % |
| $l + \ge 4 jets, \\ \ge 2 b tag$ | D0 9.7 fb <sup>-1</sup><br>(D0 Note 6394) | 1.6 ± 3.6±0.4 %  |
|                                  | SM, NLO                                   | 3.8 ± 0.3 %      |

 Problem: predicted SM charge asymmetry in inclusive top pair production at LHC is very small

## tt+jet in the SM



7th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale" 2. - 4. December 2013, Karlsruhe, Germany



#### Charge asymmetry of $q\bar{q} \rightarrow t\bar{t} + jet$ in QCD

 Differential charge asymmetry at a certain phase space point:

$$d\hat{\sigma}_A = d\hat{\sigma}_{t\bar{t}} - d\hat{\sigma}_{\bar{t}t}$$

- $\hfill\square$  Symmetric differential cross section :
  - $d\hat{\sigma}_S = d\hat{\sigma}_{t\bar{t}} + d\hat{\sigma}_{\bar{t}t}$





#### Charge asymmetry of $q\bar{q} \rightarrow t\bar{t} + jet$ in QCD

(S.B., S. Westhoff, JHEP 07(2013)179 S.B., S. Westhoff, arXiv 1307.6225)

Differential charge asymmetry:

 $d\hat{\sigma}_A = d\hat{\sigma}_{t\bar{t}} - d\hat{\sigma}_{\bar{t}t}$ 



 $\vec{k}_1 \times \vec{k}_3$ 

 $\vec{k}_{\bar{t}}$ 

 $k_3$ 

 $\vec{k}_t \times \vec{k}_3$ 

 $N_1^i(E_t, E_{\bar{t}})$  - symmetric in  $E_t$  and  $E_{\bar{t}}$  $N_2^i(E_t, E_{\bar{t}})$  - antisymmetric in  $E_t$  and  $E_{\bar{t}}$ 

#### $q\bar{q} \rightarrow tt + q$



Partonic asymmetries for  $q\bar{q} \rightarrow t\bar{t}g$  in dependence of the jet scat-tering angle  $\theta_j$ ,  $\sqrt{s} = 1$  TeV,  $E_j \ge 20$  GeV.

Incline Asymmetry 

Fwba Asymmetry

 $d\hat{\sigma}^{\varphi}_{A} = d\hat{\sigma}_{A}(\cos\varphi \ge 0)$ 

 $d\hat{\sigma}_A^{\theta_t} = d\hat{\sigma}_A(\cos\theta_t \ge 0)$ 

,  $d\hat{\sigma}_A = d\hat{\sigma}_{t\bar{t}} - d\hat{\sigma}_{\bar{t}t}$ 





• Partonic asymmetries for  $q\bar{q} \to t\bar{t}g$  in dependence of the jet scattering angle  $\theta_j$ ,  $\sqrt{s} = 1$  TeV,  $E_j \ge 20$  GeV.

#### $qg \to t\bar{t} + q$



• Partonic asymmetries for  $qg \to t\bar{t}q$  in dependence of the jet scattering angle  $\theta_j$ ,  $\sqrt{s} = 1$  TeV,  $E_j \ge 20$  GeV.

• Energy asymmetry in  $qg \to t\bar{t}q$ : Quark direction does not need to be determined!

 $qg \to t\bar{t} + q$ 



• Partonic asymmetries for  $qg \to t\bar{t}q$  in dependence of the jet scattering angle  $\theta_j$ ,  $\sqrt{s} = 1$  TeV,  $E_j \ge 20$  GeV.

• Energy asymmetry in  $qg \to t\bar{t}q$ : Quark direction does not need to be determined!

#### Results: LHC @ 14 TeV

#### Incline Asymmetry



□ Incline asymmetry  $A^{\varphi,q}$  tests the charge asymmetry of the  $q\bar{q}$ -channel



#### Results: LHC @ 14 TeV

Energy Asymmetry



• Energy asymmetry  $A^E$  tests the charge asymmetry of the qg-channel, rel. contributions:  $qg: 21\%, q\bar{q}: 4\%$ 

$$A^E = \frac{\sigma_A(\Delta E \ge 0)}{\sigma_S}$$

- $\Box q\bar{q}$  contribution to  $A^E$  is exactly zero
- LHC Detector cuts have been applied. Furthermore  $|\hat{y}_j| < 0.5$
- A lower cut on  $\Delta E$  implies a larger minimum  $p_{Tj}$  cut
- Dashed lines: Luminosity needed to distinguish the asymmetry with  $5\sigma$  from the null hypothesis (assumed  $t\bar{t}+jet$  reconstruction efficiency 0.05)
- $\square$  Maximal significance at LHC8:  $3.3\sigma$

$$\Delta E = E_t - E_{\bar{t}}$$
  
 $y_{ttj}$  ... boost along z-axis

# tt+jet with massive color-octet bosons



7th Annual Workshop of the Helmholtz Alliance"Physics at the Terascale"2. - 4. December 2013, Karlsruhe, Germany



#### Lagrangian, contributing diagrams

$$\mathcal{L} = -g_s f_{abc} \left[ \left( \partial_\mu G^a_\nu - \partial_\nu G^a_\mu \right) G^{b\mu} g^{c\nu} + G^{a\mu} G^{b\nu} (\partial_\mu g^c_\nu) \right] - ig_s \bar{q}_i \gamma^\mu G^a_\mu T^a \left[ g^i_V + \gamma_5 g^i_A \right] q_i$$

- $\Box$   $G^a_{\mu}$  massive gluon field
- All combinations of diagrams can contribute to the cross sections  $\sigma_A$  and  $\sigma_s$
- Asymmetry depends on the heavy gluon mass  $M_G$ , its width  $\Gamma_G$  and products of coupling combinations, e.g.  $g_V^q g_V^t$  or  $g_A^q g_A^t$







- Consider light massive color-octet bosons with masses of 100 - 400 GeV as motivated in Gross et al. (Phys.Rev. D87 (2013) 014004) to explain the measured Tevatron Top charge Asymmetry
- $\Box$   $g_V = 0, \rightarrow$  consider pure axigluons
- Define  $\alpha_A = g_A^u g_A^t \alpha_s$  with  $0.005 \le \alpha_A \le 0.032$  to explain the Tevatron asymmetry
- Axigluon width  $\geq 10\%$
- Axigluon must decay preferably into more than 3 jets to avoid collider bounds

#### Energy asymmetry at parton level: $q\bar{q}$ - channel



• Shown is the differential energy asymmetry with  $\Delta E = \hat{E}_t - \hat{E}_{\bar{t}}$ : Left  $d\hat{\sigma}^E_A = d\hat{\sigma}_A (\Delta E \ge 0)$ , right  $\hat{A}^{\Delta E}$ 

- **D** Blue: SM, Black: including Axigluons, Red: difference
- Contrary to the SM case,  $d\hat{\sigma}_A$  exhibits a pole for collinear jets
- $\hfill\square$   $\rightarrow$  normalized asymmetry is large and finite for collinear jets
- Need to measure  $\theta_j$  dependence or calculate an integrated double asymmetry:

$$\hat{A}^{\Delta E,j} = \frac{1}{\hat{\sigma}_S} \cdot (\hat{\sigma}_A^{\Delta E,j}(\theta_j > 0) - \hat{\sigma}_A^{\Delta E,j}(\theta_j < 0))$$

#### Energy asymmetry at parton level: qg - channel



• Shown is the differential energy asymmetry with  $\Delta E = \hat{E}_t - \hat{E}_{\bar{t}}$ : Left  $d\hat{\sigma}^E_A = d\hat{\sigma}_A (\Delta E \ge 0)$ , right  $\hat{A}^{\Delta E}$ 

- □ Blue: SM, Black: including Axigluons, Red: difference
- Contrary to SM, normalized asymmetry large and finite for  $\theta \to \pi$
- Need to measure  $\theta_j$  dependence or calculate an integrated double asymmetry:

$$\hat{A}^{\Delta E,j} = \frac{1}{\hat{\sigma}_S} \cdot \left( \hat{\sigma}_A^{\Delta E,j}(\theta_j > 0) - \hat{\sigma}_A^{\Delta E,j}(\theta_j < 0) \right)$$

#### Results: Energy Asymmetry at LHC @ 14 TeV

• At the hadron level the quark direction is determined by the boost of the  $t\bar{t}j$  system:

$$A^{\Delta E,j,q} = \frac{\sigma_A^{\Delta E,j,q}(y_{t\bar{t}j}>0) - \sigma_A^{\Delta E,j,q}(y_{t\bar{t}j}<0)}{\hat{\sigma}_S}$$

- **Detector cuts:**  $p_{Tj} > 25 \text{ GeV}, |y_j| < 2.5$
- Minimum cuts on  $\Delta E = \hat{E}_t \hat{E}_{\bar{t}}$  and  $|y_{t\bar{t}j}|$  increase the asymmetry.
- $\Box \rightarrow \text{Notice, minimum } \Delta E \text{ implies a larger} \\ \text{minimum } p_{Tj} \text{ than } 25 \text{ GeV}$
- Dashed lines: minimum Luminosity to measure an asymmetry difference  $\Delta A^{\Delta E} = A^{\Delta E,NP} \Delta A^{\Delta E,SM} \text{ with } 5 \sigma$
- $\hfill\square$  Black dot: minimum luminosity required for  $5\,\sigma$



#### Results: LHC @ 14 TeV

- Minimum Luminosity required (black dot from last slide) to measure  $\Delta A^{\Delta E,j,q}$  at the 5  $\sigma$  level in dependence of the coupling parameter  $\alpha_A = g_A^u g_A^t \alpha_s$
- Green, blue, red, black Lines correspond to  $m_G = 100, 200, 300, 400$  GeV.
- Upper plot: Incline asymmetry Middle: Energy asymmetry Lower Plot: Rapidity asymmetry



- The top quark charge asymmetry can be tested at the LHC in  $t\bar{t} + jet$  production by investigating the *incline* and *energy* asymmetry.
- Assuming light axigluons with masses between 100 and 400 GeV and appropriate couplings to quarks that could explain the Tevatron forward-backward asymmetry exist:
  - Such axigluons can be discovered at the LHC by investigating the top charge asymmetry in  $t\bar{t} + jet$
  - $\hfill\square$  The entire parameter range can be tested at the  $5\sigma$  level for a luminosity of less than  $200\,fb^{-1}$



