

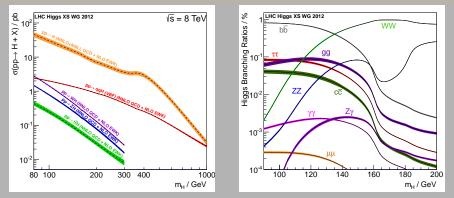
RWTHAACHEN UNIVERSITY

Search for $H \rightarrow \mu \mu$ in SM and MSSM

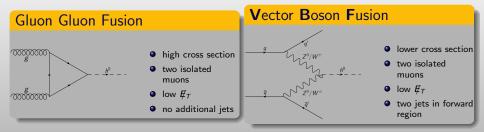
Hendrik Weber on behalf of the CMS H2Mu team

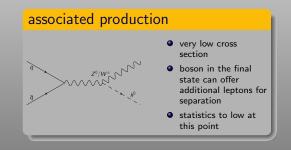
I. Physikalisches Institut B RWTH Aachen

Bundesministerium für Bildung und Forschung Physics at the Terascale 7th Annual Workshop Karlsruhe 2013

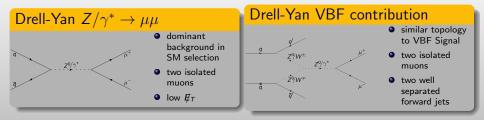


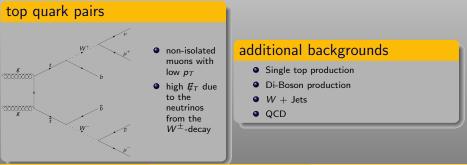
SM Higgs $\rightarrow \mu\mu$


cross section and branching ratio

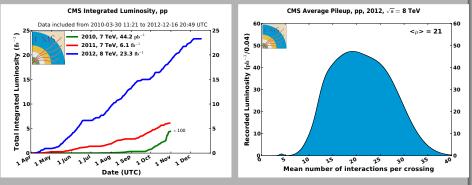


- after discovery of Higgs-like boson, confirmation in as many channels as possible is necessary
- branching ratio into muons is *only* an order of magnitude lower as $H \rightarrow \gamma \gamma$
- through exploiting the VBF topology, separation from dominant backgrounds possible





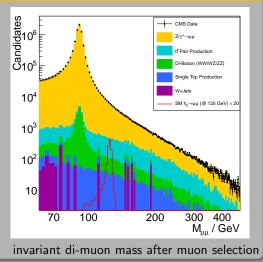
backgrounds



Hendrik Weber (RWTH Aachen Ib)

recorded data in LHC phase 1

- \bullet MSSM analysis already published with $\approx 5 {\rm fb}^{-1}$ of 2011 data
- $\bullet~19.1 {\rm fb}^{-1}$ of 2012 data @ 8 TeV used for MSSM update
- full 2011 and 2012 data for the SM analysis
- increasing pile-up challenge for trigger rates and details of the SM analysis
- pile-up considered in the simulations by simple 1D re-weighting



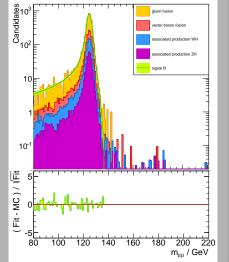
basic muon selection

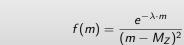
- single muon trigger $(p_{T\mu} > 24 \text{ GeV})$
- two well reconstructed muons with:
 - $p_{T\mu}$ > 25 GeV
 - $|\eta_{\mu}|$ < 2.1
 - isolation
 - opposite charge

MC corrected for:

- pile-up
- trigger efficiency
- muon reconstruction efficiency
- muon momentum scale

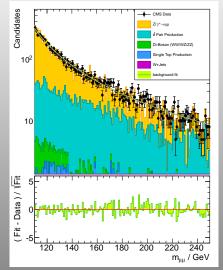
di-jet preselection


- two jets with $p_T^{jet}~>~40(30)~{
 m GeV}$
- Pile-Up jets rejected


failing di-jet preselection passing di-jet preselection NonVBF tight VBF tight • $p_{\tau}^{\mu\mu} > 10 \text{ GeV}$ • $|\Delta \eta_{iets}| > 3.5$ split into geometric muon • $m_{ii} > 650 \, \text{GeV}$ categories • GGF tight (Barrel/Endcap/Overlap) not in VBF tight NonVBF loose • $m_{ii} > 250 \text{ GeV}$ • $p_{\tau}^{\mu\mu}$ < 10 GeV • $p_{\tau}^{\mu\mu}$ > 50 GeV split into geometric muon VBF loose categories not in VBF tight or GGF tight • (Barrel/Endcap/Overlap)

Signal Fit

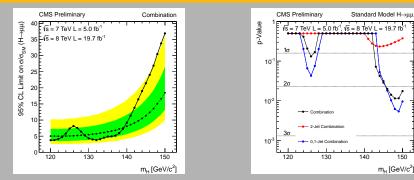
- signal hypothesis consists of linear combination of a Gaussian and a crystal ball shape
- signal hypothesis is fitted to MC Simulation at each point and category
- shape is interpolated between generated mass points
- parameters are fixed for final fit



background hypothesis:

- unbinned likelihood fit of s + b hypothesis to data in each category
- signal strength and background parameters are free

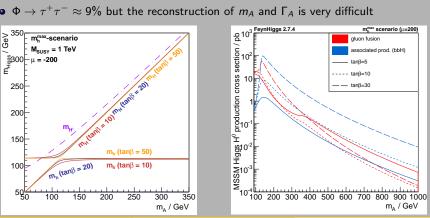
combined fit to data

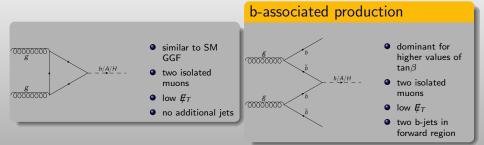

- signal and background shapes used in limit calculation:
- fit systematics and normalization treated as nuisance parameters
- additional systematics on signal simulation considered
- correlation of systematics between categories and data-sets considered

limits and p-values

- statistically limited
- expected (observed) limit for a 125 GeV Higgs at $5.5^{+2.5}_{-1.7}$ (6.2) for 8 TeV and 12.6^{+5.8}/_{-3.8} (18.5) for 7 TeV
- excess around 144 GeV dominantly from two NonVBF categories resulting in a significance of 0.9 σ considering look-elsewhere effect

150

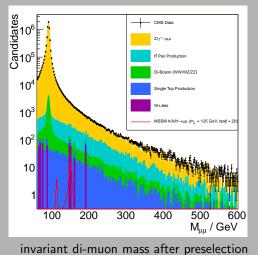

MSSM Higgs $ightarrow \mu\mu$


The Higgs in the MSSM

- $\Phi \rightarrow \mu^+ \mu^- \approx 0.03\%$ is small, but it gives a clean signature in the detector and gives the opportunity to reconstruct m_A and Γ_A and through that tan β
- $\Phi \rightarrow b\bar{b} \approx 90\%$ dominant for small m_A but hard to reconstruct due to the 4 *b*-jets in the final state
- $\Phi \rightarrow \tau^+ \tau^- \approx 9\%$ but the reconstruction of m_A and Γ_A is very difficult

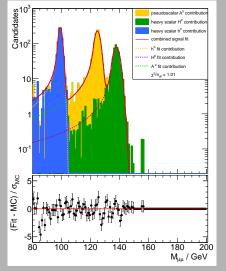
👺 signal and backgrounds in MSSM

important backgrounds


- similar to SM Analysis
- bbZ production irreducible to bbH
- top pairs more important for bbH

selection and categorization

- same trigger and muon selection as SM analysis
- $\not\!\!\!E_T < 35~{\rm GeV}$
- B-tag category: at least one jet with:
 - p_T > 30 GeV
 - $|\eta_j| < 2.4$
 - Pile-Up ID passed
 - $\Delta \eta_{j\mu} > 0.5$
 - B-tag $(d_{csv} > 0.679)$
- No-Tag: Everything passing the preselection and not falling into the B-Tag Category



Signal Fit

- a single peak consists of linear combination of a Gaussian and a crystal ball shape
- complete signal hypothesis consists of three peaks for each neutral MSSM Higgs
- signal hypothesis is fitted to MC Simulation at each point and category
- shape is interpolated between generated mass points
- parameters are fixed for final fit
- confidence level scanned in $m_A \tan \beta$ plane
- limits calculated with signal samples closest to 95% C.L. in the scan

MSSM Results

tanβ 100 ت 55 evel CMS Preliminary 2011 CMS Preliminary 2011 Combined Cat.1/2/ tan 90 Combined Cat.1/2/3 9 50 M_{susy}=1TeV m^{max}_b scenario Mener=1TeV du=-200 Run2011 L= 4.96fb Run2011 L= 4.96fb⁻¹ 80 80 observed limit 0.790 45 expected limit 70 expected limit ± 10 expected limit $\pm 2\sigma$ 40 60 0.50 35 50 30 0.4 40 25 0.3 30 0.2 20 20 0.1 10 15 150 200 250 300 n 300 150 200 250 $[GeV/c^2]$ m_a° $m_{A^{\circ}}$ [GeV/c²] 2012 in approval process

2011 confidence level and limits

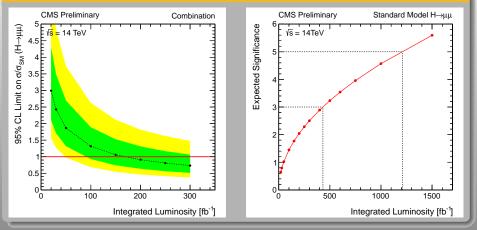
Hendrik Weber (RWTH Aachen Ib)

SM Higgs

- full luminosity (24.84 fb⁻¹) utilized for analysis
- 15 categories focusing on VBF and GGF
- combined sensitivity of 5.1 times SM is achieved
- fluctuations in two categories lead to a broad excess around 145 GeV
- ullet after look-elsewhere effect they amount to a significance of 0.9σ
- analysis public as CMS PAS HIG-13-007

MSSM Higgs

- 2011 analysis public in CMS PAS HIG-12-011
- update with full data-set in progress
- 2 categories focusing on bbH and ggH respectively
- analysis public soon as CMS PAS HIG-13-024



BACKUP

expected sensitivity and significance for 14 TeV

