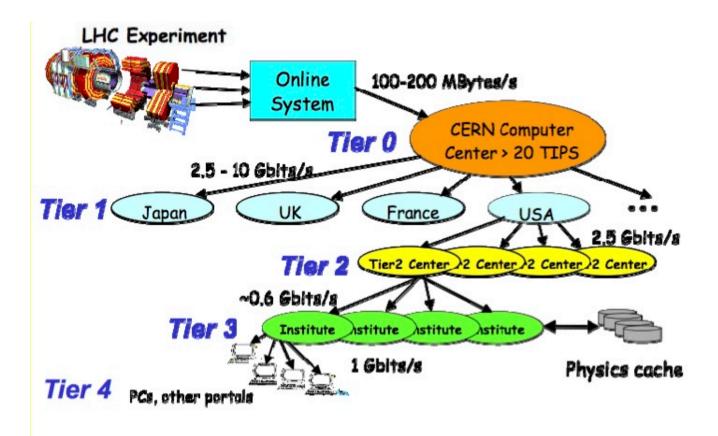

Networks for HEP data analysis - The Global Picture

Helmholtz Alliance

HELMHOLTZ | GEMEINSCHAFT Slides by: Volker Gülzow, Kars Ohrenberg - DESY Presented by: Yves Kemp, Martin Gasthuber - DESY

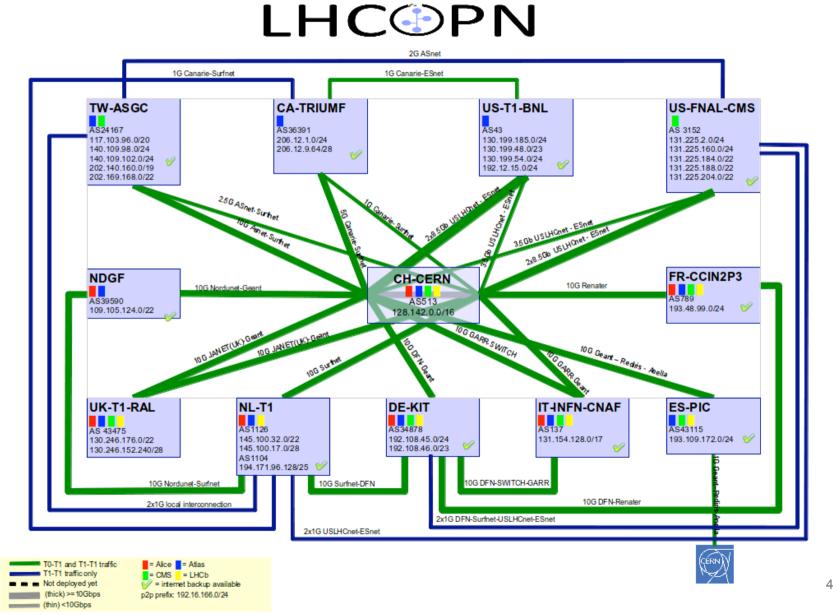

> 7th annual Terascale Alliance Workshop KIT 3.12.2013

LHC Computing Infrastructure

> WLCG in brief:

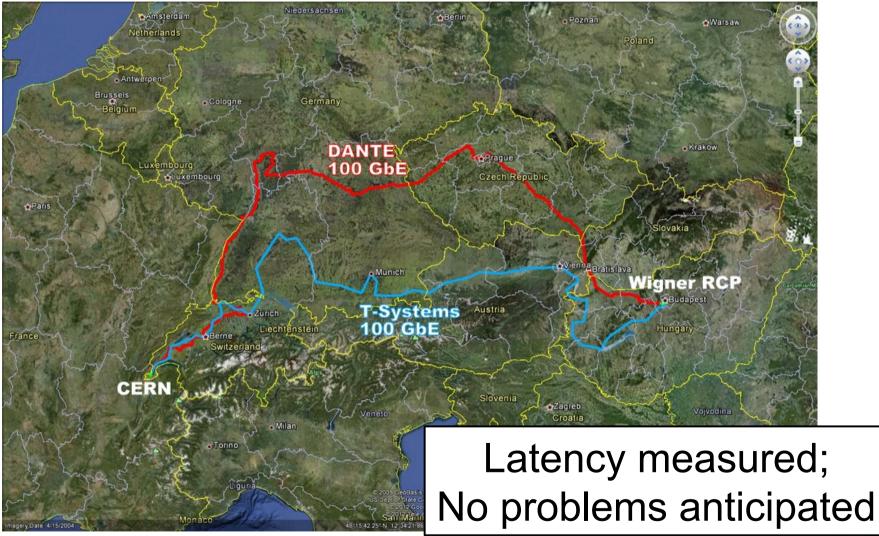
1 Tier-0, 11 Tier-1s, ~ 140 Tier-2s, O(300) Tier-3s worldwide

The LHC Optical Private Network

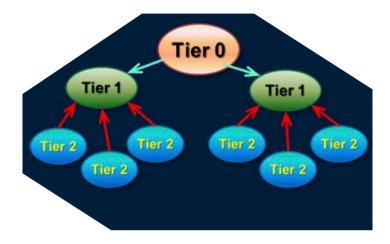

> The LHCOPN (from http://lhcopn.web.cern.ch)

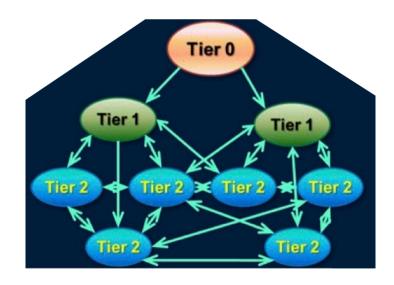
- The LHCOPN is the private IP network that connects the Tier0 and the Tier1 sites of the LCG.
- The LHCOPN consists of any T0-T1 or T1-T1 link which is dedicated to the transport of WLCG traffic and whose utilization is restricted to the Tier0 and the Tier1s.
- Any other T0-T1 or T1-T1 link not dedicated to WLCG traffic may be part of the LHCOPN, assuming the exception is communicated to and agreed by the LHCOPN community
- > Very closed and restricted access policy

> No Gateways


LHCOPN Network Map

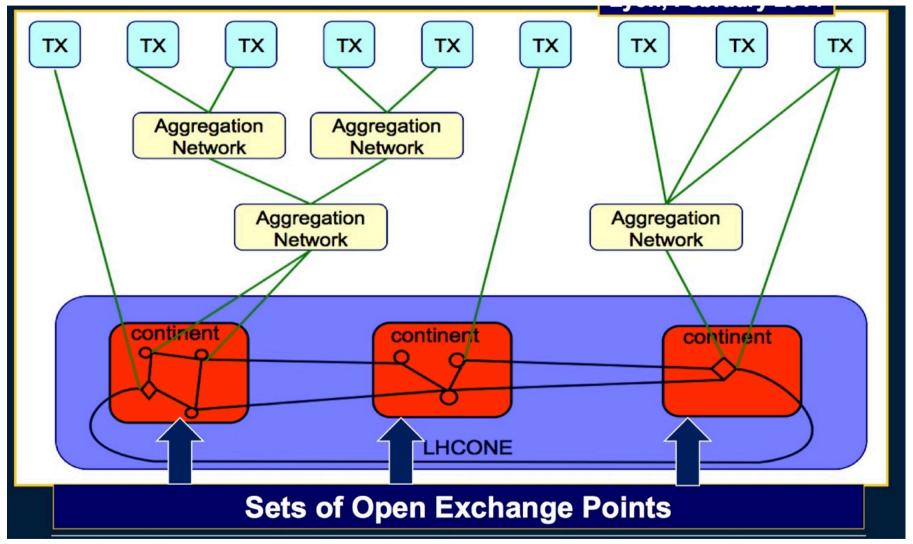
Connectivity (100 Gb/s)


Slide by Ian Bird



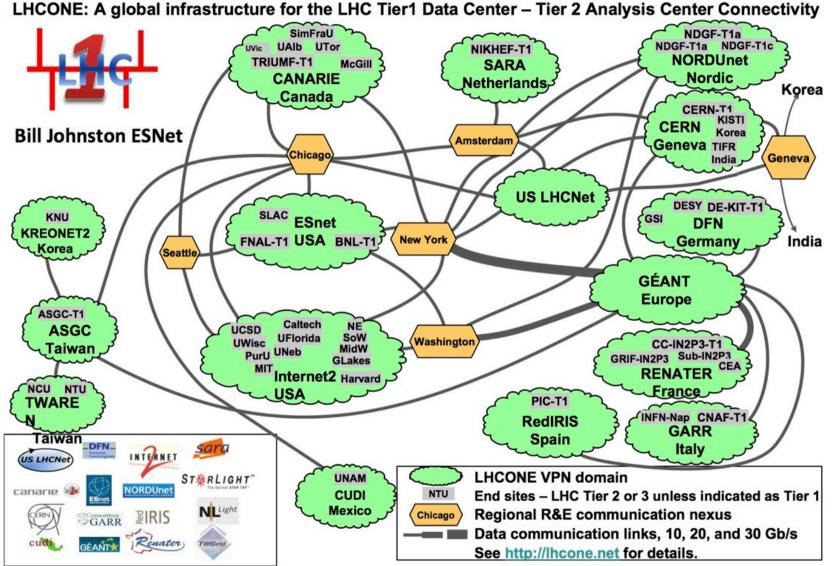
Computing Models Evolution

- The original MONARC model was strictly hierarchical
- > Changes introduced gradually since 2010
- Main evolutions:
 - Meshed data flows: Any site can use any other site as source of data
 - Dynamic data caching: Analysis sites pull datasets from other sites "on demand", including from Tier-2s in other regions
 - Remote data access
- > Variations by experiment
- > LHCOPN only connects T0 and T1



LHC Open Network Environment

- With the successful operation of the LHC accelerator and the start of the data analysis, there has come a re-evaluation of the computing and data models of the experiments
- The goal of LHCONE (LHC Open Network Environment) is to ensure better access to the most important datasets by the worldwide HEP community
- Traffic patterns have altered to the extent that substantial data transfers between major sites are regularly being observed on the General Purpose Networks (GPN)
- The main principle is to separate the LHC traffic from the GPN traffic, thus avoiding degraded performance
- The objective of LHCONE is to provide entry points into a network that is private to the LHC T1/2/3 sites.
- > LHCONE is not intended to replace LHCOPN but rather to complement it



LHCONE Achitecture

LHCONE: A global Infrastructure

LHCONE Routing Policies

- > Only the networks which are announced to LHCONE are allowed to reach the LHCONE
- > Only these networks will be reachable via the LHCONE
- > Other traffic uses the public, general purpose networks
- > Asymmetric routing should be avoided as this will cause problems for traffic passing (public) firewalls

LHCONE - the current status

> Currently 126 network prefixes (29.11.2013)

- German sites currently participating in LHCONE
 - DESY, KIT, GSI, RWTH Aachen, Uni Wuppertal
- Europe
 - CERN, SARA , GRIF (LAL + LPNHE), INFN, FZU, PIC, ...
- US:
 - AGLT2 (MSU + UM), MWT2 (UC), BNL, ...
- Canada
 - TRIUMF, Toronto, ...
- Asia
 - ASGC, ICEPP, ...
- > Detailed monitoring via perfSONAR

LHCONE Monitoring

d (old) t) d (old,test) ation

LHCONE Throughput Matrix																		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0:BNL (Ihcmon.bnl.gov)		1.39 1.67	1.79 1.97	0.06 0.23	0.00 0.00	0.38 0.58		0.00 0.13	0.14 0.15	<mark>0.17</mark> 0.10	0.02 0.03	1.32 1.64	0.03 0.06	0.00 0.00	0.42 0.50	0.11 0.13	0.29 0.39	0.04 0.05
1:AGLT2 (psmsu02.aglt2.org)	1.33 1.32		2.96 3.20			0.26 0.20		<mark>0.00</mark> 0.01	0.14 0.13		0.01 0.01		0.23 0.18	0.00 0.00	0.00 0.00	<mark>0.00</mark> 0.03	0.35 0.34	0.02 0.03
2:AGLT2 (psum02.aglt2.org)	1.77 1.05	3.61 3.22			0.35 0.56	0.39 0.45		0.00 0.00	0.08 0.14		0.02 0.02	2.55 1.87	0.24 0.24	0.00 0.00	0.00 0.00	0.00 0.00	0.40 0.47	0.03 0.03
3:ASGC (Ihc-bandwidth.twgrid.org)	0.33 0.15	0.00 0.32	0.28 0.13		0.38 0.12	0.22 0.24		0.00 0.14	<mark>0.10</mark> 0.07	<mark>0.00</mark> 0.03	0.00 0.01	<mark>0.21</mark> 0.08	0.00 0.00	0.00 0.00	0.00 0.00	0.15 0.15	0.70 0.54	0.35 0.35
4:CERN (perfsonar-ps.cern.ch)	0.00 0.00	0.47 0.59	0.40 0.43	<mark>0.01</mark> 0.00		1.88 1.80	0.63 0.00	0.00 0.79	0.78 0.80	0.38 0.46	0.11 0.00	0.00 0.12	0.00 0.49	0.00 0.00	0.87 0.92	0.36 0.42	0.27 0.14	<mark>0.04</mark> 0.00
5:DESY-HH (perfsonar-ps-02.desy.de)	0.64 0.59	0.30 0.33	0.22 0.41	0.02 0.06	0.76 1.35		0.34 0.00	0.00 0.01	0.32 0.45	0.00 0.71	<mark>0.07</mark> 0.00	0.00 0.16	0.15 0.15	0.00 0.00	0.00 0.00	0.00 0.01	0.21 0.24	0.01 0.00
6:GRIF-LAL (psonar2.lal.in2p3.fr)	0.54 0.51	0.45 0.41	0.51 0.24	<mark>0.08</mark> 0.19	0.00 0.82	0.00 0.85		0.00 0.94	0.87 0.93	<mark>0.00</mark> 0.78	0.38 0.00	0.00 0.47	0.00 0.89	0.00 0.00	0.00 0.00	<mark>0.01</mark> 0.00	0.25 0.24	0.17 0.15
7:GRIF/LPNHE (Ipnhe-psb.in2p3.fr)	0.30 0.00	0.28 0.16	<mark>0.28</mark> 0.00		<mark>0.45</mark> 0.00	0.52 0.51	<mark>0.94</mark> 0.00		0.61 0.52	<mark>0.45</mark> 0.00	<mark>0.37</mark> 0.00	0.46 0.14	<mark>0.46</mark> 0.00	0.00 0.00	0.00 0.00		0.22 0.25	<mark>0.01</mark> 0.00
8:INFN Napoli (perfsonar.na.infn.it)	0.47 0.49	0.39 0.39	0.38 0.36		0.73 0.82	0.87 0.74	0.78 0.67	0.89 0.73		0.92 0.92	<mark>0.48</mark> 0.06	0.00 0.40	0.88 0.87	0.00 0.00	0.00 0.00	0.00 0.00	0.25 0.26	0.00 0.29
9:KIT (perfsonar-de-kit.gridka.de)	0.35 0.47	0.37 0.44	0.10 0.36	0.01 0.16	0.93 0.75	<mark>0.84</mark> 0.00	<mark>0.87</mark> 0.00	0.00 0.42	0.92 0.93		0.58 0.00	0.00 0.43	0.00 0.81	0.00 0.00	0.93 0.89	0.32 0.30	0.23 0.25	0.22 0.00
10:LRZ-LMU (Icg-Irz-perfs2.grid.Irz.de)	0.44 0.35	<mark>0.24</mark> 0.00	0.38 0.24			0.00 0.45		<mark>0.00</mark> 0.44	0.69 0.61	0.00 0.79		0.00 0.33	0.00 0.65	0.00 0.00	0.00 0.00	0.00 0.00	0.14 0.17	0.07 0.09

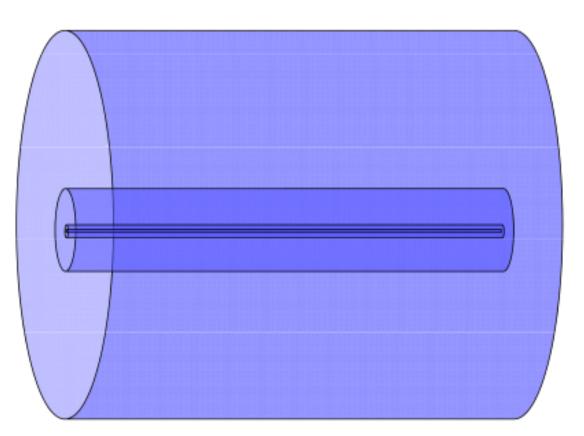
Software-Defined Networking (SDN)

- > ... is a research activity within LHCone
- Is a form of <u>network virtualization</u> in which the <u>control plane</u> is separated from the <u>data plane</u> and implemented in a software application
- This architecture allows network administrators to have programmable central control of network traffic without requiring physical access to the network's hardware devices
- SDN requires some method for the control plane to communicate with the data plane. One such mechanism is OpenFlow which is a standard interface for controlling computer networking switches

Bandwidth Evolution @ DFN

> DFN has upgraded the optical platform of the X-WiN

- Contract awarded to ECI Telecom (<u>http://www.ecitele.com</u>)
- Migration work is finished

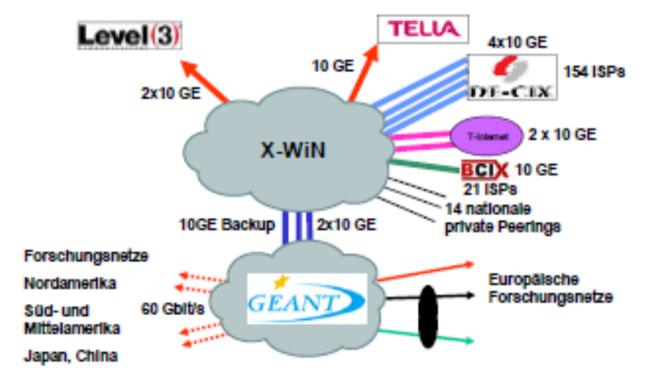

> High Bandwidth Capabilities

- 88 wave length per fiber
- Up to 100 Gbps per wave length
 - thus 8.8 Tbps per fiber!
- 1 Tbps Switching Fabric (aggregation of 10 Gbps lines on single 100 Gbps line)

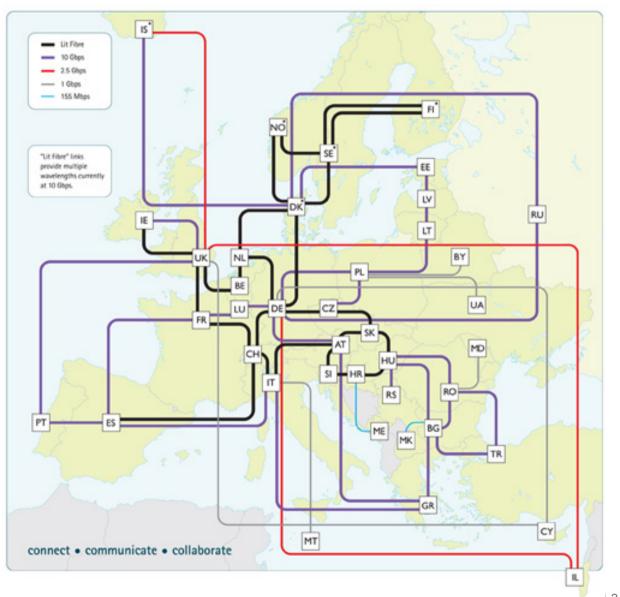
Growing WiN Capacities

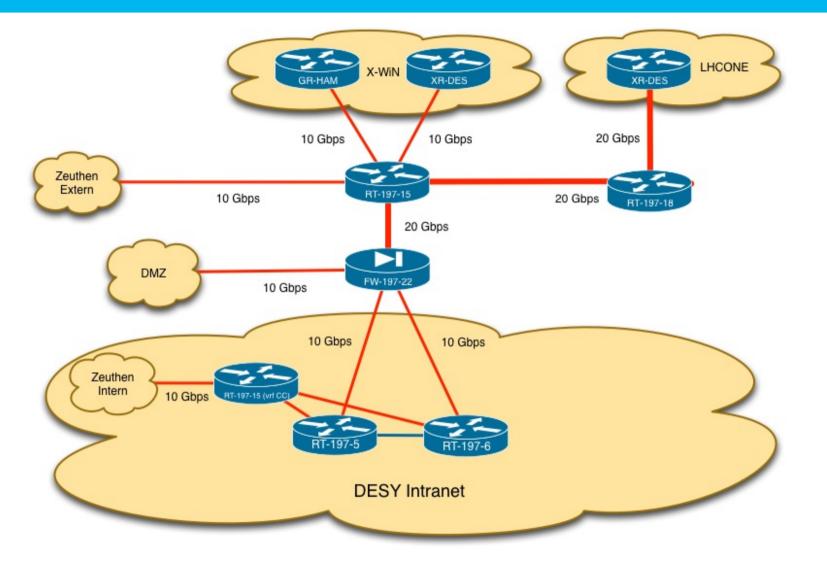
X-WiN 2012: 8.800 Gbit/s X-WiN 2006: 400 Gbit/s G-WiN: 10 Gbit/s B-WiN: 622 Mbit/s

- The LHC computing and data models continue to evolve towards more dynamic, less structured, ondemand data movement thus requiring different network structures
- > With the evolution of the new optical platforms bandwidth will get more affordable



Topologie X-WiN Deutsches Forschungsnetz KIE GRE Swinoujście Glasfaser^{r d s e e} C/S Norden AWI POMORSKIE Swiecie_ Wellenlänge^{che Inseln} DES Bremerhave Bydgoszcz Waren[®] Prenz . Bromberg czecin Groningen Leeuwarden Wittsteit Piła EWF Toruń · ----HMBeburg Den Helder 🗥 Leek Sneek Assen Gorzów Wiel Oldenbur Thorn Norwich HSEN, Salzwede Alkmaary BRE NEDERLANDE AmereENS Great Lwowe Gniezno Yarmouth Amsterdam SKIE Hannove Poznan - Koło habrück ścian_a raunschy Posen Arnheim MUE WIELKOPOLSKIE Den Haag BRAeburgMAG 's-Gravenhage Rotter dam Zielona Góra ttbus Middelburg Bretta 28 Grünberg Krotoszva Tiburg :hau GOE -DulshDU Halle/Sa Wrocław Oleśnica DOR Antwerpen Breslau Calais Zgorzelec Eschwege uppertal Brzeg DRE Boulogne Gent Brüssel Sent DOLNOSLASKIE Dresden Giede Béthune "Tratpov Ath BELGIEN AA LIBERECKY OPOLSKIE Arras La Louviere 0 Hradec Kralové Plaue Charleroi Königgrätz Amiens Cambrai FRATURUMAIN Prag _Sumperkdar RLOVARSKY Couvin Revin Saint jesbade KRAJ JX mstaWUE PARDUBICKÝ KRAJ Pizen PICARDIE Pilsen Luxemburg Charleville_Mezières rg ultemboilm ERLa anorieim PLZENSKY Brno Zlín Thionville Reims KRAJ Tábor REG legensburg Nürnbe leidelberg Třebič Metz Paris JIHOCESKY Znaim Bruchsal Gmünd RANKR LOT H stadt Plattlin Karlsru Stuttgart Provins LORRANTB aßburg Etrechy Saint-Dizier Fürstenzell KEH GA BERÖSTERREICH Wienwa Mirecourt CHAMPAGNE-ARDENNE Albstadt CENTRE ELSAS Aue nchen Hédervái Copyright 92/08 Microsoft Comparison undonlecteren Lieteranten Alle Re GerarFHM **Richtung Basel** BAS Stand: August 2011


Außenanbindungen X-WiN 2012


Geant3 topology

Juizow/Onrenberg/Nemp/Jastnuber | 3.12.2013 | Page20

WAN + LHCONE Infrastructure at DESY

