
Monitoring for analysis 
jobs and computing 

infrastructure
Jordi Nadal 

!
II. Institute of Physics 

Georg-August University Göttingen

03/12/2013



• Motivation 

• Monitoring for cluster infrastructure: 

• HappyFace  

• Smart Monitoring System 

• Visualisation of Big Data 

• Monitoring for the user analysis: 

• Job Execution Monitoring

Outline 

 2



Motivation 

• The importance of monitoring is growing due to: 

• Large computing facilities consist of heterogeneous hardware and 
provides a plethora of services 

• The status check of hardware and services as well as proper action 
taking are the main task for administrators 

• Increasing complexity of the computing systems

 3



The HappyFace project

• The HappyFace project is a meta-monitoring framework that 
aggregates, processes and stores remote and local site information 
from different monitoring sources.  

• Joint collaboration within the DE cloud in terms of the module 
development. The new core has been developed at KIT (CMS) by 
Gregor Vollmer and will be further developed by the Georg-August-
Universtität Göttingen (ATLAS).

 4



General requirements

• Fulfilling  all requirements for any monitoring system: 

• Scalability - it does neither depend on the size nor on the possible 
increase/grow of the computing infrastructure. HP is used for the 
CMS Tier-1 (DE) and Tier-2 centres 

• Extensibility - invariant to the hardware or functional extension of 
the computing infrastructure 

• Data-delivery models - a monitoring system provides a constant 
stream of data. HP does this every 15 minutes.  

• Portability - availability to aggregate monitoring data independent 
of environment or platforms 

• Security - access control and authentication
 5



• As a meta-monitoring framework, HappyFace is also required to have: 

• Single access point  

• Up-to-date monitoring information 

• History functionality 

• Fast accessibility 

• Comfortable usage 

• Modular structure

Extra requirements

 6



3. The HappyFace Meta-Monitoring Project

���������

�	
�������
�
����
����	
��
��������
������������


	��������

������

������

��
����
	��
	
���������
����	
������
��
�
�
���
����������������
�����
��� 
	����

�
��� 
	����

��������

��������

Figure 3.3.: Schematic workflow of HappyFace version 3.

which aggregate, process, and store monitoring data. Subsequently, the script render.py
accesses the stored data and calls each a specific function of each module in order to gen-
erate an output for the HappyFace web page. render.py also takes care of rendering the
web page and makes it accessible via a web server. The HappyFace workflow in depicted
in figure 3.3.

Typically, the Python script acquire.py is periodically executed every 15 minutes, e. g.
via a cron job5 on Linux/Unix operating systems. When a higher timeliness of data is re-
quired, a shorter time interval needs to be chosen. Initially, all configuration files are read
in. Locally defined configuration files are given preference to default configuration files.
Then, each module Python source code is executed. In separate sections of the module
source code, the module is initialised, provided its configuration parameters, downloads
are prepared, monitoring data are extracted, and the time-stamped data are stored to the
HappyFace database HappyFace.db.

The render.py Python script is responsible for the generation of a human readable
output and its presentation. Each module implements a function that accesses the previ-
ously stored data in the HappyFace database. The render script executes this function of
each module and provides the extracted data to the module HTML6 template file. The
generated contents are then inserted into the HappyFace web page skeleton. Further-
more, render.py starts a local cherrypy7 web server. This can be integrated into other

5A time-based job scheduler in Linux/Unix operating systems.
6HypertText Markup Language [40], the most commonly used markup language for creating web pages.
7A Python-based, object-oriented web framework [41].

16

Basic workflow 

 7



 8

Happy Face Interface

History navigation functionality

Category navigation bar

Fa
st

 n
av

ig
at

io
n 

th
ro

ug
h 

di
ffe

re
nt

 
m

od
ul

es
 in

si
de

 a
 c

at
eg

or
y Individual m

odule content



• Apel Accounting 
• GStat 
• Panda 
• HammerCloud Functional Tests 
• Analysis Ganga Jobs 
• Compute Node Information 
• DDM Dashboard 
• DDM Deletion 
• Nagios 
• SAM Tests 
• Ganglia 
• dCache Dataset Restore 

Monitor 
• dCache Pool Information 
• …

Some modules developed

 9



• Apel Accounting 
• GStat 
• Panda 
• HammerCloud Functional Tests 
• Analysis Ganga Jobs 
• Compute Node Information 
• DDM Dashboard 
• DDM Deletion 
• Nagios 
• SAM Tests 
• Ganglia 
• dCache Dataset Restore 

Monitor 
• dCache Pool Information 
• …

Modules 

 10



• Apel Accounting 
• GStat 
• Panda 
• HammerCloud Functional Tests 
• Analysis Ganga Jobs 
• Compute Node Information 
• DDM Dashboard 
• DDM Deletion 
• Nagios 
• SAM Tests 
• Ganglia 
• dCache Dataset Restore 

Monitor 
• dCache Pool Information 
• …

Modules 

 11



• Apel Accounting 
• GStat 
• Panda 
• HammerCloud Functional Tests 
• Analysis Ganga Jobs 
• Compute Node Information 
• DDM Dashboard 
• DDM Deletion 
• Nagios 
• SAM Tests 
• Ganglia 
• dCache Dataset Restore 

Monitor 
• dCache Pool Information 
• …

Modules 

 12



• Providing access to the monitoring data aggregated in the HappyFace database: 
!

•   HappyFace module for direct database access 
!

•   REST-ful web service for easy, non-standardised access (JSON output) 
!

•   W3C-compliant WSDL/SOAP-based web service for database access 
• WSDL generator 
• WSDL file 
• Python client and server stubs 
• Python client and server implementation

Web Services 

 13



 14

Conclusions

• HappyFace monitoring tool covers the full spectrum of hardware, 
software, and services gathering information from remote and 
local site information 
!

• Its design makes HappyFace a flexible, easy configurable and a 
reliable tool to monitor any computing site 
!

• Ongoing tasks: 
!

• New modules development; PBS and CreamCE 
• OGSA web-service implementation from internal information 

resources 
• RPM & YUM repository 



 15

Final remarks HappyFace project

• We have a powerful meta-monitoring framework able to aggregate, 
process, and store monitoring data from difference sources 
!

• Also, it supplies a web service which it is able to provide the desired 
data in different format and time frames.



 16

Final remarks HappyFace project

Let’s analyse all this data!

• We have a powerful meta-monitoring framework able to aggregate, 
process, and store monitoring data from difference sources 
!

• Also, it supplies a web service which it is able to provide the desired 
data in different format and time frames.



 17

Smart Monitoring System

• Analyses the site’s monitoring data looking for the failure patterns 
!

• Performs a failure root cause analysis 
!

• According to the detected failure patterns the system is able to 
provide short-term failure predictions 
!

• The working framework should be able to handle the linguistic terms 
from monitoring data (Ok, Warning, Failed) and the ability to learn 
from a training data



 18

ANFIS: Adaptive Neuro-Fuzzy Inference Systems

• ANFIS is a Feed-Forward Neural Network with the activations functions 
from Fuzzy Inference System (Takagi-Sugeno) 

• Since ANFIS integrates both neural networks and fuzzy logic principles, 
it has potential to capture the benefits of both in a single framework 

!

!

  

• The inference system is based on IF-THEN type rules, which can be 
adapted due to the neural network learning capability and hence 
approximate any non-linear function

http://www.wseas.org/mastorakis/udine2.pdf


 19

• Each of the sub-services guarantees availability of the Grid services. 
• Each sub-service consumes certain amount of computing resources like: 

• Memory - mem - buffers, cached, free, shared, etc 
• CPU - idle, wio, nice, user, running, total, etc 
• Network - pkts in, pkts out, tcp established, tcp listen tcp timewait, etc 

Smart Monitoring System



Case Study - dCache Storage 

 20

training checking

• dCache storage system relies on the Chimera server to host metadata 
information for all stored files. 

• All information about the Chimera can be traced down from Chimera log 
files. 

• Chimera monitoring took 23 days (every 6 minutes) in which 8 registered 
failures were observed. 



Case Study - dCache Storage 

 21

• The amount of data was not enough for training the neural network 
• Two steps preprocessing is needed: 
!
!
• Z-normalisation: 

!
!

• Support Vector Machine (SVM) is used to extract the most important 
features 



Case Study - SVM Output 

 22

• Most important attributes are load_fifteen (load Chimera 
Server) and tcp_established (tcp connections)



Main attributes

 23



 24

Main gradient attributes



 25

Training dataset and error

• For the ANFIS training 40 epochs were defined 
• The minimum training error has been reached at the 20th epoch 

• MATLAB is taking care not to over-training the NN

Data points every 6 minuts
0 5 10 15 20 25 30 35 40

A.
U

.

0.0455

0.046

0.0465

0.047

0.0475

0.048

0.0485

0.049

0.0495

Training Error



 26

Results

• A dCache failure is consider for all predicted values below 0.8 
• Good agreement with dCache status is achieve by the system! 

Data points every 6 minuts
0 200 400 600 800 1000 1200 1400 1600

A.
U

.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Chimera Server Status

SMS Prediction



 27

Conclusions

• Results are promising and give additional motivation to extend 
this project 
!

• Data is continuously collected for further analysis and not only 
for dCache 
!

• The final goal would be to provide a standalone package able 
to process monitoring information and provide a forecast and 
analysis of the failures with a certain credibility.



Visualisation of Big Data  

 28

• The project is in an initial state fase and still some aspects are up on 
the air 
!

• The plan of action: 
!

• Due to the huge volume of the dCache log (billing) we want to get a 
sample of this data by using bootstrap re-sampling technique 
!

• When the sample is validated and really represents the original 
dataset some interesting features can be extracted by: 
• Real-time plots 
• Statistical analysis 
• Visualisation of graph paths



Visualisation of Big Data  

 29

Compute 
Nodes

dCache doors

Users



Visualisation of Big Data  

 30



Visualisation of Big Data  

 31

dCache 
doors

Users



• Monitoring for cluster infrastructure: 

• HappyFace  

• SmartMonitoringSystem 

• Visualisation of Big Data 

• Monitoring for the user analysis: 

• Job Execution Monitoring

Outlook 

 32



• The JEM (Job Execution Monitor) is a customisable job-centric monitoring system 
running in user space.  

• A system monitor runs in parallel to the user job measuring parameters like cpu 
load, network traffic, free RAM, free disk space on several filesystems, etc.

Job Execution Monitoring

 33

ATLAS experiment



• The script monitor analyses the user's job script giving 
feedback to the user about its current status. In case of failures 
a variety of debug information is provided.  

• The file watcher, which monitors files for changes and provide 
the contents in real time to the user. 

• The process watcher monitors the child process tree of the 
user job, looking for starting and exiting processes specified by 
the user. 

• The remote debugging facility to deeply monitor execution 
progress inside user libraries helping to spot user algorithm 
crashes and memory leaks. 

• All extra information is embedded in the job log files.

Job Execution Monitoring

 34



• Useful links: 

• https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/JobExecutionMonitor 

• http://jem.physik.uni-wuppertal.de/JEM/ 

• http://jem.physik.uni-wuppertal.de/JEM/jobid/PanDA.1637324001 

• Contact Information: 
• volkmer@physik.uni-wuppertal.de!
• jem@uni-wuppertal.de

--enableJEM --configJEM '+debug;+ver=dev;
+live;+watch=athena_stdout.txt;+livewatch'

Job Execution Monitoring

 35

https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/JobExecutionMonitor
http://jem.physik.uni-wuppertal.de/JEM/
http://jem.physik.uni-wuppertal.de/JEM/jobid/PanDA.1637324001
mailto:volkmer@physik.uni-wuppertal.de
mailto:jem@uni-wuppertal.de


• JEM project is mainly focus on MC validation task 

• JEM is a powerful tool if you want to debug/monitor/check you analysis jobs on the 
grid. 

• It is fully integrated in the ATLAS software, easy to use and provide results as soon as 
the job ends.

Conclusions

 36



The End

 37


