
# Search for Standard Model $H \rightarrow \tau \tau$ with CMS



**Helmholtz Alliance** 

Terascale Alliance Meeting December 03, 2013

Armin Burgmeier (DESY) for the CMS H  $\rightarrow \tau\tau$  group

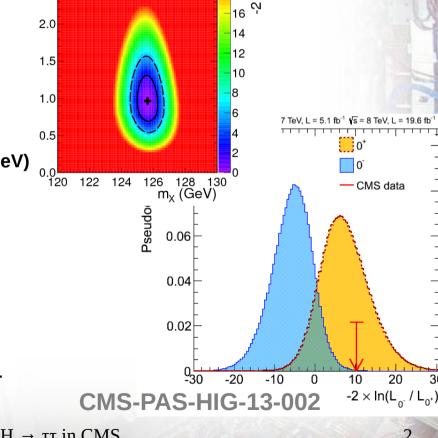






Karlsruhe Institute of Technology

# **Motivation**


<sub>0/2</sub> 0/2

### A Higgs has been found at a mass of 125 GeV

- Signals have been seen in
  - $H \rightarrow \gamma \gamma (3.2\sigma),$
  - $H \rightarrow ZZ (6.7\sigma),$
  - $H \rightarrow WW (3.9\sigma)$

### Properties need to be measured!

- Mass (m<sub>1</sub> = 125.7 ± 0.3 (stat.) ± 0.3 (syst.) GeV)
- Spin/CP (e.g. CP = -1 excluded at > $3\sigma$ )
- Coupling to fermions?
  - Fundamentally different than coupling to bosons
  - Only indirect evidence so far

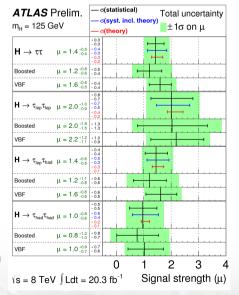


CMS-PAS-HIG-13-005

30

18 <

December 03, 2013


# Current Status in $H \rightarrow \tau \tau$

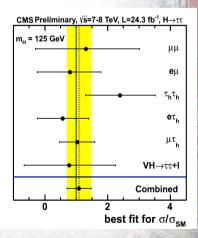


Preliminary result presented in November 2013 ATLAS-CONF-2013-108

- BDT based analysis with 8 TeV data
- Observed: 4.1σ
- $\mu = 1.4^{+0.5}_{-0.4}$
- Optimized for m<sub>µ</sub> = 125, no mass scan (yet)

December 03, 2013




Armin Burgmeier (DESY): SM H  $\rightarrow \tau\tau$  in CMS



Preliminary result presented in March 2013

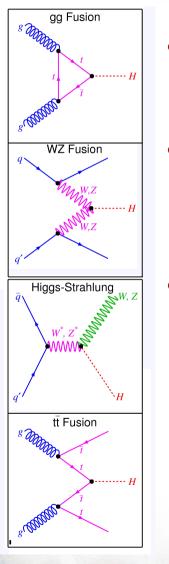
CMS-PAS-HIG-13-004

- Cut-based analysis with 7+8 TeV data
- Observed: 2.94σ
- $\mu = 1.1 \pm 0.4$
- m<sub>H</sub> = 120<sup>+9</sup><sub>-7</sub> GeV



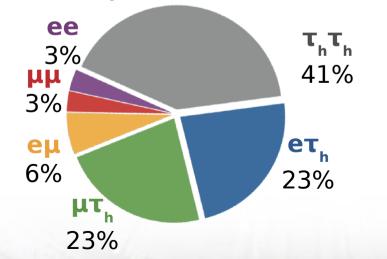
# **German Contributions**

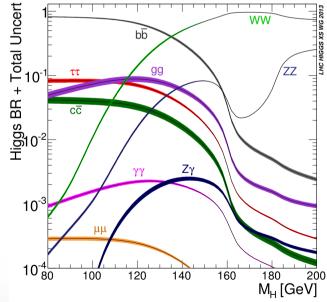
- Joint effort from KIT/DESY in ee,  $\mu\mu$  final states
- Joint effort from DESY/Aachen in WH  $\rightarrow |\tau_{h}\tau_{h}$  final states
- Combination and Statistical Interpretation of all channels
  - Cross check with indepedent tool (Theta)
- ATLAS/CMS/Theory working group: m, group
  - Very fruitful inter-experiment collaboration
  - Bi-annual 2-day workshops
  - Development and discussion of analysis tools, such as
    - Polarization sensitive variables
    - Background estimation methods


December 03, 2013

Armin Burgmeier (DESY): SM H  $\rightarrow \tau\tau$  in CMS

TERA SCALE Helmholtz Alliance


PHYSICS AT THE


# **Higgs Production and Decay**



**4 Production Mechanisms** 

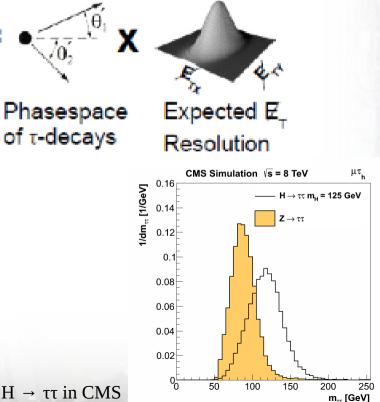
- H, qqH, VH, ttH
- 5 main decay channels at low mass
  - $H \rightarrow b\overline{b}, H \rightarrow WW, H \rightarrow ZZ,$  $H \rightarrow \tau\tau, H \rightarrow \gamma\gamma$
- ττ decay has 6 final states:





December 03, 2013

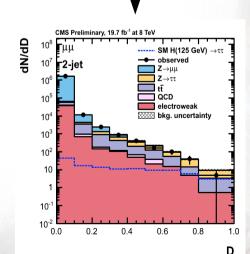
# **Analysis Strategy**


- Goal: Measure coupling of Higgs to ττ
- Final states with 2 leptons: e, μ or τ<sub>h</sub> (More than two leptons in VH)
- Light leptons from tau decays are soft
  - Need low  $p_{\tau}$  thresholds ( $\rightarrow$  cross triggers)

| Channel            | Offline p <sub>T</sub> Threshold                                         |
|--------------------|--------------------------------------------------------------------------|
| μτ <sub>h</sub>    | $p_{_{T}}(\mu) > 20 \text{ GeV}, p_{_{T}}(\tau_{_{h}}) > 30 \text{ GeV}$ |
| eτ <sub>h</sub>    | $p_{T}(e) > 24 \text{ GeV}, p_{T}(\tau_{h}) > 30 \text{ GeV}$            |
| $\tau_{h}\tau_{h}$ | p <sub>T</sub> (τ <sub>h</sub> ) > <mark>45</mark> GeV                   |
| ee, eµ, µµ         | $p_{T}(l_{1}) > 20 \text{ GeV}, p_{T}(l_{2}) > 10 \text{ GeV}$           |

- Isolated leptons to suppress e.g. QCD multijet events with jets misidentified as leptons
- M<sub>T</sub>(I, E<sub>T</sub><sup>miss</sup>) < 30 GeV to suppress W+Jets events

# **Di-tau mass reconstruction**


- Use di-tau mass as discriminating variable
- Undetected neutrinos lead to underestimation of the di-τ mass
- Likelihood-based method to find mass which is most compatible with:
  - Tau decay kinematics
  - Visible decay products
  - $E_{T}^{miss}$  + uncertainty
- Mass resolution:
  - 10% to 20% (depending on final state)

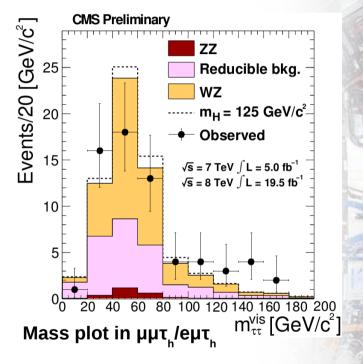


# **Same Flavor Dilepton Channels**

- Different analysis strategy
- No τ<sub>h</sub> reconstruction needed
- Additional direct Z → II background
- Train two BDTs
  - BDT1: Separate  $Z \rightarrow II$  from  $Z/H \rightarrow \tau\tau$
  - BDT2: Separate  $Z \rightarrow \tau \tau$  from  $H \rightarrow \tau \tau$

 $D_{\text{cat}} = \int_{0}^{\text{BDT}_{1}} \int_{0}^{\text{BDT}_{2}} f_{\text{cat}}^{\text{sig}}(\text{BDT}_{1}', \text{BDT}_{2}') \, d\text{BDT}_{1}' \, d\text{BDT}_{2}'$ 




BDT.

Armin Burgmeier (DESY): SM H  $\rightarrow \tau\tau$  in CMS

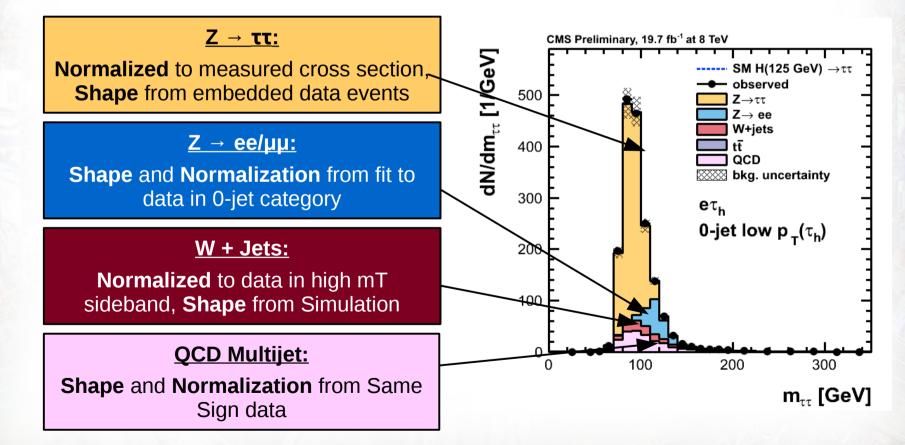
BDT1

# **Associated Production**

- More than 2 leptons in the event
- Easy to trigger
- Low SM Background
- But: Low cross section
- WZ/ZZ is irreducible background
- Other background has fake leptons
  - estimated from data



CMS-PAS-HIG-12-053


Updated VH analyses are still being finalized and will be combined with Non-VH channels for the legacy paper

Concentrate on non-VH in the following

December 03, 2013

# **Most Important Backgrounds**

Take as much from **data** as possible (e.g. **correct modelling** of interference of inclusive and VBF Z production)

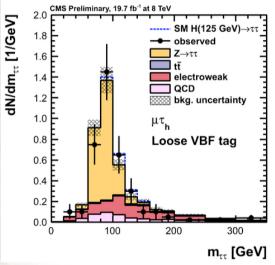


# **Event Categorization**

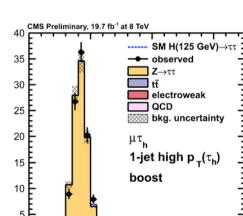
- Use full event kinematics to categorize events, based on
  - jet multiplicity
  - $\mathbf{p}_{\mathsf{T}}^{\ \mathsf{T}} = |\vec{p}_{T}(L) + \vec{p}_{T}(L') + E_{T}^{miss}|$  $\mu \tau_h$  $- p_{\tau}(\tau_{h} / \tau_{l})$ θTh
- **Re-optimized** since Moriond result
- Improves overall sensitivity
- Less categories in the 7 TeV data
- **58 categories** in total
  - Fit for signal in all of them

| December | 03, | 2013 |
|----------|-----|------|
|----------|-----|------|

Armin Burgmeier (DESY): SM H  $\rightarrow \tau\tau$  in CMS


|                               |                                           | 0-jet                   | 1-jet                                 |                                                | 2-jet                                                  |                                                                                                                                       |
|-------------------------------|-------------------------------------------|-------------------------|---------------------------------------|------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                           |                         |                                       | p <sub>T</sub> <sup>π</sup> ><br>100 GeV       | m <sub>ji</sub> > 500 GeV<br> Δη <sub>ji</sub>   > 3.5 | $\begin{array}{l} p_T^{ \mathrm{TT}} > 100 \; \mathrm{GeV} \\ m_{j_i} > 700 \; \mathrm{GeV} \\  \Delta \eta_{j_i}  > 4.0 \end{array}$ |
|                               | p <sub>τ</sub> (τ <sub>h</sub> ) > 45 GeV | high $p_T(\tau_h)$      | high $p_T(\tau_h)$                    | high p <sub>T</sub> (τ <sub>h</sub> )<br>boost | loose                                                  | tight<br>VBF tag                                                                                                                      |
| μτ <sub>h</sub>               | baseline                                  | low $p_T(\tau_h)$       | low                                   | ο <sub>T</sub> (τ <sub>h</sub> )               | VBF tag                                                | (2012 only)                                                                                                                           |
|                               |                                           |                         |                                       |                                                |                                                        |                                                                                                                                       |
|                               | $p_T(\tau_h) > 45 \text{ GeV}$            | high $p_T(\tau_h)$      | high p <sub>1</sub> (τ <sub>h</sub> ) | high p <sub>T</sub> (t <sub>h</sub> )<br>boost | loose                                                  | tight<br>VBF tag                                                                                                                      |
| eτ <sub>h</sub>               | baseline                                  | low $p_T(\tau_h)$       |                                       | ο <sub>T</sub> (τ <sub>h</sub> )               | VBF tag                                                | (2012 only)                                                                                                                           |
|                               |                                           |                         | $E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 | GeV                                            |                                                        |                                                                                                                                       |
| eµ                            | p <sub>T</sub> (μ) > 35 GeV               | high p <sub>T</sub> (µ) | high p <sub>τ</sub> (μ)               |                                                | loose                                                  | tight<br>VBF tag                                                                                                                      |
| θμ                            | baseline                                  | low $p_T(\mu)$          | low                                   | ρ <sub>T</sub> (μ)                             | VBF tag                                                | (2012 only)                                                                                                                           |
|                               |                                           |                         |                                       |                                                |                                                        |                                                                                                                                       |
| ee, µµ                        | p <sub>T</sub> (l) > 35 GeV               | high p <sub>T</sub> (l) | high                                  | p <sub>T</sub> (I)                             | 2.                                                     | iet                                                                                                                                   |
| οο, μμ                        | baseline                                  | low p <sub>T</sub> (l)  | low                                   | p <sub>T</sub> (I)                             | 2-jet                                                  |                                                                                                                                       |
|                               |                                           |                         |                                       |                                                |                                                        |                                                                                                                                       |
| τ <sub>h</sub> τ <sub>h</sub> |                                           |                         | boost                                 | large<br>boost                                 | VBF                                                    | <sup>=</sup> tag                                                                                                                      |
|                               | baseline                                  |                         | р <sub>т</sub> <sup>т</sup> >         | р <sub>т</sub> <sup>т</sup> >                  | p <sub>τ</sub> π > 100 GeV                             |                                                                                                                                       |
|                               |                                           |                         | 100 GeV                               | 170 GeV                                        | m <sub>ji</sub> > 500 GeV<br> Δη <sub>ji</sub>   > 3.5 |                                                                                                                                       |

**Categories in 8 TeV** 


11

# **Example Di-Tau Mass Plots**

### VBF:

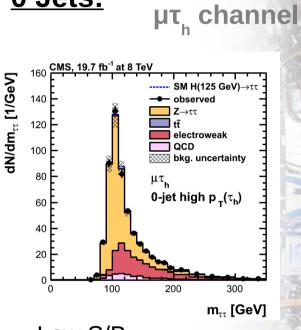


- Low event statistics
- High S/B



dN/dm<sub>rt</sub> [1/GeV]

**1 Jet:** 


 Exploit boost of the Higgs system: Improved mass resolution

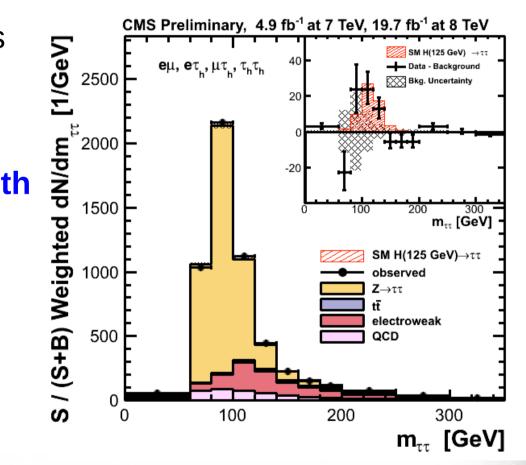
200

300

m<sub>ττ</sub> [GeV]

100



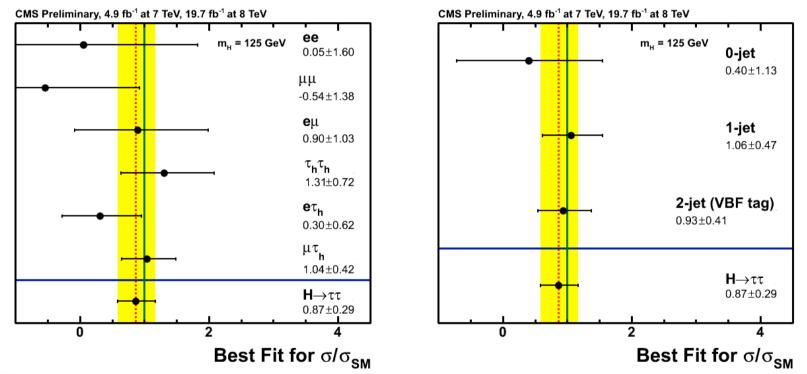

Low S/B

0 Jets:

 Important for Constraining Nuisance Parameters

# S/B Weighted Di-Tau Mass

- Signal starts to build up in all channels and categories
- Combine all events in one plot
- Each event is weighted with S/(S+B) in its respective category




December 03, 2013

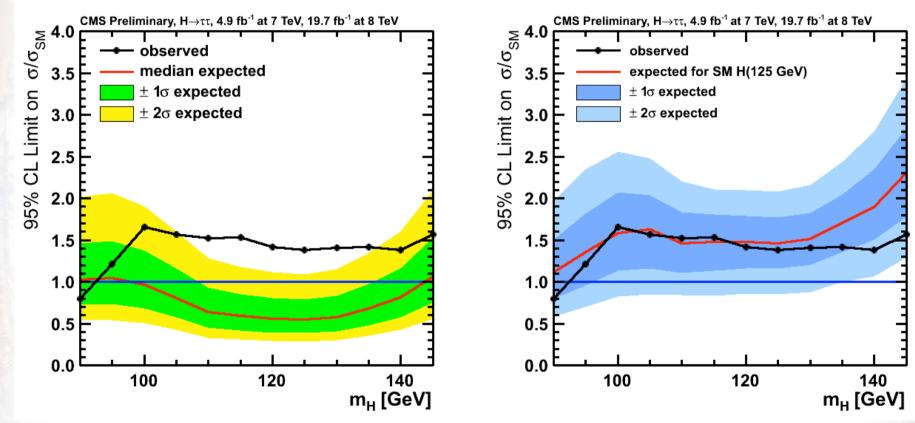
# **Best Fit Signal Strength**

### By channel:

### By category:



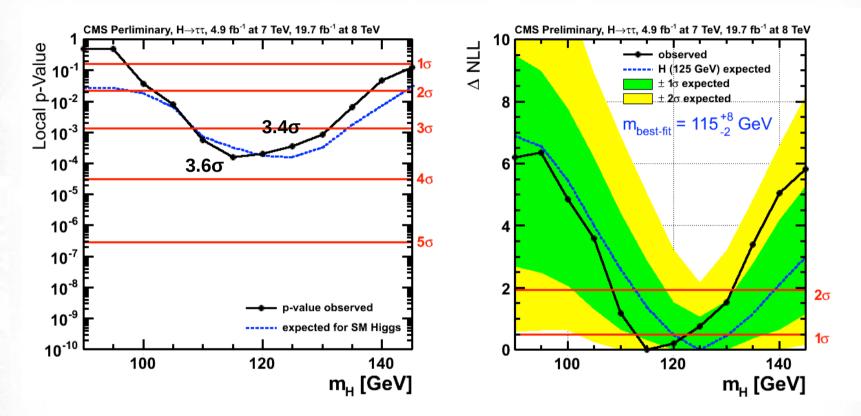
 Important nuisance parameters shared between channels and categories (constrained by high statistics categories in global fit)


• Best fit **µ** = 0.87 ± 0.29

December 03, 2013

# **Expected Exclusion Limits**

### **Background only:**


### 1x SM + Background:

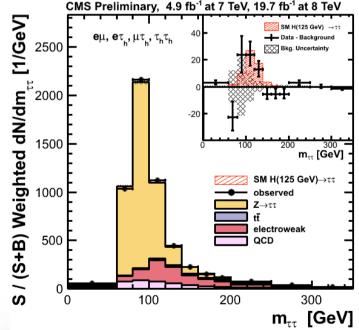


 Excess is compatible with SM Higgs boson hypothesis over wide mass range

December 03, 2013

### p-value and Mass Scan




• Largest **observed significance** (3.59 $\sigma$ ) at m<sub>µ</sub> = 115 GeV

• Mass scan:  $m_{\mu} = 115^{+8}_{2}$  GeV

# Conclusions

SM Higgs Results in the ττ channel have been presented

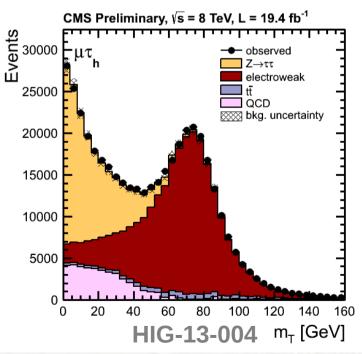
- Analysis is complex due to high backgrounds and the combination of many channels and categories
- CMS sees an **excess around 125 GeV** at **3.6** significance!
- Analysis has been **optimized** since Preliminary Moriond result
  - VH channels to be added
  - **Final publication** within the next days



•

# Backup

December 03, 2013


# **Background Rejection**

### Very channel specific in general

- Differentiate between
  - Irreducible backgrounds (same final state)
  - Reducible backgrounds (one or more objects misidentified)

### Main backgrounds:

- Z → ττ
- Z  $\rightarrow$  ee/µµ
- W + Jets
- QCD Multijet
- $-t\bar{t}$



# **Event Categorization at 7 TeV**

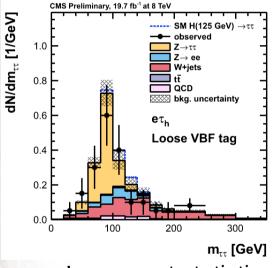
|                 |                                | 0-jet                                | 1-jet                                     |                                                | 2-jet                                                |
|-----------------|--------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------------|
|                 |                                |                                      |                                           | p <sub>T</sub> <sup>ττ</sup> > 100<br>GeV      | m <sub>i</sub> > 500 GeV<br> Δη <sub>i</sub>   > 3.5 |
| μτ <sub>h</sub> | $p_T(\tau_h) > 45 \text{ GeV}$ | $highp_T(\tau_h)$                    | high $p_T(\tau_h)$                        | high p <sub>T</sub> (T <sub>h</sub> )<br>boost | VBF tag                                              |
| ₽ °h            | baseline                       | low p <sub>T</sub> (τ <sub>h</sub> ) | low p <sub>T</sub> (τ <sub>h</sub> )      |                                                | VDI tag                                              |
|                 |                                |                                      |                                           |                                                |                                                      |
|                 | $p_T(\tau_h) > 45 \text{ GeV}$ | $high  p_T(\tau_h)$                  | high $p_T(\tau_h)$                        |                                                | VBF tag                                              |
| eτ <sub>h</sub> | baseline                       | low $p_T(\tau_h)$                    | low p <sub>T</sub> (τ <sub>h</sub> )      |                                                |                                                      |
|                 |                                |                                      | $E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV |                                                |                                                      |
| ~               | р <sub>т</sub> (µ) > 35 GeV    | high p <sub>T</sub> (µ)              | high p <sub>T</sub> (µ)                   |                                                |                                                      |
| eμ              | baseline                       | low p <sub>T</sub> (µ)               | low p <sub>T</sub> (µ)                    |                                                | VBF tag                                              |
|                 |                                |                                      |                                           |                                                |                                                      |
| ee, µµ          | р <sub>т</sub> (l) > 35 GeV    | high p <sub>T</sub> (l)              | high p <sub>T</sub> ()                    |                                                | 0 int                                                |
|                 | baseline                       | low p <sub>T</sub> (I)               | low p <sub>T</sub> (I)                    |                                                | 2-jet                                                |

December 03, 2013

# **Event Categorization at Moriond 8 TeV**

|                               |                                    | 0-jet                                 | 1-jet                                     | 2-jet                                                                                         |
|-------------------------------|------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|
|                               |                                    |                                       |                                           | m <sub>i</sub> > 500 GeV<br>Δη <sub>i</sub>   > 3.5                                           |
| μτ <sub>h</sub>               | $p_T(\tau_h) > 45 \text{ GeV}$     | $high  p_T(\tau_h)$                   | high $p_{T}(\tau_{h})$                    | VBF tag                                                                                       |
|                               | baseline                           | low p <sub>τ</sub> (τ <sub>h</sub> )  | low $p_T(\tau_h)$                         | VDF tag                                                                                       |
|                               |                                    |                                       |                                           |                                                                                               |
| ~                             | $p_{T}(\tau_{h}) > 45 \text{ GeV}$ | high p <sub>T</sub> (τ <sub>h</sub> ) | high $p_T(\tau_h)$                        | VPE too                                                                                       |
| eτ <sub>h</sub>               | baseline                           | low $p_T(\tau_h)$                     | $low  p_T(\tau_h)$                        | VBF tag                                                                                       |
|                               |                                    |                                       | $E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV |                                                                                               |
| eμ                            | р <sub>т</sub> (µ) > 35 GeV        | high p <sub>T</sub> (µ)               | high p <sub>T</sub> (µ)                   |                                                                                               |
| -                             | baseline                           | low p <sub>T</sub> (µ)                | low p <sub>T</sub> (µ)                    | VBF tag                                                                                       |
|                               |                                    |                                       |                                           |                                                                                               |
| μμ                            | p <sub>T</sub> (l) > 35 GeV        | high p <sub>T</sub> (l)               | high p <sub>T</sub> ()                    | 2-jet                                                                                         |
|                               | baseline                           | low p <sub>T</sub> (l)                | low p <sub>T</sub> (l)                    | 2 101                                                                                         |
| τ <sub>h</sub> τ <sub>h</sub> | baseline                           |                                       | large boost                               | VBF tag                                                                                       |
|                               |                                    |                                       | ρ <sub>Γ</sub> <sup>π</sup> > 140 GeV     | p <sub>T</sub> <sup>rr</sup> > 110 GeV<br>m <sub>i</sub> > 250 GeV<br>Δη <sub>i</sub>   > 2.5 |

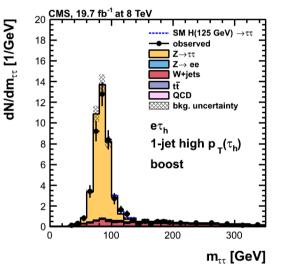
December 03, 2013


# **Event Categorization at Moriond 7 TeV**

|                 |                                | 0-jet                   | 1-jet                                     | 2-jet                                                |
|-----------------|--------------------------------|-------------------------|-------------------------------------------|------------------------------------------------------|
|                 |                                |                         |                                           | m <sub>i</sub> > 500 GeV<br> Δη <sub>i</sub>   > 3.5 |
| μτ <sub>h</sub> | $p_T(\tau_h) > 45 \text{ GeV}$ | $high  p_T(\tau_h)$     | high $p_{T}(\tau_{h})$                    | VPEter                                               |
|                 | baseline                       | $low  p_{T}(\tau_{h})$  | low $p_T(\tau_b)$                         | VBF tag                                              |
|                 |                                |                         |                                           |                                                      |
| eτ <sub>h</sub> | $p_T(\tau_h) > 45 \text{ GeV}$ | high $p_T(\tau_h)$      | high $p_T(\tau_h)$                        |                                                      |
|                 | baseline                       | $low  p_{T}(\tau_h)$    | $low  p_T(\tau_h)$                        | VBF tag                                              |
|                 |                                |                         | $E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV |                                                      |
| eµ              | p <sub>T</sub> (μ) > 35 GeV    | high p <sub>T</sub> (µ) | high p <sub>T</sub> (µ)                   |                                                      |
|                 | baseline                       | low p <sub>T</sub> (µ)  | low p <sub>T</sub> (µ)                    | VBF tag                                              |
|                 |                                |                         |                                           |                                                      |
| μμ              | p <sub>T</sub> (l) > 35 GeV    | high p <sub>T</sub> (l) | high p <sub>T</sub> ()                    | 2-jet                                                |
|                 | baseline                       | low p <sub>t</sub> (l)  | low p <sub>T</sub> (l)                    | 2.300                                                |

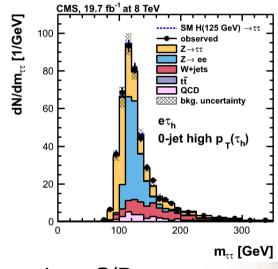
December 03, 2013

# **Di-Tau Mass Distributions (eτ<sub>h</sub>)**


### VBF:



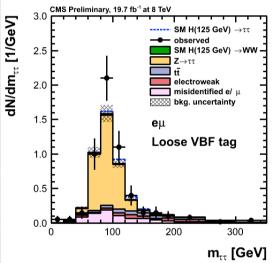
- Low event statistics
- High S/B


eτ<sub>h</sub> channel





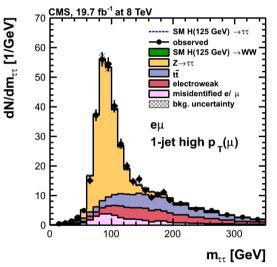
 Exploit boost of the Higgs system: Improved mass resolution


### 0 Jets:



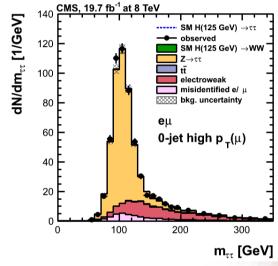
- Low S/B
- Important for Constraining Nuisance Parameters

# **Di-Tau Mass Distributions (eµ)**


### VBF:



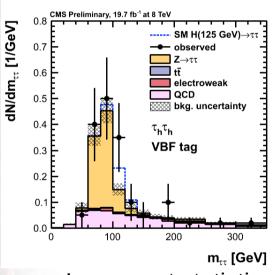
- Low event statistics
- High S/B


#### eµ channel





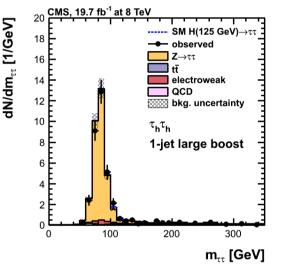
 Exploit boost of the Higgs system: Improved mass resolution


### 0 Jets:



- Low S/B
- Important for Constraining Nuisance Parameters

# **Di-Tau Mass Distributions** $(\tau_h \tau_h)$


### VBF:



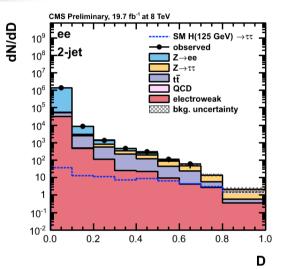
- Low event statistics
- High S/B

 $\tau_{h}\tau_{h}$  channel

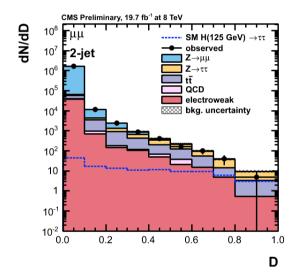




 Exploit boost of the Higgs system: Improved mass resolution



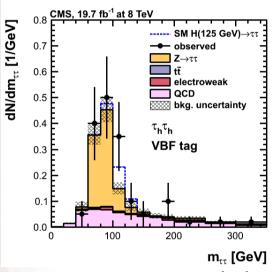

No 0-Jet category due to trigger requirements in this channel


- Low S/B
- Important for Constraining Nuisance Parameters

# **Comb. BDT Distributions (mm/ee)**

### ee VBF:

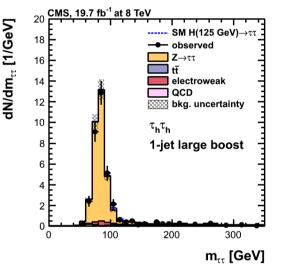



#### mm VBF:



December 03, 2013

# **Di-Tau Mass Distributions** $(\tau_h \tau_h)$


### VBF:



- Low event statistics
- High S/B

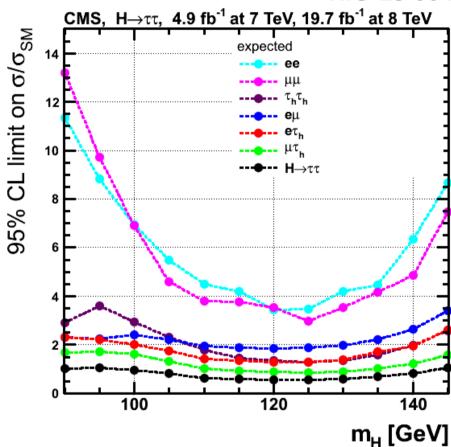
 $\tau_{h}\tau_{h}$  channel

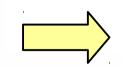




 Exploit boost of the Higgs system: Improved mass resolution



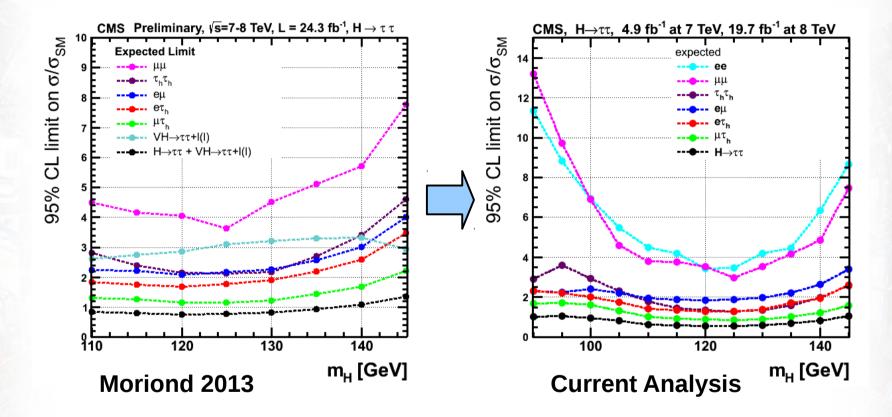

No 0-Jet category due to trigger requirements in this channel


- Low S/B
- Important for Constraining Nuisance Parameters

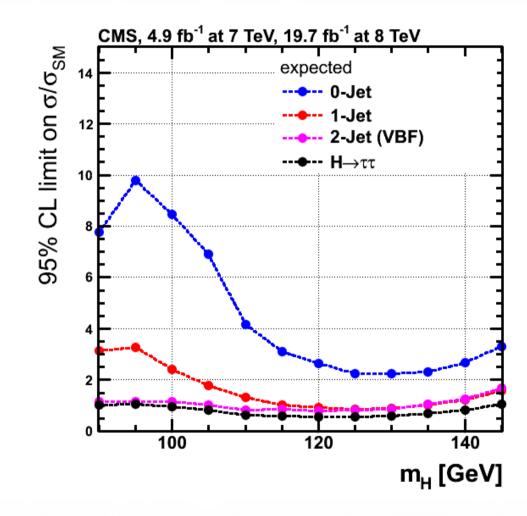
# **Expected Limit by Channel**

HIG-13-004

- Combine all channels and categories for statistical interpretation
- 95% C.L. Frequentist
  Exclusion Limits are set with the CLs method

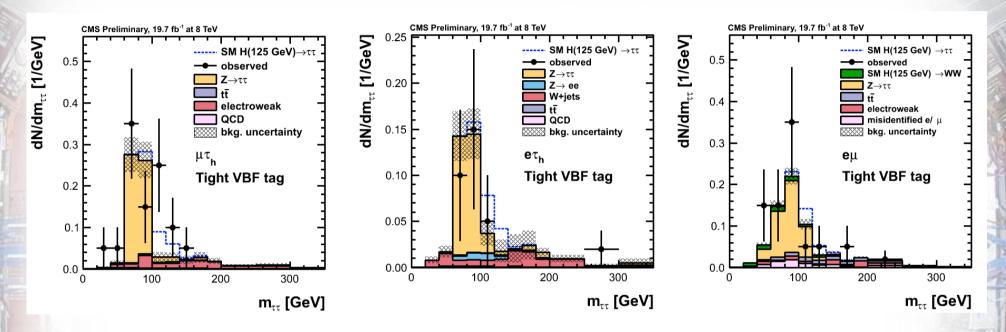






Only combination of channels is sensitive to SM Higgs

December 03, 2013

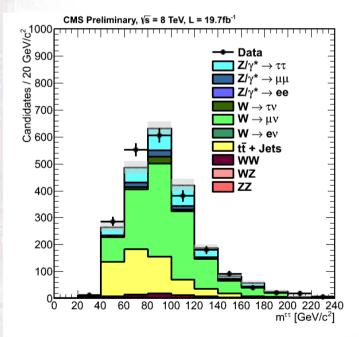
### Improvement in sensitivity

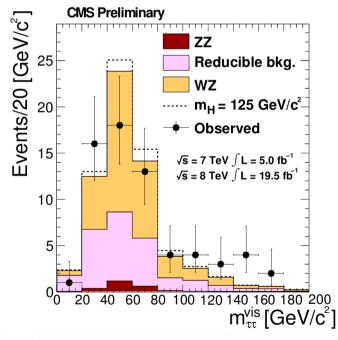



# **Expected Limit By Category**



December 03, 2013


**Tight VBF Category** 




# **Backgrounds in VH**

### Major Backgrounds from:

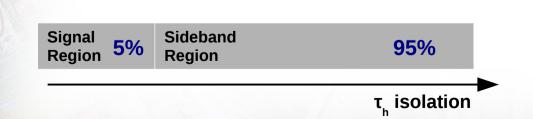
- Di-boson WZ/ZZ production (irreducible)
- W + Jets, Z + Jets,  $t\bar{t}$  + Jets (reducible)

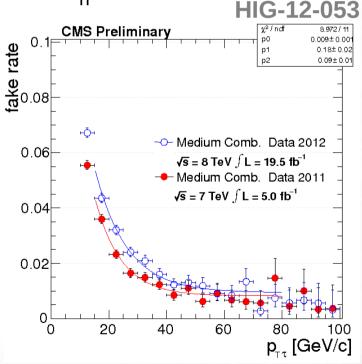




Mass plot in  $\mu\mu\tau_{h}/e\mu\tau_{h}$ 

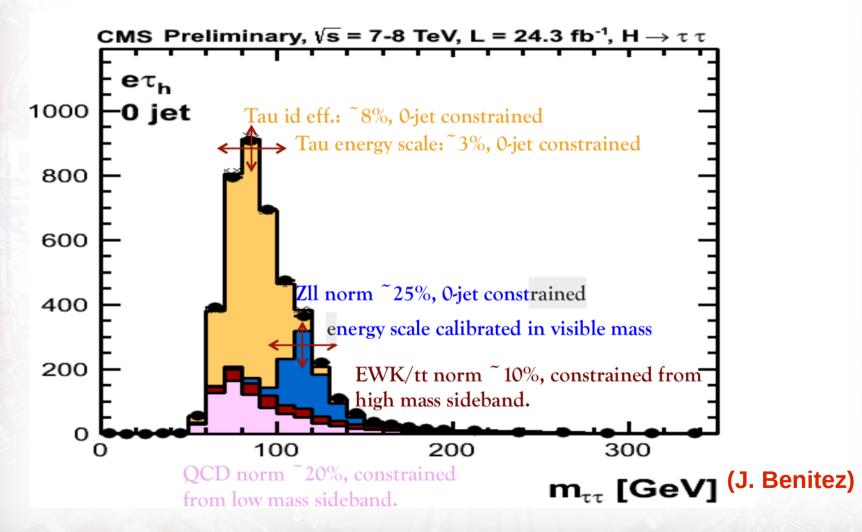
#### Reducible backgrounds in $\mu \tau_h \tau_h$


December 03, 2013


# **Background Estimation in VH**

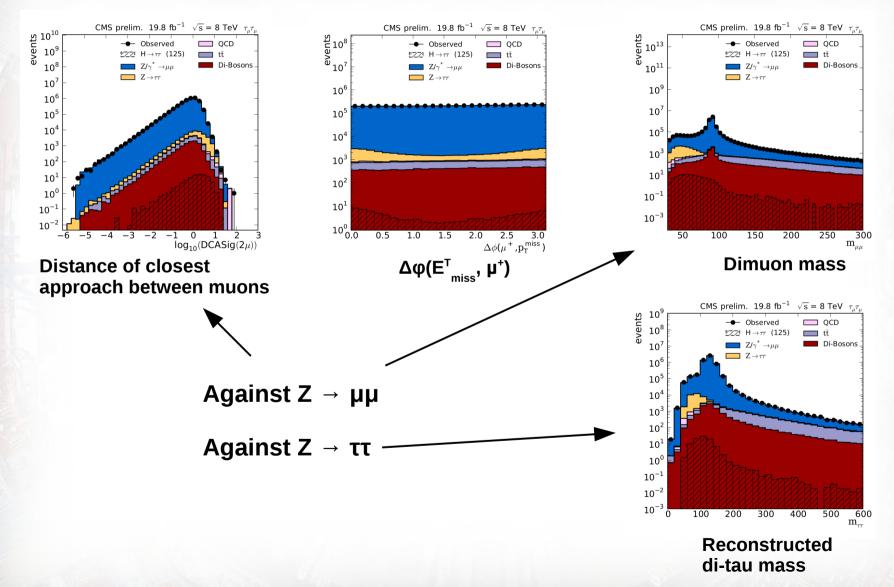
- Reducible backgrounds are estimated with Fake Rate Method
- Invert the ID cut of the object which is misidentified (Sideband)

– For example, isolation for jet  $\rightarrow$   $\tau_{_{\rm h}}$  Fakes


- Measure probability for a jet to pass the ID cut ("Fake Rate")
- Scale events in the sideband region with the probability that they pass the ID

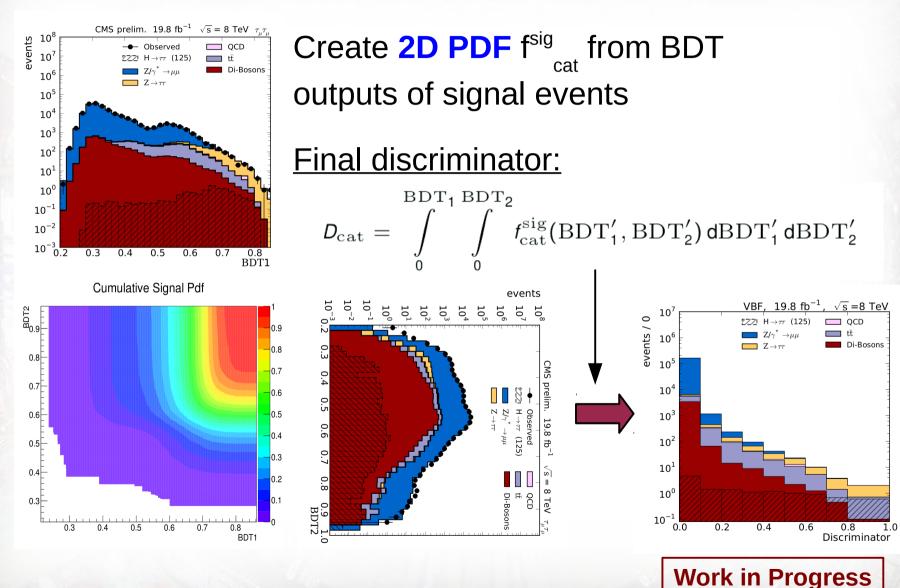





### **Systematics**

### on one slide

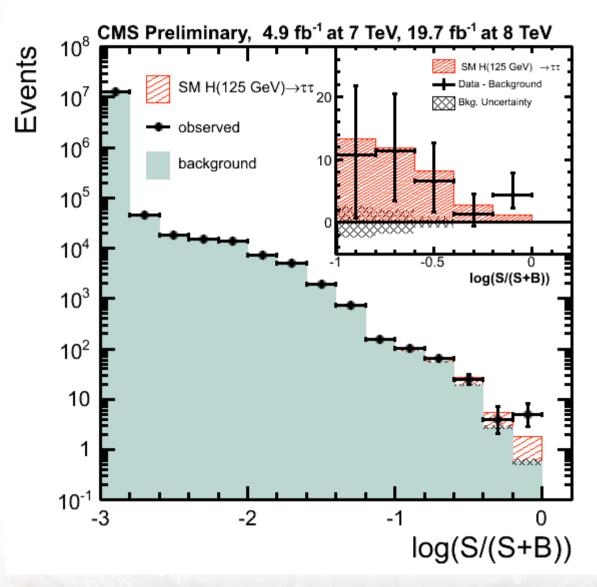



December 03, 2013

# **BDT Input Variables**

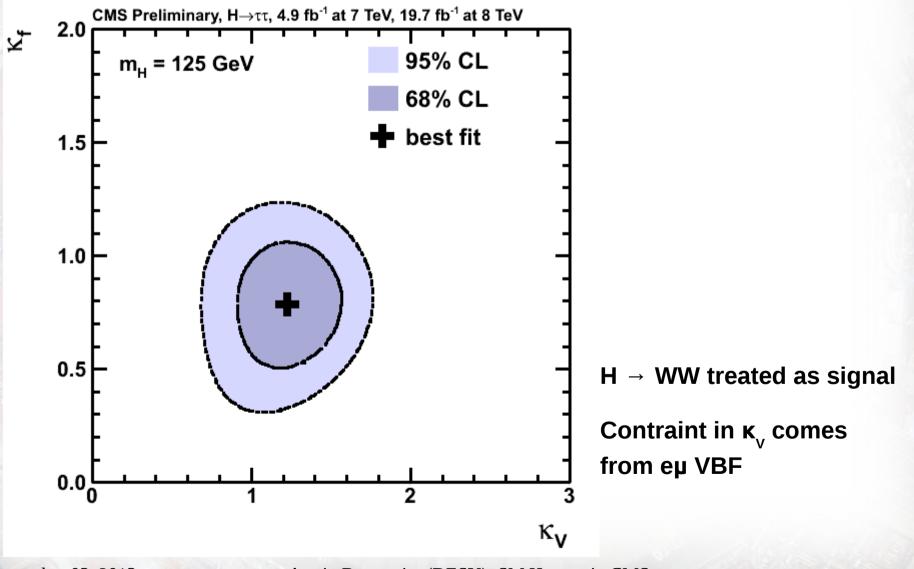


December 03, 2013


# **Combination of BDTs**



December 03, 2013


Armin Burgmeier (DESY): SM H  $\rightarrow \tau\tau$  in CMS

# S/(S+B) plot with all analysis bins



December 03, 2013

# cV-cF



December 03, 2013