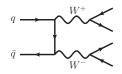
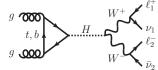


WW production at high transverse momenta beyond NLO

in collaboration with F. Campanario and S. Sapeta [arXiv:1309.7293]

Michael Rauch | Dec 3, 2013


Motivation


WW pair production at the LHC

$$pp o W^+W^- + X o \ell_1^+ \nu_1 \ell_2^- \bar{\nu}_2 + X$$

- Neutrinos in the final state \rightarrow invariant W mass cannot be reconstructed
- → background for many LHC measurements:
 Higgs searches/measurements,
 BSM physics (often contains light stable particle → missing energy)
- signal process in its own right: anomalous triple gauge couplings
- Experiment: exclusive cross section measurements from ATLAS (7 TeV run only) and CMS (7 TeV and 8 TeV, 5 fb⁻¹) \rightarrow reasonable agreement, $\sim 2\sigma$ excess observed

State of the Art

Available higher-order corrections:

- WW
 - NLO QCD: O(50%) for inclusive cuts, phase-space dependent

[Dixon, Kunszt, Signer; Campbell, Ellis, Williams]

ns [Dawson, Lewis, Zeng]

- soft-gluon resummation of threshold logarithms
- NNLO QCD: work started

[Gehrmann, Tancredi, Weihs: Chachamis]

- NLO EW up to double-pole approximation
 [Bierweiler, Kasprzik, Kühn, Uccirati, Gieseke; Baglio, Ninh, Weber; Billoni, Dittmaier, Jäger, Speckner]
- gluon-initiated contributions: [Ametller, Gava, Paver, Treleani; Dicus, Kao, Repko; Glover, van der Bij; Binoth, Ciccolini, Kauer, Krämer; Bonvini, Caola, Forte, Melnikov, Ridolfi] formally NNLO, numerically enhanced due to large gluon PDFs: 3-5% inclusive. 10% in Higgs analyses
- WWj
 - NLO QCD plus gluon-initiated contributions

[Dittmaier, Kallweit, Uwer; Melia, Melnikov, Rontsch, Schulze, Zanderighi]

- $\mathcal{O}(40\%)$ for inclusive cuts, phase-space dependent
- WWjj
 - NLO QCD: O(10%), greatly reduced scale dependence

[Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano]

Large QCD corrections for WW and WWj

- \rightarrow assess size of NNLO QCD corrections \leftrightarrow lack of explicit calculation
- → combine WW and WWj consistently with simulated 2-loop contributions

(see also [Cascioli, Hoeche, Krauss, Maierhöfer, Pozzorini, Siegert \to Philipp's talk] for similar approach with different physics' focus)

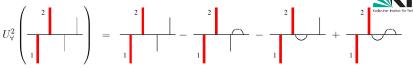
LoopSim

Kadaruher hetitut für Technologi [Rubin, Salam, Sapeta]

LoopSim approach

- based on unitarity
- assign angular-ordered branching structure to each event (C/A algorithm with radius R_{LS}) until number of particles identical to Born number
- hard structure of event determined
 → remaining particles marked
 as "Born"
- construct virtual "loop" events: recombine particles j not marked as "Born":
 - clustered with particle i: spread j momentum over i and all particles emitted after j
 - clustered with beam: remove j and apply transverse boost
 - no secondary emitters looped (particles which emit another particle)

 → no divergence for emission from internal line



LoopSim (cont.)

- weight for each loop diagram: (-1)^{number of loops}
- double counting from exact 1-loop diagrams removed
- fully inclusive: cross section unmodified
- also electro-weak particles looped → removed by final-state requirements
- lacktriangledown cuts applied to each (simulated) part separately o integrated cross sections differ
- ⇒ Exact tree-level and one-loop parts, singular part of two-loop diagrams

Cross-checks:

- nLO vs. NLO calculation
- Drell-Yan: nNLO vs. NNLO calculation
- $\rightarrow \text{good agreement}$

Generation of WW + X events: VBFNLO (NLO QCD WW_i , NLO QCD WW_i , LO GF- WW_i)

[Zeppenfeld, MR et al.]

Numerical Results

Integrated cross sections for LHC 8 TeV

$$\mu_{F,R} = \mu_0 = \frac{1}{2} \left(\sum p_{T,partons} + \sqrt{p_{T,W^+}^2 + m_{W^+}^2} + \sqrt{p_{T,W^-}^2 + m_{W^-}^2} \right), R_{LS} = 1$$
 MSTW NNLO 2008 PDF for all cross sections used

	c.s. [fb] without jet veto	c.s. [fb] with jet veto
σ_{LO}	247.49 ^{+5.40} _{-7.60}	247.49 +5.40
$\sigma_{ m box+Higgs}$	$19.02 \begin{array}{c} -3.70 \\ +4.86 \end{array}$	$19.02_{+4.86}^{-3.70}$
$\sigma_{ m pure-NLO}$	334.64 ^{-6.36} _{+6.49}	253.05 ^{+2.98} _{-4.75}
$\sigma_{ extsf{pure-}ar{ extit{n}} extsf{NLO}}$	345.17 $^{-7.06}_{+7.03}$ (μ) $^{+5.24}_{-3.33}$ (R_{LS})	236.63 $^{-1.16}_{+1.45}$ (μ) $^{+5.31}_{-3.27}$ (R_{LS})
σ_{NLO}	353.67 ^{-10.06} _{+11.35}	272.07 -8.45 +7.84
$\sigma_{ar{ extsf{n}}NLO}$	364.19 $^{-10.76}_{+11.89}$ (μ) $^{+5.24}_{-3.33}$ (R_{LS})	$255.72^{-4.86}_{+6.31}\;(\mu)^{+5.31}_{-3.27}\;(R_{\rm LS})$

- scale variation between $2\mu_0$ (upper value) and $\mu_0/2$ (lower value)
- R_{LS} variation between 1.5 (upper) and 0.5 (lower)
- $\sigma_{\rm NLO}$, $\sigma_{\bar{n}{\rm NLO}}$ contains gluon-fusion (box+Higgs) part (errors added linearly)
- Large negative corrections for vetoed results (Sudakov logarithms)
- ↔ Missing finite part of 2-loop virtuals

Cuts:

(follows CMS analysis)

- $p_{T,\ell} > 20 \text{ GeV}$
- $|\eta_{\ell}| < 2.5$
- different-flavour: $E_{T,\text{miss}}^{projected} > 20 \text{ GeV}$
- same-flavour: $E_{T, \text{miss}}^{projected} > 45 \text{ GeV}$ $m_{\ell\ell} > 12 \text{ GeV}$ $|m_{\ell\ell} m_Z| > 15 \text{ GeV}$ $p_{T, \ell\ell} > 45 \text{ GeV}$ $\Delta\phi(\ell\ell, j_1) < 165^\circ$

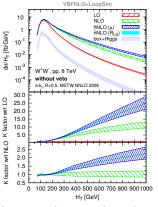
Jet veto: no jets with

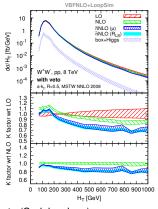

- $p_{T, jet} > 30 \text{ GeV}$
- $|\eta_{
 m jet}| < 4.7$

Distributions

Effective mass observable H_T (commonly used in new-physics searches)

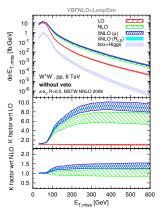
$$H_T = \sum p_{T, ext{jets}} + \sum p_{T, \ell} + E_{T, ext{miss}}$$

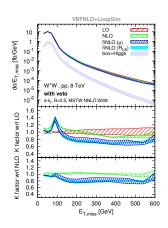

- very sensitive to additional radiation from further partons and soft or collinear emission of the W bosons
- $lue{}$ ightarrow giant K factors for large H_T
- ullet o well described by LoopSim method
- ullet \leftrightarrow small dependence on R_{LS} parameter
- cross-check: comparison of \bar{n} LO and NLO results \rightarrow very close for $H_T \gtrsim 200$ GeV


Distributions

Effective mass observable H_T (commonly used in new-physics searches)

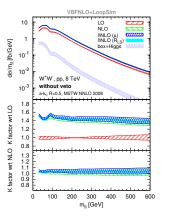
$$H_T = \sum p_{T,jets} + \sum p_{T,\ell} + E_{T,miss}$$

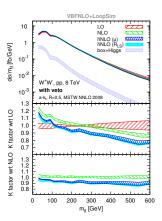



- large negative corrections when applying jet veto (Sudakov logs) $\mathcal{O}(-15\%)$ for NLO compared to LO, $\mathcal{O}(-20\%)$ for \bar{n} NLO compared to NLO
- $lackbox{ } \leftrightarrow$ finite two-loop contributions missing
- \rightarrow same effect in WH@NNLO: $\mathcal{O}(-15\%)$ for NNLO/NLO [Ferrera, Grazzini, Tramontano]

Distributions (cont.)

Missing transverse energy $E_{T,miss}$




- large K factors for unvetoed results
- negative $\mathcal{O}(-20\%)$ correction for vetoed results
- outside scale variation bands

Distributions (cont.)

Invariant mass of the lepton pair $m_{\ell\ell}$

- shape unchanged by $\bar{n}NLO$ effects, normalization differs for vetoed case
- large $m_{\ell\ell} \leftrightarrow$ back-to-back leptons dominate
 - \rightarrow not particularly sensitive to new topologies opening up

Conclusions

- Calculation of WW including leptonic decays at ħNLO using LoopSim approach combining NLO QCD WW, NLO QCD WWi and LO GF-WW
- large additional corrections beyond NLO outside scale variation bands for observables sensitive to QCD radiation (like H_T or E_{T,miss})
 m_{FF} or m_{WW} distribution on the other hand hardly affected
- jet veto like in exp. setup leads to large negative corrections
 - $\rightarrow \text{large Sudoakov logarithms}$
 - \leftrightarrow finite 2-loop virtual term