Measurements of CSR and its impact on the LCLS beam

Z. Huang, K.L.F. Bane, F.-J. Decker, Y. Ding, D. Dowell, P. Emma, J. Frisch, R. Iverson, C. Limborg-Deprey, H. Loos, H.-D. Nuhn, D. Ratner, G. Stupakov, J. Turner, J. Welch, J. Wu

Stanford Linear Accelerator Center

05-29-2008

Zeuthen Workshop on High-brightness beams

Outline

- Introduction
- CSR studies at BC1
 - @250 pC
 - @ 1 nC
- CSR studies at BC2
 - @ 250 pC
 - Direct observation of CSR at optical wavelengths
- Summary

Magnetic Bunch Compression

Coherent Synchrotron Radiation in Bends

LCLS Injector Layout

2nd Transverse RF Deflector in Sector-25 (400 m) $\stackrel{5}{\longrightarrow}$

LCLS BC1 and diagnostics

- ➤ Bunch length monitor, deflecting cavity → bunch length;
- ➤ QM13 + WS12 → Emittance;
- ➤ BPMs after BC1 → energy loss.

BC1 CSR studies at 250 pC

Machine setup:

```
Energy = 250 MeV (held constant by E-feedback);
BC1 R56 = -45.5mm, dipole radius = 2.17m, \theta \sim 5^{\circ};
L1X: 20MV, -160 deg;
BC2 off
```

Injector beam conditions (at 135 MeV)

 $\gamma \varepsilon_{\rm x} \sim \gamma \varepsilon_{\rm v} \sim 0.7$ um (WS02, asymmetric Gaussian method)

 $\sigma_z \sim 750 \text{ um (OTR2)}$

Scan L1S phase to
 Control E-chirp before BC1

Bunch compression measurements

bunch length monitor (BL11A) signal

- Absolute bunch length measured by downstream deflecting cavity
- A Phase shift of -0.4 deg is added to the *Elegant* simulations

CSR energy loss

L1S = -25.5 deg, *Elegant* simulations

BPMs after the chicane could be used to measure this energy loss.

CSR E-loss as seen by BPMs

Trajectory change due to CSR seen by three BPMs after BC1

X-plane properties affected by CSR

 CSR E-loss in bends leads to transverse distortion of the bunch and emittance growth; *Elegant* BC1 simulations at L1S = -25.5 deg

WS12 (3.3 m down stream), t - x

WS12 x-profiles

Elegant simulated x-profiles

CSR Emittance growth after BC1 (250pC)

- Elegant (1D CSR with transient) shows good agreement with data
- *CSRtrack* (2D self-field) uses 100k particles, g2m, reads *Elegant* output at BC1 entrance, tracks BC1 up to WS12; agrees with *Elegant*
- *Impact-T* (3D space charge, no CSR) reads *Elegant* output at BC1 exit, compute to WS12 (3.3 m downstream) → suggests that small vertical emittance growth due to space charge at full compression (need to rule out instrumental effects)

Emittance still gold when over-compressed

- Very short interaction length at minimum bunch length (in the 3rd dipole) when over compressed
- Dispersion at 3rd dipole makes horizontal beam size large

At over-compression minimum bunch length:

$$\frac{\sigma_x}{\sigma_s} >> \left(\frac{\rho}{\sigma_s}\right)^{1/3}$$

3D CSR may further reduce 1D estimation

Over compression

Full compression

BC1 CSR studies at 1 nC

Machine setup:

```
Energy = 250 MeV;
BC1 R56 = -45.5mm;
L1X: 20MV, -160 deg;
BC2 off.
```

Injector beam conditions (at 135 MeV)

```
\gamma \varepsilon_x \sim \gamma \varepsilon_y \sim 0.9 um (WS02, asymmetric Gaussian method) \sigma_z \sim 1.1 mm (OTR2)
```

CSR E-loss and emittance growth at 1 nC

A Phase shift of –0.8 deg is added to the *Elegant* curves

BC2 CSR studies at 250 pC

Machine setup:

```
L1S: -22 deg; L1X: 20MV, -160 deg;
BC1 R56 = -45.5 mm; Energy = 250 MeV;
BC2 R56 = -24.7 mm; Energy = 4.3 GeV.
```

Initial beam for simulations (at 135 MeV):

$$\gamma \epsilon_x \sim \gamma \epsilon_y \sim 0.7 \text{ um (WS02)}$$
 $\sigma_z \sim 750 \text{ um (OTR2)}$

Scan BC2 chirp control instead of whole L2 linac phase

RMS bunch length and CSR energy loss vs. BC2 compression

X-Emittance vs BC2 compression

Emittance measured with four wire scanners ~300 m downstream of BC2

Shift of -200 MeV added to *Elegant*

X-profiles at BC2 full compression

4 wire scanners at 9 GeV

Elegant simulations

ZU

Direct observation of CSR at optical wavelength due to µ-Bunching at BC2

OTR screen in BC2

37

Summary

- We presented measurements of CSR-induced energy loss and related transverse emittance growth in both compressors
- Measurements are in good agreement with codes. BC1 normally operates away from CSR problems.
- BC2 emittance measurements are still tricky (wires ~300 m downstream, μ-Bunching may complicate things here), we hope to get improved data soon.
- No 'slice' emittance data yet available after compression (FEL is impacted by 'slice' emittance and not so much 'projected')

Thanks for your attention!

Acknowledgements

- * P. Emma for leading LCLS commissioning and CSR studies
- * Y. Ding for providing CSR simulations and many slides