COTR and CSR from Microbunched LCLS Beam

Z. Huang, et al.

Stanford Linear Accelerator Center

May 30, 2008

Zeuthen Workshop on High-brightness beams

Outline

Brief review of microbunching instability

DL1 (& BC1) observations and analysis

BC2 observation and analysis

Discussions

Microbunching instability in LCLS tracking

Borland, et al., NIMA 2002, ELEGANT tracking with CSR

Gain mechanism

• Initial density modulation induces energy modulation through longitudinal impedance Z(k), converted to more density modulation by chicane. Space charge impedance is typically more at fault here than CSR (*Saldin, et al., NIMA 2004*)

Micro-Bunching Can be Landau Damped with Laser Heater

Unexpected Physics! Coherent OTR after 35-degree Bend, Even With No BC1

R. Akre, et al., PRST-AB 11, 030703 (2008)

LSC instability driven by shot noise

 Statistical fluctuations in bunch longitudinal coordinate serve as initial density modulations

• At very short wavelengths, i.e. when $\sigma_x/(\lambda\gamma) >> 1$, longitudinal space charge (LSC) has no γ dependence

Pancake beam E-field independent of γ

Pencil beam E-field scales as γ^{-2}

LSC field proportional to electron volume density
must consider LSC impedance throughout injector

LCLS injector Optics

Other parts of beamline also contribute due to longer distance

LSC gain after DL1

LSC-induced energy modulation from 65 MeV to 135 MeV is converted to enhanced density modulation after DL1 with R_{56} =6.3 mm (assuming peak current 40 A)

OTR intensity

• OTR sees coherent (due to μ -bunching) and incoherent parts

 Integrate over camera collection angle (+-75 mrad) to get OTR power spectrum and compare with OTR spectral data

OTR12 Spectral Analysis I

- Analyzed diffraction grating spectral data on OTR12
- 2 images with BC1 off, 250pC (D. Dowell)

No COTR (QB = 11 kG, nonzero R51&R52 after DL1 suppress μ -bunching) COTR (QB = 10.7 kG, DL1 is linear achromat and enhances μ -bunching)

OTR12 Spectral Analysis II

- Measured intensity gain by ratio of COTR to No COTR spectra
- Calculated intensity gain with 40 A peak current (BC1 off), 1 μm norm. emittance and fit to 2.5keV slice rms energy spread)

D. Ratner

Unresolved issues

• Increasing beta at pre-DL1 waist (to reduce beam density) didn't reduce OTR12 gain. Suspect nonlinear effects at play

LCLS microbunching gain after BC2*

Peak of gain at $\lambda_0 \approx 15 \ \mu m$ from 3 keV slice energy spread

- Gain dominated by LSC in linacs
- Enough gain to amplify shot noise fluctuations to saturation
- 15 μ m/30 (compression ratio) = 0.5 μ m, spectacular COTR!

OTR22 after BC2

with OTR21 screen inserted (smoothes μ-bunching)

with OTR21 screen OUT (μ -bunching present – COTR!)

OTR21 in BC2

BC2 design optics

 β (m)

• QM21 changes beam divergence at BC2 entrance, not much effect on transverse size there

Microbunching evolution in a Chicane

smearing of microbunching when projected to longitudinal direction in the first dipole

Dipole 2

• Varying pre-BC2 beam divergence (by QM21) changes sharpness of microbunching and sharpest location of microbunching in the second dipole

1.1.1

Dipole 1

Theory

• Ignore further CSR amplification of microbunching in BC2 (BC2 gain is low <3, see *Heifets/Stupakov/Krinsky*, *PRST 2002;* also see *Huang/Kim*, *PRST 2002*)

Bunching evolution in a chicane is approximately

$$b_{0}[k(s);s] = b_{0}[k_{0};0]e^{-k^{2}(s)R_{56}^{2}(s)\sigma_{\delta}^{2}/2} \\ \times \exp\left[-\frac{k^{2}(s)\varepsilon_{0}\beta_{0}}{2}\left(R_{51}(s) - \frac{\alpha_{0}}{\beta_{0}}R_{52}(s)\right)^{2} - \frac{k^{2}(s)\varepsilon_{0}}{2\beta_{0}}R_{52}^{2}(s)\right]$$
(26)

Initial bunching (+energy modulation) due to LSC instability in linac+DL1+BC1

• Assume pre-BC2 microbunching at 2 μ m, compressed to 1 μ m after second dipole, observed by OTR21

Zoom in to the second dipole

Effects on OTR21

• COTR+CSR intensity changes drastically with QM21 (QB-like effect)

 Intense CSR radiation is emitted near the bunching maximum (determined by QM21) inside second dipole
separation of COTR and CSR on OTR21

Shift of CSR from COTR

QM21 = 21 kG Calculated shift ~ 7 mm

QM21 = 23 kG Calculated shift ~ 5 mm

QM21 = 27 kG Calculated shift ~ 0 mm

Summary

- A high-brightness beam such as generated by LCLS tends to microbunch itself in a bend system with nonzero R₅₆ (Shot noise can naturally start the process).
- Strong COTR and CSR emissions at optical wavelengths are clear evidences of beam microbunching.
- Studies are ongoing: some effects are understood, some details are still missing.
- Laser heater (to be commissioned in early 2009) will mitigate microbunching and (hopefully) get rid of COTR. We look forward to how it works out.

Thanks for your attention!

Acknowledgements

- * LCLS commissioning team
- * Gain analysis with D. Ratner, A. Chao
- * Useful discussions with Y. Ding, D. Dowell, P. Emma, J. Frisch, C. Limborg, H. Loos, G. Stupakov, J. Wu, M. Venturini, A. Zholents