Some Developments for the future Photocathode Gun at SPring-8

~ Coherency of Photocathode laser light source should be killed or utilized !? ~

Hiromitsu TOMIZAWA JASRI/SPring-8

Kill) fiber bundle laser profile homogenizer with backward illumination (transparent cathode)

Use) Z-polarized laser on the cathode & field emission with Schottky effect (It's not proved yet!)

1. Introduction

A PAST

1.1 Present our 3D laser shaping
1.2 Interference Problem for shaping
1.3 Difference between x- & y- emittance Normal incidence → Hollow incidence

1.1 Laser System Configuration

Pointing stabilizer Risley Prism Configuration for Beam Steering

The Risley Prism is a high resolution beam steering device consisting of two pairs of rotatable wedged elements.

1-2. Optimization of laser profiles

~ Spatial & Temporal ~

Beam Quality Control by

Spatial Shaping

Deformable Mirror (Wave Front Control, also!)

Pulse (Temporal) Shaping

SLM (Spatial Light Modulator)

UV- Pulse Stacker

3D-laser pulse shaping (ellipsoidal) Fiber Bundle

Start from femtosecond pulse

Z-polarization with Schottky effect

Streak Image of stacked pulses

Auto-Shaping (1000 steps)

Present 3D-laser pulse shaping

Water bag: Luiten scheme Evolution of ellipsoid... If it works, we can generate ultra-low emittance.

Luiten, "How to realize uniform 3-dimensional ellipsoidal electron bunches", Phys. Rev. Letters 93, 094802 (2004)

Laser: 100 fs with parabolic transverse distribution with 1 mm radius

Photocathode

Laser source status & interference problems

A. We realized stable laser system

Oscillator : 24 hours, 10 months, non-stop TW- Amp. : 24 hours, 1.5 months, non-stop THG: 1.4% rms stability

B. Automatically shaping Spatial Profile with DM + GA was successful! (Gaussian or Flattop)

- ~ Arbitrary Laser Shaping ~
 - ~ However, it takes 1 hour to optimize.

C. Square pulse generation with UV-pulse stacker was successful at THG (263 nm) !

Square Pulse: ~2.5 - 20 ps;

α-BBO

2.5 ps

Pulse Stacking Rods ~directly shaped in UV! Cylindrical

transparent optics in laser transport (All together 7.5-cm-thick fused silica!!).

How can we optimize macro & micro pulse with pulse stacker?

Optimization system of temporal profile

Usage Photocathode with energy analyzer as a streak camera

2nd. Dispersion given by DAZZLER

Input micro pulse is too short! Micro pulse energy & intervals are not equivalently optimized! Micro pulse width, energy, and intervals are optimized!

<u>Stacked Pulse Duration: 20 ps</u> (Input pulse width @ cathode: 2.5 ps)

Emittance measurements low emittance electron beam generation

~ we are testing with different 3D-parameter ~

Result of X-emittance measurement: 2.0π mm mrad @ 1.0 nC Pulse duration 20 ps 1.8π mm mrad @ 0.5 nC; 15 ps 1.4π mm mrad @ 0.4 nC; 10 ps <u>Y-emittance is always 1.5 times larger!</u>

Normal incident mirror ?

Q-scan fitting

15 ps, 0.52 nC

Uranium glass: UV- visible convert glass

3D-Laser pulse shaping:

- ~ some problems as followings~
 - getting more complicated
 - Interference due to shaping
 - Monitoring of UV-profile

Asymmetry of

<u>transverse emittance</u>:

- ~ Mirror in Vacuum is problem~
- How to minimize wake-field
- How to avoid from chargingup on mirror
- Backward illumination
 vanishing mirror ~
- Hollow beam incidence
 - ~ keep mirror away ~

Laser Incidence methods:

- Oblique incidence
- Normal incidence
- Backward incidence
- Hollow beam incidence

Influence of normal incidence mirror ~ In the case of higher charge~

From the cathode 560mm Downstream

Normal incidence mirror

Distance from beam axis . 6 mm

Wakefield

RFgun cavity

Simulation results with MAFIA

The condition of this simulation

Metal Pipe: ϕ :40mm, L:100mm Metal plate vertical to the beam axis 6mm from beam axis

Beam condition (almost same as experiment) (Charge distribution took from particle tracking code)

Bunch charge: Beam energy: Tem. Profile: $4.5 \text{ ps} (1\sigma)$ Trans. Profile:

0.83 nC 3.6 MeV $3.5 \text{ mm} (1\sigma)$

Normal incidence mirror

Influence on X,Y-emittance due to normal incidence mirror (Beam behaviors nearby mirror)

The simulation reproduces that Y-emittance is larger than others.

The third incidence method: Hollow beam incidence

Hollow mirror chamber and hollow optics

Influence on X,Y-emittance due to hollow

incidence mirror

(Beam behaviors nearby hollow mirror)

Emittance Distortion due to Ring Mirror

Not significant influence on emittance with metal & dielectric hollow mirror.

Generation of hollow laser beam

Hollow Laser beam (ϕ =20~40 mm)

Axicon lens pair (λ /20)

Generation of hollow laser beam

2. How should we make deal with Laser's coherency?

1.1 Kill coherency with fiber bundle to shape 3D-ellipsoidal for backward illumination
1.2 Utilize coherency with Z-polarization with hollow beam incidence (Schottky effect on the metal cathode)

Coherency of Laser is good or bad!?

in laser shaping & cathode Illumination?

Lamp is better?

Coherency of Laser is good or bad!?

How we can utilize the laser coherency?

Coherency of Laser is good or bad!?

Kill) fiber bundle laser profile homogenizer with backward illumination (transparent cathode)

Transparent Cathode with Fiber Bundle ~
 Pulse Stacking with 2,000 different Optical Passes

Vacuum Bellows

Experiment setup for different cathode test

Closed Control System for Fiber Bundle with computer-aided Deformable mirror

Short Summary of Laser shaping

- Shaping with computer-aided deformable mirror could generate Flattop. It is very flexible to optimize the spatial profile with genetic algorithm. Combining with pulse stacker, 3D- laser pulse shaper was completed.
- Fiber Bundle is ideal as a 3D-shaper (patent)
 - It is very simple to shape : You have to optimize the length of the Bundle for aimed pulse duration: 15 ps ~ 1-m long
 - 3D-laser profile: It can generate ellipsoidal from any profile.
 - Short working distance: It needs to develop back illumination.
 - Laser fluence limit: Laser fluence @ 100 fs <1.5 mJ/cm2
 It is possible to use as 3D-shaper down to 60 nJ/pulse.
- Transparent cathode for shaping complex system with fixed fiber bundle & adjustable deformable mirror might have a lot of possibilities with fine tuning.

Use) Z-polarized laser on the cathode & field emission with Schotkky effect (It's not proved yet!)

Demonstration of Radial polarization

Is the response of metal cathode femtosecond ?

Incident angle dependency of QE (Cu) Comparison between Normal & Oblique incidence between S & P polarization

Incident angle dependence of reflectivity (Cu)

Reflection ratio of robust cathode candidates

Wavelength (μm)

Simplest radial polarizer: divided waveplate

Z-polarization field on the cathode: Divided number(2~32) dependence

Scale bar is 7.5µm @790nm, NA=0.1 (Flattop incidence)

Using divided waveplate, the distribution of strength of Zpolarization field |E|²: (a)2-divied, (b)4-divided, (c)8-divided, (d)16 -divided, (e)32-divided, (f) perfect radial polarization (n: infinity)

The strength of Z-polarization field ∞(NA)⁴

∝1/(Focus length)⁴

Work function of various metal cathode

History & future plan of Z-polarization gun

- 2006 1. Z-polarization gun & Hollow beam incidence method were proposed.
- 2007 2. Radial Polarizer, Axicon lens pair & their Optical coatings were developed & tested. Preparing Optics

Feasibility study

- **<u>2008</u> 3.** Feasibility test of Hollow incidence & electron emission with Z-polarization.
- **<u>2009</u>4.** Feasibility test of **Low-emittance** beam <u>~2010</u> generation & selection of ideal cathode.

Feasibility test plan

- (1) We can switch radial (max. Z-field) to azimuth (zero Z-field) with rotating half waveplate!
 (2) Comparison between radial and azimuth polarization can tell Z-polarization effect on the cathode (The first test will be with copper cathode).
- (3) Using cartridge type cathode (revolver RF gun), different metal cathode material (even for transparent & NEA- cathode) will be tested. We can find best material for this purpose.
- (4) Gating laser pulse and photo emission laser source will be separated (in some cases) to optimized for Z-polarization gun (even for polarized electron source).

- (1) We can switch radial to azimuth with rotating half waveplate!
- (2) Comparison between radial and azimuth polarization can tell Z-polarization effect on the cathode.

Summary of Z-polarization

The generated Z-polarization can exceed an electrical field of 1 GV/m easily with fundamental wavelength from femtosecond laser oscillator (with long cavity).

According to our calculations (NA=0.15), the Z-field of 1 GV/m needs 1.2 MW at peak power for fundamental (790 nm) and 0.31 MW for SHG. In the field of 1 GV/m, the work function of copper cathode reduces ~2 eV.

It makes possible to drive copper cathode (normally need <288 nm) with SHG (395 nm), robust diamond NEA-cathode (normally <226 nm) with THG (263 nm.

This concept of laser-induced Schottky emission can be applied for photocathode DC gun (even for polarized electron source!?). We showed some designs for them.

Variation of Z-polarization RF gun with laser –induced field gating (plane field emitter)

