Electron Emission in Photoinjector Simulation Codes

Jang-Hui Han, Diamond Light Source Mini-workshop on Characterization of High Brightness Beams 26-30 May 2008, Zeuthen, Germany

Introduction

- In photoinjectors, electron beams are in an ultra-high density.
- A tiny variation of initial beam parameters (like rise/fall time of the drive laser and inhomogeneity) changes the beam quality dramatically. → photoemission
- High-quality photoinjectors require high accelerating field and results in high <u>field emission</u>.
- Dark current as well as electron beams need to be tracked.
- For high QE cathodes <u>secondary emission</u> may take place.

General review of photoinjector simulation codes: C. Limborg et al, PAC2003, p. 3528.

Photoemission – QE and Energy

Electron affinity variation results in

- 1. Bunch charge change
- 2. Kinetic energy change of emitted electrons (thermal emittance)

$$\begin{split} & \kappa : \text{surface contamination factor} \\ & \beta_{\text{ph}} : \text{field enhancement factor} \\ & E_{\text{emit}} : \text{electric field at emission} \end{split}$$

decrease by the

electric field

Photoemission – Mirror Effect

Photoemission – Simplest

- No QE inhomogeneity
- No Schottky effect
- No mirror charge + SC

• No

tilting due to incident angle: angle x beam size (2 $^{\circ}$ x 1 mm \rightarrow 0.1 ps)

 $l_{bunch} \sim l_{laser} * response time$

Important for special cases: ultra-short pulse generation, GaAs cathode ...

Photoemission Features for Simulation (1)

- Initial distribution of an electron beam
 - Spatial and temporal shape of the cathode laser:
 Most simulation codes: ASTRA (generator), PARMELA (EGUN), TREDI, IMPACT, GPT ...
 - QE variation in space (QE inhomogeneity):
 QE map should be integrated
 - QE variation due to Schottky effect: ASTRA (astra)
 - Mirror charge effect:
 Most simulation codes with a space charge routine
 - Response time of photoemission (cathode material):
 No code
 - Bunch tilting due to incident angle: No code

Photoemission Features for Simulation (2)

- Energy distribution of electrons \rightarrow thermal emittance
 - Cathode material, contamination, roughness, laser wavelength, accelerating field

Most simulation codes offer as initial emittance and/or initial electron energy

ASTRA Input for an Electron Beam

Generator input

&INPUT Fname='laser_profile.ini' . . . IPart=200000 Cathode=T Q_total=1.0E0 Dist_z='p' Lt=0.016, rt=0.004 Dist_pz='i', LE=0.00075 Dist_x='r', sig_x=0.47E0 Dist_y='r', sig_y=0.47E0 Nemit_x=0.0E0

Astra input

&NEWRUN

Distribution = 'laser_profile.ini'

Q_Schottky=0.01

&CHARGE LSPCH=T

Lmirror=.T

. . .

PARMELA Input

Field Emission - Phenomena

$$\bar{I}_{\rm FE} = C_1 E^2 \exp(-C_2 / E)$$
 Fowler-Nordheim

 Generate electrons depending on the applied E-field strength at the surface

- C_1 and C_2 can be empirically found with measurement of field-emitted current as a function of applied field strength

ASTRA Input for Dark Current

Generator input

```
&INPUT
Fname='dark_current.ini'
```

... IPart=10000

. . .

Dist_z='g' Sig_clock=0.032 /

Astra input

&NEWRUN

•••

Distribution = 'dark_current.ini' Xoff=0.0, Yoff=0.0 Zoff=0.0

&APERTURE Lapert=T File_Aperture(1)='beam_pipe.dat"

Secondary Emission - Phenomena

Secondary Emission - Model

- When a primary electron hit the surface, define the number of secondary electrons and emits to the vacuum.
 - Energy of the primary electron
 - Bombardment angle to the surface
- Properties of the emitted electrons
- Continue to track the new emitted electrons

Secondary Emission in ASTRA

$$\delta(E_p) = \delta_{\max} \frac{E_p}{E_{p,\max}} \frac{s}{s - 1 + (E_p/E_{p,\max})^s}$$

Astra input

&APERTURE File_Aperture(1)= 'Rad' Ap_z1(1)= -0.1 Ap_z2(1)= 0.0 Ap_r(1)= -2.5 SE_d0(1)= 20.0 SE_Epm(1)= 2.2 ! KeV SE_fs(1)= 1.5 SE_Esc(1)= 2.0 ! eV Max_secondary=100000

Summary

- Most simulation codes can generate a realistic initial beam profile and calculate mirror charge effect. <u>But, bench</u> <u>marking study is necessary for different codes.</u>
- Some codes have extra functions (ex: ASTRA for Schottky effect, PARMELA, GPT ... for spherical cathode)
- Missing functions
 - Photoemission response time
 - Bunch tilting due to incident angle
- Dark current can be tracked with beam simulations codes if the codes can control initial emitting point
- Some codes (ASTRA, GPT, MAFIA, ...) offer secondary electron generation

