# Constraining dark matter scenarios with gamma-ray box-shaped features

### Sergio López Gehler

in collaboration with A.Ibarra, H.M.Lee, W.-I.Park and M.Pato





Technische Universität München

Excellence Cluster Universe

Autumn School in Particle Physics and Cosmology, Göttingen

October 10, 2013

# Outline



Dark matter and indirect detection

The box-shaped spectrum

Concrete models

Conclusions

### Evidence for dark matter



► There is an overwhelmingly amount of evidences for the existence of dark matter (**DM**).



► The job we have is to find out what its (mysterious) nature is.













- ▶ Compute the expected flux of SM particles on earth
  - ► Antiprotons, Antideuterons...
  - Neutrinos
  - ► Gamma-rays







- ▶ Compute the expected flux of SM particles on earth
  - ► Antiprotons, Antideuterons...
  - Neutrinos
  - ► Gamma-rays
- Compare with the expected background and look for excesses

Gamma rays



Identify Dark Matter signals through gamma-ray observations:

#### Gamma rays



Identify Dark Matter signals through gamma-ray observations:

- ► Smooth gamma-ray spectrum
  - ▶ Final-state radiation from charged particles  $(e^{\pm}, \mu^{\pm})$
  - Pion decay
  - ▶ Inverse Compton scattering
- Spectral features are a very clean way to spot Dark Matter
  - $\rightarrow$  smoking-guns

#### Gamma rays



### Identify Dark Matter signals through gamma-ray observations:

- ► Smooth gamma-ray spectrum
  - Final-state radiation from charged particles  $(e^{\pm}, \mu^{\pm})$
  - Pion decay
  - ▶ Inverse Compton scattering
- Spectral features are a very clean way to spot Dark Matter
  - $\rightarrow$  smoking-guns

#### Gamma-ray features:

- ► Gamma-ray lines
- ► Internal bremsstrahlung
- ► Gamma-ray "boxes" (this talk)

#### A. Ibarra, SLG, M. Pato (arXiv:1205.0007 [hep-ph])

► Consider the annihilation:

$$\chi\chi \to \phi\phi \implies \phi \to \gamma\gamma$$



► Energy of the photons in the rest frame of  $\phi$ :  $E_{\gamma}^{\rm RF} = m_{\phi}/2$ 

#### A. Ibarra, SLG, M. Pato (arXiv:1205.0007 [hep-ph])

► Consider the annihilation:

$$\chi\chi \to \phi\phi \implies \phi \to \gamma\gamma$$



- ► Energy of the photons in the rest frame of  $\phi$ :  $E_{\gamma}^{\rm RF} = m_{\phi}/2$
- ▶ Momentum of the intermediate scalar  $p_{\phi} = \sqrt{m_{\chi}^2 m_{\phi}^2}$
- ► Energy of the photons in the lab frame

$$E_{\gamma}^{\text{Lab}} = \frac{m_{\phi}^2}{2 m_{\chi}} \left( 1 - \cos \theta \sqrt{1 - \frac{m_{\phi}^2}{m_{\chi}^2}} \right)^{-1}$$

▶ The spectrum is characterized by  $m_{\chi} \& \Delta m = m_{\chi} - m_{\phi}$ 

### A. Ibarra, SLG, M. Pato (arXiv:1205.0007 [hep-ph])

► Consider the annihilation:

$$\chi\chi \to \phi\phi \implies \phi \to \gamma\gamma$$



### A. Ibarra, SLG, M. Pato (arXiv:1205.0007 [hep-ph])



• Flux

$$\phi_{\gamma}(E_{\gamma}) \equiv \frac{d^{4}N_{\gamma}}{dE_{\gamma}dSd\Omega dt} = \underbrace{\frac{\langle \sigma v \rangle}{8\pi m_{\chi}^{2}} \frac{dN_{\gamma}}{dE_{\gamma}}}_{\text{particle physics}} \underbrace{\frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \ J_{ann}}_{\text{astrophysics}}$$

#### A. Ibarra, SLG, M. Pato (arXiv:1205.0007 [hep-ph])



• Flux

$$\phi_{\gamma}(E_{\gamma}) \equiv \frac{d^4 N_{\gamma}}{dE_{\gamma} dS d\Omega dt} = \underbrace{\frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE_{\gamma}}}_{\text{particle physics}} \underbrace{\frac{1}{\Delta \Omega} \int_{\Delta \Omega} d\Omega \ J_{ann}}_{\text{astrophysics}}$$



Data from G.Vertongen and C.Weniger (arXiv:1101.2610 [hep-ph])

- ▶  $\Delta m/m_{\chi} \rightarrow 0 \Longrightarrow$  monochromatic line with  $4\gamma$  (narrow box)
- $ightharpoonup \Delta m/m_{\chi} \to 1 \Longrightarrow \text{dimmer but wider signal (wide box)}$
- ►  $E_C = m_{\gamma}/2$

# Comparing models with experimental data



► The gamma-ray signal is characterized by the parameters

$$(m_{\chi}, \langle \sigma v \rangle_{\chi\chi \to \phi\phi}, \Delta m)$$

- ▶  $BR(\phi \to \gamma \gamma)$  is model dependent
- ▶ We derive limits at 95% C.L. on the velocity-averaged cross section by comparing  $\phi_{\gamma} + \phi_{\gamma,b}$  to the experimental data

# Comparing models with experimental data



▶ The gamma-ray signal is characterized by the parameters

$$(m_{\chi}, \langle \sigma v \rangle_{\chi\chi \to \phi\phi}, \Delta m)$$

- ▶  $BR(\phi \to \gamma \gamma)$  is model dependent
- ▶ We derive limits at 95% C.L. on the velocity-averaged cross section by comparing  $\phi_{\gamma} + \phi_{\gamma,b}$  to the experimental data

### Two different approaches:

- 1. conservative  $\rightarrow \phi_{\gamma,b} = 0$
- 2. aggressive  $\rightarrow \phi_{\gamma,b} = data$

# Constraints on a generic scenario





- $BR(\phi \to \gamma \gamma) = 1$
- ▶ Narrow box scenario
- ► Majorana dark matter



What do we need?



What do we need?

 $\blacktriangleright$  A stable DM particle  $\chi$ 



#### What do we need?

- ightharpoonup A stable DM particle  $\chi$
- ▶ An intermediate scalar  $\phi$  coupling to  $\chi$



#### What do we need?

- ightharpoonup A stable DM particle  $\chi$
- ▶ An intermediate scalar  $\phi$  coupling to  $\chi$
- ▶ Sizeable BR of  $\phi$  into photons

Y.Nomura and J.Thaler (arXiv:0810.5397)



• Motivated by the galactic positron excess

#### Y.Nomura and J.Thaler (arXiv:0810.5397)



• Motivated by the galactic positron excess

### Setup:

- ▶ A TeV-scale DM particle  $\chi$  which annihilates into a pseudoscalar "axion" a and a scalar s
- ▶ Dominant decay of *a* into leptons, suppressed photonic decay mode
- ▶ A real scalar s responsible for enhancing the DM annihilation rate

#### Y.Nomura and J.Thaler (arXiv:0810.5397)



• Motivated by the galactic positron excess

### Setup:

- ▶ A TeV-scale DM particle  $\chi$  which annihilates into a pseudoscalar "axion" a and a scalar s
- ▶ Dominant decay of *a* into leptons, suppressed photonic decay mode
- ▶ A real scalar s responsible for enhancing the DM annihilation rate
- Such a scenario arises in any theory where  $m_{\chi}$  is generated by the SSB of a global  $U(1)_{\rm X}$ . (Some models  $U(1)_{\rm PQ}$ )

#### Y.Nomura and J.Thaler (arXiv:0810.5397)



Physical parameters in this realization

$$m_\chi = 1 \, \mathrm{TeV}$$
  $360 \, \mathrm{MeV} \lesssim m_a \lesssim 800 \, \mathrm{MeV}$   $\mathrm{BR}(a \to \gamma \gamma) \lesssim 1\%$ 

#### Y.Nomura and J.Thaler (arXiv:0810.5397)



Physical parameters in this realization

$$m_\chi = 1 \,\mathrm{TeV}$$
  $360 \,\mathrm{MeV} \lesssim m_a \lesssim 800 \,\mathrm{MeV}$   $\mathrm{BR}(a \to \gamma \gamma) \lesssim 1\%$ 

- Since  $m_a \ll m_\chi$  we consider only a wide-box scenario
- ► The branching ratio into photons is small but still sizeable for our purposes
- ▶ The main annihilation channel is  $\chi \chi \rightarrow s a$ , i.e. only two photons per process
- ▶ Due to Sommerfeld enhancement and formation of DM bound states  $\Rightarrow$  boost factor  $\mathcal{O}(10^3)$

### Constraints





- ▶ Since the model implies  $m_a \ll m_\chi$  we consider only the wide-box scenario
- ▶ Since we are at TeV scales we use H.E.S.S. data of the galactic region ( $|l| \le 0.8^{\circ} \times |b| \le 0.3^{\circ}$ ) H.E.S.S. col. (arXiv:astro-ph/0603021)

### Another realization

 $\rm H.M.$  Lee, M. Park, W.-I. Park (arXiv:1205.4675) A. Ibarra, H.M. Lee, SLG, W.-I. Park, M. Pato (arXiv:1303.6632)



Introduce a  $U(1)_{PQ}$ , a DM dirac fermion and a complex scalar field  $S = (s+ia)/\sqrt{2}$ , the complex part a serves as intermediate state coupling to photons via anomalies

- ► Consider a wide box scenario  $m_a \approx 0.1 \times m_{\chi}$ , and a narrow box scenario  $m_a \approx m_{\chi}$
- ▶ BR( $a \rightarrow \gamma \gamma$ ) depends on the mass of the pseudoscalar and takes different values between 0.05 and 1.

## Another realization

H.M. Lee, M. Park, W.-I. Park (arXiv:1205.4675)A. Ibarra, H.M. Lee, SLG, W.-I. Park, M. Pato (arXiv:1303.6632)







- We consider  $BR(a \to \gamma \gamma) = 1$
- ► Low energies Fermi-LAT data (Reg3 of arXiv:1204.2797) High energies H.E.S.S. data (arXiv:astro-ph/0603021)

### Conclusions



- ▶ We have studied a scenario that produces a new kind gamma-ray spectral feature. If observed unequivocal signal of dark matter.
- $\rightarrow$  If not observed it constrains strongly such scenarios
  - ► Gamma-ray boxes are an output of (simple) physical models for dark matter without circumventing difficulties such as fine tuning
- ► These can be probed with help of gamma-ray detectors as Fermi-LAT, H.E.S.S, CTA...

### BR into vector bosons





## H.E.S.S. data vs boxes





### Constraints for different $\Delta m$



