

O. Adeyemi

Thermal Pressure Waves in A Thin Target - Analytical Solution

O. Adeyemi, A. Hartin, G. A. Moortgat-Pick, S. Riemann, F. Staufenbiel and A. Ushakov

> II. Institute of Theoretical Physics, University of Hamburg and Deutsches Elektronen-Synchrotron (DESY)

Linear Collider Forum, Hamburg October 11, 2013

Introduction

O. Adeyemi

The target for positron production needs to withstand induced pressure from the energy deposited by incident beam (see S. Riemann talk)

TASK:

To determine if the target will survive the impinged incident beam

2/18

Previous Work

- P. Sievers:
- Stress Waves Eqn.
 - Rectangular Function for describing the beam

(see "Elastic Waves in Matter Due to Rapid Heating by An Intense High Energy Particle Beam", 1974)

T.A. Vsevolozhskaya (analytical) and

A. Mikhailichenko (numerical -> flexPDE)

• Hydrodynamics Model

• Gaussian Distribution for describing the beam

(ロ) (四) (三) (三) (三) (0)

Model

We use fluid model to simulate the target behavior

O. Adeyemi

Introduction Introduction Model Methodology

Result Summary and Dutlook These involves: Continuity Equation $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$ 🖙 Equation of Motion $\rho \frac{\partial u}{\partial t} + \rho \cdot (u \nabla u) = -\nabla P$ 📨 Equation of State $P = \Gamma q(\mathbf{r}, t)$ where ρ : density; u: velocity; P: pressure; Γ : Grüneisen coefficient and q: specific energy deposited

Bundesministerium ür Bildung Ind Forschung 4/18

O. Adevemi

Linear Approximation

By linearizing those three equations, we arrives at: $\frac{\partial^2 P}{\partial t^2} - \nabla \cdot (c_0^2 \nabla P) = \Gamma \frac{\partial^2 q}{\partial t^2}$

where c_0 is the sound speed in the material

In axially symmetric case, the Partial Differential Eqn. become:

 $\frac{\partial^2 P}{\partial t^2}(r,z,t) - c_0^2 \left[\frac{\partial^2 P}{\partial r^2}(r,z,t) + \frac{1}{r} \frac{\partial P}{\partial r}(r,z,t) + \frac{\partial^2 P}{\partial z^2}(r,z,t) \right] = \Gamma \frac{\partial^2 q}{\partial t^2}$

As a first step, we assume to solve for a very thin cylinder:

$$\frac{\partial^2 P}{\partial t^2}(r,z,t) - c_0^2 \left[\frac{\partial^2 P}{\partial r^2}(r,z,t) + \frac{1}{r} \frac{\partial P}{\partial r}(r,z,t) \right] = \Gamma \frac{\partial^2 q}{\partial t^2}$$

Bundesministerium für Bildung und Forschung 5/18

October 11, 2013

Energy Deposition

Assuming instantaneous energy deposition:

0. Adeyemi

$$q = \delta(t)Q(r,z)$$

where Q(r,z) is defined as deposited energy density distribution on the target

So, for t > 0:

$$\frac{\partial q}{\partial t} = 0$$

Therefore, the Partial Differential Equation become:

$$\frac{\partial^2 P(r,z,t)}{\partial t^2} - c_0^2 \left[\frac{\partial^2 P(r,z,t)}{\partial r^2} + \frac{1}{r} \frac{\partial P(r,z,t)}{\partial r} \right] = 0$$

Energy Density Distribution

By definition:

O. Adeyemi

$$Q_{bunch} = \int_0^{vol} Q(r,z) \, dV$$

where:

$$Q(r,z) = Q_0 Q(z) \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

and

$$Q_0 = \frac{Q_{bunch}}{2\pi\sigma^2 \int_0^L Q(z) \, dz}$$

 Q_{bunch} is the energy deposited per bunch; L is the target thickness; σ is the spot size

Bundesministerium für Bildung und Forschung 7/18

<ロ> <四> <四> <三> <三> <三> <三> <三> <三</p>

Solving The Partial Differential Eqn(

O. Adeyemi

For t > 0 we have:

$$\frac{\partial^2 P(r,z,t)}{\partial t^2} - c_0^2 \left[\frac{\partial^2 P(r,z,t)}{\partial r^2} + \frac{1}{r} \frac{\partial P(r,z,t)}{\partial r} \right] = 0$$

with the following initial conditions (at time, t=0):

$$P(r,z,t)=\Gamma Q(r,z)$$

and

8/18

$$\frac{\partial P}{\partial t}(r,z,t)=0$$

Bundesministerium für Bildung und Forschung

 DESY

Infinite Hankel Transformation

O. Adeyemi

Introduction Introduction Model

Result Summary an Since we assume axially symmetric case

and

 $r(0,\infty)$ because $\sigma \ll R$, where R is the radius of the Target

Hankel Integral Transform is desirable for solving this Partial Differential Eqn. below:

$$\frac{\partial^2 P}{\partial t^2}(r,z,t) - c_0^2 \left[\frac{\partial^2 P}{\partial r^2}(r,z,t) + \frac{1}{r} \frac{\partial P}{\partial r}(r,z,t) \right] = 0$$

(日) (日) (日) (三) (三) (日) (日)

Infinite Hankel Transformation Definition

O. Adeyemi

$$\tilde{P}(K,z,t) = \int_0^\infty r P(r,z,t) J_0(Kr) dr$$

By applying Hankel Integral Transform, the PDE can be reduce to:

lethodology

Result Summary and Dutlook $\frac{\partial^2 \tilde{P}}{\partial t^2} + c_0^2 K^2 \tilde{P} = 0$

Initial conditions at t = 0 become:

$$\tilde{P}(r,z,t) = \Gamma \tilde{Q}(K,z)$$

and

10/18

 $\frac{\partial \tilde{P}}{\partial t}(r,z,t)=0$

< ロ > < 団 > < 三 > < 三 > 三 の < で

October 11, 2013

O. Adeyemi

Analytical Solution

can be simplified into:

Inverse Hankel Transform of the solution to the above PDE give:

$$P(z,r,t) = \Gamma Q_0 \sum_{m,n=0}^{\infty} \frac{(-1)^{m+n} (m+n)! 2^{m+n}}{(2m)! (n!)^2} \left(\frac{r}{2\sigma}\right)^{2n} \left(\frac{c_0 t}{\sigma}\right)^{2m}$$

esult

Summary and Dutlook

$$P(r, z, t) = \Gamma Q_0 \sum_{m=0}^{\infty} \frac{(-1)^m}{(2n-1)!!} \left(\frac{c_0 t}{\sigma}\right)^{2m} {}_1F_1\left[m+1; 1, -\frac{r^2}{2\sigma^2}\right]$$

OR

$$P(r, z, t) = \Gamma Q_0 \sum_{n \neq 0}^{\infty} \frac{(-1)^n}{n! 2^n} \left(\frac{r}{2\sigma}\right)^{2n} {}_1F_1\left[1 + n; \frac{1}{2}, -\frac{c_0^2 t^2}{2\sigma^2}\right]_{\text{October 11, 2013}}$$

Bundesministerium für Bildung und Forschung

Parameters

O. Adeyemi

ntroduction ntroduction odel

Result Summary and Below are the material and incident beam parameters for SLC and ILC:

Target Material Para	meters		
Parameters	Units	SLC	ILC
Target Material	-	W25Re	Ti-Alloy
Target Thickness	mm	20.574	14.88
Radius	mm	63.5	15
Grüneisen constant	-	2.095	1.262
Sound Speed	ms^{-1}	4671.98	5072.83
Tensile Strength	MPa	1370	880
Beam Parameter	S		
Parameters	Symbol	SLC	ILC
Beam spot size (mm)	σ	0.8	1.2
Energy Deposited (J)	<u>Q</u> bunch	41.67	0.72

Bundesministerium für Bildung und Forschung

12/18

Sanity Check

O. Adeyemi

Methodology Result Summary and At r = 0, both equations give:

$$P(r, z, t) = \Gamma Q_0 \left[1 - \sqrt{\frac{\pi}{2}} \frac{c_0 t}{\sigma} \exp\left(-\frac{c_0^2 t^2}{2\sigma^2}\right) \textit{Erfi}\left(\frac{c_0 t}{\sqrt{2}\sigma}\right) \right]$$

At $r = \sigma$, both equations give:

$$P(\sigma, z, t) = \Gamma Q_0 \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m-1)!!} \left(\frac{c_0 t}{\sigma} \right)^{2m} {}_1F_1 \left(1 + m; 1, -\frac{1}{2} \right) \right]$$

and

$$P(\sigma, z, t) = \Gamma Q_0 \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{n! 2^n} {}_1F_1\left(1+n; \frac{1}{2}, -\frac{c_0^2 t^2}{2\sigma^2}\right) \right]$$

respectively

Bundesministerium für Bildung und Forschung 13/18

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

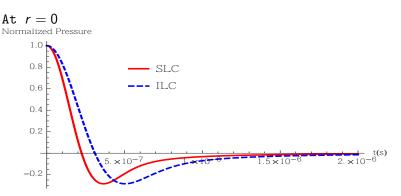
Pressure Induced at the Center of the Target

0. Adeyemi

UH

ntroduction Introduction

Result Summary a

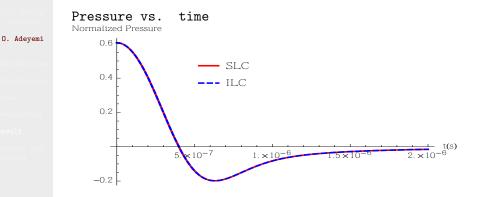


Pressure (Pascal) = Normalized Pressure \times ΓQ_0 where ΓQ_0 for ILC is $6.75\times 10^6 J/m^3$ and for SLC is $1.06\times 10^9 J/m^3$

Bundesministerium für Bildung und Forschung 14/18

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pressure Induced at $r = \sigma$



Pressure (Pascal) = Normalized Pressure \times ΓQ_0 where ΓQ_0 for ILC is $6.75\times 10^6 J/m^3$ and for SLC is $1.06\times 10^9 J/m^3$

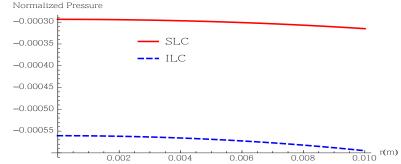
Bundesministerium für Bildung und Forschung 15/18

Pressure Induced at $t = 10 \mu s$

r

O. Adeyemi -0.00035 -0.00040-0.00045-0.00050

Pressure vs.



Pressure (Pascal) = Normalized Pressure $\times \Gamma Q_0$ where ΓQ_0 for ILC is $6.75 \times 10^6 J/m^3$ and for SLC is $1.06 \times 10^9 J/m^3$

Rundesministerium 16/18

5990

October 11, 2013

O. Adeyemi

Summary and Outlook

SUMMARY:

1 We have a solution for pressure induced in a thin target by instantaneous energy deposition

2 The peak pressure is at the center of the beam spot

OUTLOOK:

- ① Extend solution to thick cylindrical target;
- 2 Add damping effect and
- 3 Apply solution to both CLIC and ILC targets

THANK YOU

Question Please

Introductio

Introduction

Model

Methodology

Result

Summary a Jutlook

18/18