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Introduction

The target for positron production needs to

withstand induced pressure from the energy

deposited by incident beam (see S. Riemann talk)

TASK:

To determine if the target will survive the

impinged incident beam
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Previous Work

P. Sievers:

Stress Waves Eqn.

Rectangular Function for describing the beam

(see "Elastic Waves in Matter Due to Rapid Heating by

An Intense High Energy Particle Beam", 1974 )

T.A. Vsevolozhskaya (analytical)

and

A. Mikhailichenko (numerical -> flexPDE)

Hydrodynamics Model

Gaussian Distribution for describing the beam
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Model

We use fluid model to simulate the target behavior

These involves:

+ Continuity Equation

∂ρ

∂t
+∇ · (ρu) = 0

+ Equation of Motion

ρ
∂u

∂t
+ ρ · (u∇u) = −∇P

+ Equation of State

P = Γq(r, t)

where ρ: density; u: velocity; P: pressure; Γ: Grüneisen

coefficient and q: specific energy deposited
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Linear Approximation

By linearizing those three equations, we arrives

at:
∂2P

∂t2
−∇ · (c2

0∇P) = Γ
∂2q

∂t2
where c0 is the sound speed in the material

In axially symmetric case, the Partial Differential

Eqn. become:

∂2P

∂t2
(r , z , t)−c2

0

[
∂2P

∂r2
(r , z , t) +

1

r

∂P

∂r
(r , z , t) +

∂2P

∂z2
(r , z , t)

]
= Γ

∂2q

∂t2

As a first step, we assume to solve for a very thin

cylinder:

∂2P

∂t2
(r , z , t)− c2

0

[
∂2P

∂r2
(r , z , t) +

1

r

∂P

∂r
(r , z , t)

]
= Γ

∂2q

∂t2
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Energy Deposition

Assuming instantaneous energy deposition:

q = δ(t)Q(r , z)

where Q(r , z) is defined as deposited energy

density distribution on the target

So, for t > 0:
∂q

∂t
= 0

Therefore, the Partial Differential Equation

become:

∂2P(r , z , t)

∂t2
− c2

0

[
∂2P(r , z , t)

∂r2
+

1

r

∂P(r , z , t)

∂r

]
= 0
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Energy Density Distribution

By definition:

Qbunch =

∫ vol

0
Q(r , z) dV

where:

Q(r , z) = Q0Q(z) exp

(
− r2

2σ2

)
and

Q0 =
Qbunch

2πσ2
∫ L
0 Q(z) dz

Qbunch is the energy deposited per bunch; L is the

target thickness; σ is the spot size

7/18 October 11, 2013



DPG Spring

Meeting

O. Adeyemi

Introduction

Introduction

Model

Methodology

Result

Summary and

Outlook

Solving The Partial Differential Eqn

For t > 0 we have:

∂2P(r , z , t)

∂t2
− c2

0

[
∂2P(r , z , t)

∂r2
+

1

r

∂P(r , z , t)

∂r

]
= 0

with the following initial conditions (at time,

t = 0 ):

P(r , z , t) = ΓQ(r , z)

and
∂P

∂t
(r , z , t) = 0
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Infinite Hankel Transformation

Since we assume axially symmetric case

and

r(0,∞) because σ � R, where R is the radius of

the Target

Hankel Integral Transform is desirable for solving

this Partial Differential Eqn. below:

∂2P

∂t2
(r , z , t)− c2

0

[
∂2P

∂r2
(r , z , t) +

1

r

∂P

∂r
(r , z , t)

]
= 0
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Infinite Hankel Transformation

Definition

P̃(K , z , t) =

∫ ∞

0
rP(r , z , t)J0(Kr)dr

By applying Hankel Integral Transform, the PDE can

be reduce to:

∂2P̃

∂t2
+ c2

0K 2P̃ = 0

Initial conditions at t = 0 become:

P̃(r , z , t) = ΓQ̃(K , z)

and
∂P̃

∂t
(r , z , t) = 0
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Analytical Solution

Inverse Hankel Transform of the solution to the

above PDE give:

P(z , r , t) = ΓQ0

∞∑
m,n=0

(−1)m+n(m + n)!2m+n

(2m)!(n!)2

( r

2σ

)2n (c0t

σ

)2m
can be simplified into:

P(r , z , t) = ΓQ0

∞∑
m=0

(−1)m

(2n − 1)!!

(c0t

σ

)2m
1F1

[
m + 1; 1,− r2

2σ2

]
OR

P(r , z , t) = ΓQ0

∞∑
n=0

(−1)n

n!2n

( r

2σ

)2n
1F1

[
1 + n;

1

2
,−c2

0 t2

2σ2

]
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Parameters

Below are the material and incident beam

parameters for SLC and ILC:

Target Material Parameters

Parameters Units SLC ILC

Target Material - W25Re Ti-Alloy

Target Thickness mm 20.574 14.88

Radius mm 63.5 15

Grüneisen constant - 2.095 1.262

Sound Speed ms−1 4671.98 5072.83

Tensile Strength MPa 1370 880

Beam Parameters

Parameters Symbol SLC ILC

Beam spot size (mm) σ 0.8 1.2

Energy Deposited (J) Qbunch 41.67 0.72
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Sanity Check

At r = 0, both equations give:

P(r , z , t) = ΓQ0

[
1−

√
π

2

c0t

σ
exp

(
−c2

0 t2

2σ2

)
Erfi

(
c0t√

2σ

)]
At r = σ, both equations give:

P(σ, z , t) = ΓQ0

[ ∞∑
m=0

(−1)m

(2m − 1)!!

(c0t

σ

)2m
1F1

(
1 + m; 1,−1

2

)]
and

P(σ, z , t) = ΓQ0

[ ∞∑
n=0

(−1)n

n!2n
1F1

(
1 + n;

1

2
,−c2

0 t2

2σ2

)]
respectively
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Pressure Induced at the Center of

the Target

At r = 0

SLC

ILC

5. ´10-7 1. ´10-6 1.5 ´10-6 2. ´10-6
tHsL

-0.2

0.2

0.4

0.6

0.8

1.0

Normalized Pressure

Pressure (Pascal) = Normalized Pressure × ΓQ0

where ΓQ0 for ILC is 6.75× 106J/m3 and for SLC is

1.06× 109J/m3
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Pressure Induced at r = σ

Pressure vs. time

SLC

ILC

5. ´10-7 1. ´10-6 1.5 ´10-6 2. ´10-6
tHsL

-0.2

0.2

0.4

0.6

Normalized Pressure

Pressure (Pascal) = Normalized Pressure × ΓQ0

where ΓQ0 for ILC is 6.75× 106J/m3 and for SLC is

1.06× 109J/m3
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Pressure Induced at t = 10µs

Pressure vs. r

SLC

ILC

0.002 0.004 0.006 0.008 0.010
rHmL

-0.00055

-0.00050

-0.00045

-0.00040

-0.00035

-0.00030

Normalized Pressure

Pressure (Pascal) = Normalized Pressure × ΓQ0

where ΓQ0 for ILC is 6.75× 106J/m3 and for SLC is

1.06× 109J/m3
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Summary and Outlook

SUMMARY:

À We have a solution for pressure induced in a thin

target by instantaneous energy deposition

Á The peak pressure is at the center of the beam spot

OUTLOOK:

À Extend solution to thick cylindrical target;

Á Add damping effect and

Â Apply solution to both CLIC and ILC targets
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THANK YOU

Question Please
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