Gaugino Mass Measurement as Benchmark for a Particle Flow Detector at the ILC

Mikael Berggren, Jenny List, Madalina Chera LC Forum, DESY, 9-11 October 2013

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Motivation

- The ILC detector design optimisation & the physics studies are carried out with a detector simulation.
- The Particle Flow concept is very important for achieving the desired precision at the ILC.
- The PFlow is a crucial part of the reconstruction software.
- Due to the inherent changes and development of the software it is worthwhile to:
 - Quantify (parametrise) its performance
 - Study, compare and document the simulation and reconstruction performance of the available ILC simulations
 - Understand what could be improved in the detector design and reconstruction

Current Detector Simulations

Changes Between LOI and DBD

- > The new simulation → improved detector realism:
 - the vertexing
 - the tracker (TPC)
 - the calorimeter

now include electronics and service materials.

Changes Between LOI and DBD

- New forward tracking pattern recognition
- New TPC pattern recognition
- Pandora PFANew has been developed and rewritten For |cos(θ)| < 0.7:</p>

Jet Energy [GeV]	σ_{Ej}/E_j [LOI]	σ_{Ej}/E_j [DBD]
45	3.71±0.05 %	3.66±0.05 %
100	2.95±0.04 %	2.83±0.04 %
180	2.99±0.04 %	2.86±0.04 %
250	3.17±0.05 %	2.95±0.04 %

The jet energy resolution has actually improved despite the material addition. Goal: study what happens in a physics scenario!

Study case: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production at the ILC

"Point 5" benchmark : gaugino pair production at ILC

http://arxiv.org/pdf/1006.3396.pdf (ILD Lol) http://arxiv.org/pdf/0911.0006v1.pdf (SiD Lol)

Study case - motivation

- > The "point 5" scenario is a good case for:
- studying the detector and particle flow performance
 - 2 escaping LSP's → missing energy
 - hadronic decay of gauge bosons
 - goal: clearly distinguish between W and Z pair events
- comparing and studying the performance of two versions of detector simulation (e.g. LOI and DBD)

Study case – Analysis Flow

- > The fully hadronic decay modes of the on shell gauge bosons were chosen as signal
- > Signal topology: 4 jets and missing energy
- > Background:
 - SM 4f background is dominant
 - Each signal channel acts as background to the other!
- Event preselection apply cuts on:
 - Number of tracks in event and per jet
 - Minimum number of PFOs per jet = 3
 - Minimum jet energy and |cos(θ)_{jet}|
 - |cos(θ)_{pmiss}|< 0.99</p>
 - 100 GeV < E_{visible} < 300 GeV</p>
 - M_{missing} > 220 GeV
- Perform kinematic fit using Marlin KinFit: equal mass constraint (determine best jet pairing)
 - Apply cut on converged kinematic fit

> Use dijet mass to separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ events \rightarrow measure cross section

The DBD distribution appears slightly narrower and shifted towards lower energy, however the DBD and LOI distributions are compatible with each other.

$\widetilde{\chi}_1{}^{\pm} \, and \, \widetilde{\chi}_2{}^0$ Mass Measurement

- > Mass difference to LSP $(\widetilde{\chi}_1^0)$ is larger than M_Z
- Observe the decays of real gauge bosons
- > 2 body decay → the edges of the energy spectrum are kinematically determined
- > Use dijet energy spectrum "end points" in order to calculate masses

$$\gamma = \frac{E_{beam}}{M_{\chi}}$$
$$E_{\pm} = \gamma \cdot EV^* \pm \gamma \cdot \beta \cdot \sqrt{E_V^{*2} - M_V^2}$$

Real edge values [GeV]:

W _{low}	\mathbf{W}_{high}	Z _{low}	Z_{high}
80.17	131.53	93.24	129.06

Dijet [Boson] Energy Comparison LOI - DBD

> Use dijet energy to measure $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ mass

The DBD distribution appears slightly narrower and shifted towards lower energies. Nevertheless, the two distributions agree very well.

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}$ Signal Sample Further Separation

 Calculate χ² with respect to nominal W / Z mass

$$\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_{V})^{2} + (m_{j2} - m_{V})^{2}}{\Box}$$

min $\chi^2 \! \rightarrow \! \widetilde{\chi}_1{}^{\pm} \, and \, \widetilde{\chi}_2{}^0 \, separation$

- Downside: lose statistics
 - Cut away 43% of $\tilde{\chi}_1^{\pm}$ surviving events
 - Cut away 68% of $\tilde{\chi}_2^0$ surviving events
- However, after the χ² cut, the separation is quite clear:

Obs.	DBD		LOI	
	$\widetilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^0$	$\tilde{\chi}_1{}^{\pm}$	${\widetilde \chi_2}^0$
Efficiency	57%	32%	56%	34%
Purity (total)	63%	35%	62%	35%
Purity (SUSY)	94%	68%	95%	66%

chargino cut (W like events)

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Mass Measurement – "Endpoint" Method

Fit dijet energy spectrum and obtain edge positions:

$$f(x; t_{0_{1}}, b_{0_{2}}, \sigma_{1_{2}}, \gamma) = f_{SM} + \int_{t_{0}}^{t_{1}} (b_{2}t^{2} + b_{1}t + b_{0})V(x - t, \sigma(t), \gamma)dt$$

Where:

- The polynomial accounts for the slope of the initial spectrum
- The Voigt function accounts for the detector resolution and gauge boson width

Endpoint Extraction Comparison – LOI to DBD

$$\begin{array}{l} \mathsf{E}_{\mathsf{low}} \simeq 79.7 \pm 0.3 \; \mathrm{GeV} \\ \mathsf{E}_{\mathsf{high}} \simeq 131.9 \pm 0.9 \; \mathrm{GeV} \end{array}$$

$$\begin{array}{l} \mathsf{E}_{\mathsf{low}} \simeq \textbf{79.5} {\pm} \textbf{1.7} \; \mathsf{GeV} \\ \mathsf{E}_{\mathsf{high}} \simeq \; \textbf{128.3} {\pm} \textbf{1.2} \; \mathsf{GeV} \end{array}$$

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

Issues of the "Endpoint Method"

The fitting method appears to be highly dependent on small changes in the fitted distribution \rightarrow it is clearly NOT appropriate for a comparing the simulation and reconstruction performance.

We need to apply a different edge extraction method!

Endpoint Extraction using an FIR Filter

- Finite Impulse Response (FIR) filters are digital filters used in signal processing.
- FIR filters can operate both on discrete as well as continuous values. >
- The concept of "finite impulse response" \leftrightarrow the filter output is computed as a finite, weighted sum of a finite number of values from the filter input.

$$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k] \leftarrow \text{the input signal}$$

the filter coefficients (weights)

- y is obtained by convolving the input signal with the (finite) weights
- FIR filters are used to detect edges in image processing techniques:

Demigny, T. Kamlé Ū.

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values

Applying an FIR Filter

- Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values
- Consider an array of chosen weights (smaller than the histogram!)
- Create new array of the same size:
 - Each entry in the new array is the weighted sum of the bin content values from the bins surrounding the corresponding bin in the original array.
 - The array is filled using the same (finite) weights each time.
- The value of the output depends on the pattern in the neighbourhood of the considered bin and NOT on the position of the bin
- The pattern of weights = kernel
- The filter application = convolution

Choosing the Appropriate Filter

- > Idea: first derivative as kernel \rightarrow it works but may be rather noisy
- > In order to choose an apropriate filter one can apply the following criteria:

Canny's criteria: [J. F. Canny. A computational approach to edge detection. *IEEE Trans. Pattern Analysis and Machine Intelligence*, pages 679-698, 1986]

- Good detection: probability of obtaining a peak in the response must be high
- Localisation: standard deviation of the peak position must be small
- Multiple response minimisation: probability of false postive detection must be small
- Canny has suggested that an optimal filter is very similar to the first derivative of a Gaussian

Testing the FDOG Filter

> There are two important filter characteristics that must be optimised:

A toy MC study is needed to optimise the filter and bin size!

Testing the FDOG Filter

There are two important filter characteristics that must be optimised: the bin size and the filter size.

Filter response after applying the FDOG Filter to the $\tilde{\chi}_1^{\pm}$ energy distribution:

Testing the FDOG Filter

- There are two important filter > characteristics that must be optimised: the bin size and the filter size.
- Filter size $\leftrightarrow \sigma$ of the FDOG kernel >

Studied the effect of the filter size on a smeared step edge monte carlo data.

The σ = 5 value filter size is very close to the minimum range of the error curve.

FIR Edge Extraction Comparison – LOI to DBD

In the **LOI** case: the fitted and filter values are extremely close to the real model value. In the **DBD** case: the filter value is much closer to the model one than the fitted edge.

Toy MC for the Filter Edge Extraction

- > To estimate the statistical precision of the edge extraction \rightarrow toy MC
- > 10000 $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ energy spectra have been produced
- The FDOG filter was then applied 10000 times
- > Example: for the $\tilde{\chi}_1^{\pm}$ case:

400

Edge Extraction Comparison

True	80.17	131.53	93.24	129.06
Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5
DBD	79.5±1.7	128.3±1.2	91.9±0.8	127.9±0.7
DBD filter	80.1±0.2	129.1±0.7	91.9±0.2	127.2±0.7

The filter extraction method is preferable:

- it is more stable
- provides smaller uncertainties in determining the edge position.

Conclusions

- It is important to study and compare the performance of our detector simulation and reconstruction software.
- The comparison should also be done within a physics scenario.
- The χ₁[±] and χ₂⁰ pair production in the framework of the "Point 5" benchmark has been presented as study case.
- A preliminary comparison between the LOI and DBD simulation and reconstruction has been made;
 - The dijet mass reconstruction from the DBD is compatible to the LOI analysis.
 - The DBD reconstructed boson energy spectrum is very similar to the LOI one
 - However the fitting method for the mass determination appears very sensitive to small changes. A more robust method is needed.
 - Applying a finite impulse response (FIR) filter in order to extract the edge information instead of the fitting method is:
 - More robust (i.e. independent on distribution shape)
 - Provides just as good if not better statistical precision
- Outlook:
 - A mass calibration will be performed for the mass measurement.

Back up

Changes Between LOI and DBD

For |cos(θ)| < 0.7:</p>

Jet Energy [GeV]	σ_{Ej}/E_j [LOI]	σ_{Ej}/E_j [DBD]
45	3.71±0.05 %	3.66±0.05 %
100	2.95±0.04 %	2.83±0.04 %
180	2.99±0.04 %	2.86±0.04 %
250	3.17±0.05 %	2.95±0.04 %

Madalina Chera | LC Forum | 09 - 11.10.13 | Page 30

Changes Between LOI and DBD

> The new simulation → improved detector realism:

- the vertexing
- the tracker (TPC)
- the calorimeter

now include electronics and service materials.

- > The changes of a function can be described by the derivative → interpret the histogram as a 1D function
- ➤ The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

The first derivative is approximated by using the kernel [-1, 0, 1]

- The changes of a function can be described by the derivative → interpret the histogram a a 1D function
- The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

- The first derivative is approximated by using the kernel [-1, 0, 1]
- > The kernel is convoluted with the histogram:

$$response_i = -1 \times bin_{i-1} + 0 \times bin_i + 1 \times bin_{i+1}$$

