

ULTRA-LIGHT DOUBLE-SIDED LADDERS FOR A LC VERTEX DETECTOR

OUTLINE:

- Motivation for ultra-light vertex detector
- PLUME collaboration: status and results

Ingrid-Maria Gregor, DESY for the PLUME Collaboration LC Forum DESY, October 2013

ILC VERTEX DETECTOR

ILD vertex detector layout:

Figure of merit for the VXD: Impact Parameter Resolution $\sigma_{r\phi} \approx \sigma_{rz} \approx a \oplus b/(psin^{3/2} \vartheta)$

Accelerator	a (µm)	b (µm)
LEP	25	70
SLD	8	33
Tevatron	10	40
LHC	12	70
RHIC-II	12	19
ILC	<5	<10

(Marc Winter)

- 1 Giga channels of 20×20 µm pixels in 5 layers with fast readout
 - excellent IP resolution (5 μm)² + (10 μm /p)²
 - Low material budget 0.1% X₀ per layer
 - Air cooling
 - Radiation tolerance 300krad, 10¹¹n_{eq}/cm²
 - Peak power < 0.1 2 W/cm²
- Sophisticated algorithms using vertexing
 - Vertex mass
 - Vertex charge
 - Vertex dipole
- Flavour tagging
 - Excellent performance for b- and c-tagging

THE PLUME COLLABORATION

- ILC-oriented
 - Double-sided ladders
 - Air cooled
 - Power pulsed @ T=200ms
 - 125 mm long
 - Material budget goal ~ 0.35 % X0

- Double-sided ladders benefits
 - Redundancy
 - Alignment: faster and/or more robust
 - Track finding boosted by mini-vectors

THE PLUME COLLABORATION

Ingrid-Maria Gregor, Ultra-light double-sided ladders for a LC vertex detector

- Mechanical design stiffener, supports
- Stability measurements
- Modules mounting on ladders

- Ladder mock-up & thermal measurement
- Power pulsing tests
- New: test beam analysis

- Sensors mounting on modules
- Electrical tests
- Readout & DAQ
- Cooling system
- Test beam infrastructure & analysis

Synergy with

- IKF Frankfurt, CBM group
- LBNL Berkeley, STAR-HFT group
- **CERN ALICE@LHC**

PLUME-1 DESIGN

Goals

- Electrical functionality with 6 MIMOSA 26
- Address the full fabrication, assembly & test chains

Key features

- 6x MIMOSA 26 thinned down to 50 μm
- Low mass cable = 140 μm thick with 2x20 μm copper
- Spacer = SiC foam at 8% density
- 1 ladder = 8M pixels, 10g, 0.6 % X_0 (cross section)

- Used as support in PLUME ladders
 - Follow-up work on LCFI (Bristol U.)
- Lightweight elements in silicon carbide (SiC) foam
 - Commercially available
 - Can be machined
- Properties:
 - Open-cell foam
 - Macroscopically uniform
 - 4 to 8 % fill factor (2-3% possible)
 - Iow thermal and electrical conductivity (50W/m/K)

CHOICE OF PIXEL SENSOR: MAPS

- PLUME R&D transferable to all monolithic sensor approaches
- Our choice: MIMOSA
- IPHC Strasbourg working on this since >15 years -> Mimosa (Minimum Ionizing Particle MOS Active Pixel Sensor)
- Active area underneath the electronics (epi-layer <20µm thick) providing ~100% fill-factor</p>
- Charge generated by ionization in the epitaxial layer thermally diffuse toward low potential n-well region
- Standard, cost-effective CMOS process, no post-processing

IPHC Strasbourg see http://www.iphc.cnrs.fr/-CMOS-ILC-.html

Features of the MIMOSA – detectors:

- Single point resolution 1 μm 4 μm
- Pixel pitch 10-40 μm
- Thinning achieved 50 120µm
- S/N for MIPs >40 (high resistivity substrate)
- Detection efficiency > 99%
- Radiation hardness: 1MRad ; 2 x 10¹³ n_{eq}/cm²
- Produced in various commercial CMOSprocesses

MIMOSA26

- Mimosa-26 well known chips
 - used for EUDET style telescopes since 2009
- Active surface : 1152 columns of 576 pixels
- 21.2 x 10.6 mm²
- Pixel pitch : **18.4 μm** -> 663k pixels
- Integration time ~110 μ s -> 10⁴ frames / second \Im

Test Results

- Chip operating with >99.5 % detection efficiency over the whole sensitive area
- Fake hit rate of better than 10⁻⁴
- Optimal discri. threshold ~5–6 x Noise value
- spacial resolution ~3.5 ± 0.2 μm (preliminary)

MIMOSA26: 1st MAPS with Integrated \emptyset

See Ref. C. Hu et al., TWEPP-09

Ingrid-Maria Gregor, Ultra-light double-sided ladders for a LC vertex detector

ROLLING SHUTTER

- A row is selected via a sequencer
- the signal is
 - amplified in each pixel by a preamplification stage
 - decoupled from the column driver by a double sampling circuit based on a clamping capacitor.

- 1152 signals of the selected row are transmitted to the bottom of the pixel array
- Column-level, offset compensated discriminators -> analogue-to-digital conversion.
- Outputs are connected to a zero-suppression circuitry, organized in a pipeline mode, which scans the sparse data of the current row.

ZERD-SUPPRESSION

Two steps

- Row closest to the discriminator outputs is split into 18 blocks of 64 columns.
- Inside each block:
 - the circuitry scans the 64 columns, skipping non-hit pixels and identifying contiguous pixels having their signals above the threshold.
 - Considers up to 6 strings per block, each string being composed of up to 4 hit pixels.

The outputs of the 18 blocks are combined in up to 9 strings, strings overlapping two neighboring blocks being merged in a single one.

PLUME-1 DESIGN

bare low mass cable

module with 6 sensors

PLUME-1 MODULE ASSEMBLY

PLUME-1 LADDER ASSEMBLY

→ 3 with 1 or 2 non-functional sensors

→ 1 complete stave

14

15

PLUME-1 SIMULATIONS

 \rightarrow importance of heat conductivity among sensors for efficient cooling by air

PLUME-1 SIMULATIONS

	-11	The second se	Ladder su	apported at both e
		An and a second a sec	Amore Sector Secto	
			<u> </u>	
	-		<u>.</u>	
2C - Mod	le	SiC foam 8% in Hz	SiC foam 4%	RVC in Hz
2C - Mod One sensor/	le 1	SiC foam 8% in Hz 255	SiC foam 4% in Hz 265	RVC in Hz 235
2C - Mod One sensor/ Two sensors/	le 1 2	SiC foam 8% in Hz 255 990	SiC foam 4% in Hz 265 981	RVC in Hz 235 453

 \rightarrow importance of sandwich effect for stiffness

PLUME-1 ELECTRICAL TESTS

Scan of the discriminator thresholds with all 6 sensors switched on (5 tuned for 1% occupancy)

PLUME-1 THERMAL TESTS

IR camera thermal measurement on a single module

MIMOSA 26 internal (diode) temp. measurement on ladder only 1 over the 2 modules switched on

PLUME-1 THERMAL TESTS

IR camera thermal measurement on a single module

MIMOSA 26 internal (diode) temp. measurement on ladder

PLUME-1 MECHANICAL TESTS

Surface survey of ladder with dummy sensors

With the help of Ryan Page & setup from RAL

POWER PULSING

- Mimosa not designed for power pulsing, nevertheless power pulsing studies are possible.
- Nominal value of 3.3V is reduced to 1.8V:
 - to maintain M26 programming; reprogramming would take too much time
 - to allow continuous clock and control signals (synchronisation).
- Reasonable good performance of sensor when power pulsed
- Fake hit rate with and without power pulsing shows reasonable operation about 5ms after turn on.

TEST BEAM RESULTS

- Test beam November 2011 at CERN SPS (H6)
- PLUME Ladder 01 : OKF3 + OKF6
 12 Mimosa 26 epi standart sensors. (6 per side)
- thinned down to 50 µm. All sensors at same threshold.
- Data : only from 2 sensors per side.
- 2 mm SiC foam between sides.
 Double-sided 50 µm kapton PCB. (Cu, 20µm/side)
 0,6% X0 material budget.

Resolution vs Threshold

8

6

10

MOSA26-PLUME - OKF3 - sensor

IMOSA26-PLUME - OKF3 - sensor 2

IMOSA26-PLUME - OKF3 - sensor 4

IOSA26-PI LIME - OKE3 - sensor 5

MIMOSA26-PLUME - OKF3 - sensor 6 MIMOSA 26 - epi standard

12

14

Threshold (mV)

tiq i solution tiq i soluti tiq i soluti

Pixel multiplicity vs Threshold

MINI VECTORS

- Mini-vectors between the two side of the ladder :
 - \rightarrow To improve spatial resolution.
 - \rightarrow To estimate angular resolution.
- Hit selection to make the mini vector = hits with the minimum track-hit distance.

- Spatial resolution improved.
- Correlation between observation and theoretical result =>mechanical stability of the ladder.

PLUME-2 DESIGN

- Why is the 2010 design so thick
 - cable width ~ 2 x sensor width
 - metal ~ copper
 - SiC foam (spacer) density ~ 8%

Improvements

- Iow mass cable narrower and aluminum traces
 - → first samples fabricated January 2012
 - → sensor mounting ongoing...
- spacer (SiC foam) decreased to 4% density (FEA simulation predicts no change in stiffness)
- New board for power pulsing studies
- Automatic placement machine available for fast and reliable assembly

Width = 24.5 mm

PLUME-2 DESIGN

- Expected material budget
 - transverse cross-section
 - → 0.344 % X0 = 2x0.053(sensors) + 2x0.058(flex) + 0.092(SiC4%) + 0.030(SMD)
 - average (weighted / 10 mm wide MIMOSA 26 sensitive layer)
 - → 0.502 % X0 = 2x0.069 (sensor) + 2x0.098 (flex) + 0.138 (SiC4%) + 0.030 (SMD)

Schedule

- First ladder (single side) in hands
- Mirror aluminum flex expected at the end of the month
- assembly setup being prepared
- PLUME-2 beginning of next year -> test beam !
- Small production to to follow

VXD PARAMETER SPACE

"New" development: LHC experiments are investigating possibility to use CMOS/monolithic approaches for upgrades

ALICE TRACKER UPGRADE

- After LHC Upgrade ~2018 Pb-Pb collisions at 50 kHz expected
- Opens the door for a unique physics program in 10 nb⁻¹ regime
- Requires significant upgrade of the inner tracking system (ITS) and time projection chamber (TPC).
 - New high-resolution, low material Inner Tracking System (ITS)
 - Measurements closer to interaction point
 - Reduce material budget: 0.003 X0/layer
 - Increase granularity
 - Increase η coverage

ALICE PIXEL DETECTOR

- Different options for the layout were studied
- Baseline design
 - 7 layers of monolithic pixel detectors
 - Improved standalone tracking efficiency and pt resolution
- Under investigation: Enable charge amplitude measurement in outer layers for dE/dx measurement -> PID

Option B: 3 layers of pixels + 4 layers of strips Resolutions: $\sigma_{r\phi} = 4 \ \mu m$, $\sigma_z = 4 \ \mu m$ for pixels

 $\sigma_{r\phi} = 20 \ \mu\text{m}, \ \sigma_z = 830 \ \mu\text{m} \text{ for}$ strips Material budget: X/X₀ = 0.3% for pixels X/X₀ = 0.83% for strips

ALICE PIXEL R&D

N/

- Sensor baseline decision: Monolithic pixels for all 7 layers
- Chosen technology is the Tower Jazz Technology
- Three different architectures under study:
 - MISTRAL/ASTRAL (IPHC-IRFU) based on MIMOSA
 - CHERWELL2 (RAL) based on FORTIS and TPAC
 - ALPIDE (CERN-INFN-CCNU)

MISTRAL prototype circuit (Mimosa 34)

- Modules/stave:
 - carbon fibre structure
 - cooling
 - sensors
 - polimide printed circuit board

ALPIDE (CERN-INFN-CCNU)

MISTRAL/ASTRAL

- Moved to a 0.18 µm imaging CMOS process (Tower/Jazz SC):
 - Deep P-well (quadruple well techno.) \Rightarrow in-pixel discriminators
 - 6 metal layers (instead of 4) \Rightarrow in-pixel discriminators, avoids insensitive zones
 - Epitaxial layer : high-resistivity (> 1 kΩ · cm), "18 µm thick"
 - **Stiching** \Rightarrow multi-chip slabs
 - ⇒ process very well suited to the VXD specifications
 - MISTRAL ≡ MIMOSA FOR THE INNER SILICON TRACKER OF ALICE
 - Col. // pixel array with in-pixel ampli + pedestral subtraction (cDS)
 - Each of 128 columns ended with discriminator + 8 columns without discri.
 - Pixel array sub-divided in sub-arrays featuring different pixel designs (22×22/33 μm2)
 - 2 options submission in Decembre'12 :
 - single end of column discriminator ≡ translation of MIMOSA-22AHR (0.35 techno.)
 - simultaneous 2-row encoding & 2 discriminators/column ⇒ twice faster
 - AROM-1 (Accelerated Read-Out Mimosa) ⇒ ASTRAL (2nd step)
 - in-pixel discri. & simultaneous 4-row encoding
 - \Rightarrow 8 times faster than MIMOSA-22THR

SUMMARY

PLUME

- A first (functionally) successful design of PLUME-1 fully validated
- New design PLUME-2 to reach material budget of (cross sect.) O(0.035) % X₀
- Simulation effort to validate models to predict new designs performances
- "infrastructures" in place for further designs and/or other sensors
- Applications:
 - PLUME beam tests will be an important milestones for the ILD (to be compared with DEPFET-based Belle II-VXD & STAR-PXL)
 - 6 to 8 ladders (12 x MIMOSA 26 each) will run during long beam periods in the framework of the FP7-AIDA project
 - ➔ Complementary experience wrt STAR-PXL
 - → ALICE ITS foresees a fully monolithic 7 layer vertex detector

PLUME ONGOING WORK AND PLANS

Ongoing Work

- Measurements with PCB ladder (3 sensors connected).
- Preparation and tests of flex kapton ladder with 6 thin sensors.
- Mechanical studies of carbide support and flex prototype.
- Thermal simulations and measurements of heat transfer (with air cooling).
- Power pulsing tests with source and laser.
- Investigation of alternative flex vendors.
- Material optimization of flex design.

Plans

- Realistic ILC VD ladder prototype by 2012
 - ILC Detailed Baseline Design (DBD) due in 2012
 - Steps:
 - 2x6 ΜΙΜΟSΑ-26, 0.65% Χ₀
 - 2x6 MIMOSA-26, 0.4% X₀
 - 2x6 optimized MIMOSA's, 0.3% X₀
- Use PLUME ladders within FP7 AIDA project

33

ILC VERTEX DETECTOR IN EU-FP7 AIDA

Collaboration :

PLUME collaboration + Geneva University + Warsaw University + ...

On-beam test infrastructure:

- Very thin removable target
- Large Area beam Telescope (LAT) : EUDET-like Beam Telescope
- Alignment Investigation Device (AID): ladder box

Off-beam test infrastructure:

- Thermo-mechanical studies, including effects of air-flow cooling
- Power cycling effect in strong magnetic field: Lorentz forces on ultra-light PLUME ladders

AID LAYOUT

Ingrid-Maria Gregor, Ultra-light double-sided ladders for a LC vertex detector

- Four stations with precise adjustable stages
 - Two overlapping ladders in each station
 - Middle station with three additional degrees of freedom
- Conceptual drawings:

EXAMPLE: TOP ASYMMETRY

- Process: tt \rightarrow WbWb \rightarrow bbqqqq : two b-quarks in final state
- Deviations from SM predictions in asymmetry is excellent probe of new physics
 - One of benchmarking channels for ILC LOI

Note:

- Large asymmetry in forward region
- Large mistag rate in forward region

Top quark anomalous couplings at the International Linear Collider, E.Devetak and A.Nomerotski, submitted to PRD

