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Standard Model (SM) and Beyond the SM

Standard Model
Standard Model problems

ä Hierarchy problem

ä Grand unification

ä Dark Matter

ä Baryon asymmetry

ä CP violation

Supersymmetry is one of the theories proposed to solve the SM problems

ä Each SM particles has their superpartners with 1/2 spin difference

ä Superpartners couple like SM particles

ä It is a softly broken symmetry [otherwise → mẽ = me ] UNKNOWN

In Minimal SUSY

Higgs Bosons:

h0,H0,A0,H±
Higgsinos:

h̃0, H̃0, Ã0, H̃± ?
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Supersymmetric Particles of the SM bosons

SM(MSSM) Gauge Group: SU(3)C × SU(2)L × U(1)Y

Electroweak Sector

Gauge Fields:

Bµ → U(1)

W i
µ → SU(2) , i = 1, 2, 3

Higgs Doublets:

Hu =

(
H+

u
H0

u

)
, Hd =

(
H0

d
H−d

)
SM Bosons

W± →W 1
µ ± iW 2

µ

Z 0 & γ →W 3
µ & Bµ

h0,H0,A0,H±

.

Electroweakino Sector

Gaugino Fields:

B̃µ → U(1) → Bino
W̃ i
µ → SU(2) →Wino , i = 1, 2, 3

Higgsino Doublets :

H̃u =

(
H̃+

u

H̃0
u

)
, H̃d =

(
H̃0

d

H̃−d

)

Gaugino/Higgsino Mixing

Charginos ( χ̃±i ) →
(
W̃+/−, H̃

+/−
u/d

)
Neutralinos ( χ̃0

i ) →
(
B̃0
µ, W̃

3
µ, H̃

0
d , H̃

0
u

)
with W̃± → W̃ 1

µ ± iW̃ 2
µ

higgsino-like
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Parameters of the Electroweakino Sector

M1, M2, µ, tanβ
Mass Parameters:

Soft SUSY Breaking Terms

ä M1 → Bino mass parameter

ä M2 → Wino mass parameter

.

Not related to the Soft SUSY Breaking

ä µ→ Higgsino mass parameter

* It is allowed by unbroken SUSY
* It is the only dimensionful parameter
in the MSSM

.

Other Parameter:

ä tanβ =
<H0

u>

<H0
d
>
→ the ratio of Higgs vacuum expectation values

Higgino-like charginos and neutralinos

if |µ| << M1,M2

ä |µ| ≈ Mχ̃0
1,2
,M

χ̃±1
M1 ≈ Mχ̃0

3/4
M2 ≈ M

χ̃±2
,Mχ̃0

4/3
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3/4
M2 ≈ M

χ̃±2
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4/3

χ̃0
1, χ̃

0
2 & χ̃±1 are the interested Higgsinos
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Electroweakino parameters & experimental observables

Relation between electroweakino parameters and experimental observables

Tree level masses in the case that M1 & M2 are large (θW → Weinberg angle)

M
χ̃±1

= |µ| − sin 2βsign(µ) cos2 θW
m2

Z

M2

Mχ̃0
1,2

= |µ| ± m2
Z

2
(1± sin 2βsign(µ))

(
sin2 θW

M1
+

cos2 θW

M2

)
They are weakly dependent on tanβä

µ determines Mχ̃0
2

& M
χ̃±1ä

M
χ̃±1
−Mχ̃0

1
=

m2
Z

2

(
sin2 θW

M1
+

cos2 θW

M2

)
+O

(
µ

M2
i

,
1

tanβ

)
Mχ̃0

2
−Mχ̃0

1
= m2

Z

(
sin2 θW

M1
+

cos2 θW

M2

)
+O

(
µ

M2
i

)
M1 & M2 determine M

χ̃0
2,χ
±
1
−Mχ̃0

1
ä
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Natural SUSY

Z boson mass in one-loop level is given as

m2
Z = 2

(m2
Hu

+Σu
u) tan2 β −m2

Hd
−Σd

d

1− tan2 β
− 2|µ|2

[@ large tanβ]

m2
Z = −2(m2

Hu
+Σu

u + |µ|2)

with Hu is a SM-like Higgs.

Naturalness requires to have higgsino mass parameter µ at the electroweak
scale.

ä µ2 ∼ m2
Z/2 GeV → Light Higgsinos

ä In one-loop level Σ(t̃1,2) ∼ m2
Z/2 GeV → Light Stops

Studied model contains light higgsinos but no other SUSY particles < a TeV
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Light Higgsino Scenario

Motivated by naturalness which requires µ at the electroweak scale

Scenario contains

ä 3 light higgsinos: χ̃±1 & χ̃0
1 & χ̃0

2

ä Almost mass degenerate: ∆M(χ̃±1 , χ̃
0
1) & ∆M(χ̃0

2, χ̃
0
1) ∼ a (sub) GeV

ä All other supersymmetric particles are heavy up to a few TeV

Due to small mass difference, it is a difficult scenario for LHC
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Benchmark Points

Two benchmark points are considered:

dm1600
Mass Spectrum

Particle Mass (GeV)
h 124

χ̃0
1 164.17

χ̃±1 165.77
χ̃0

2 166.87

H’s ∼ 103

χ̃’s ∼ 2− 3 × 103

∆M(χ̃±1 , χ̃
0
1) = 1.59 GeV

light higgsinos

Input Model Parameters
Parameter Value

µ 160 GeV
M1 1.72 TeV
M2 4.33 TeV

tan β 43.81

µ << M1 < M2

dm770
Mass Spectrum

Particle Mass (GeV)
h 127

χ̃0
1 166.59

χ̃±1 167.36
χ̃0

2 167.63

H’s ∼ 103

χ̃’s ∼ 2− 3 × 103

∆M(χ̃±1 , χ̃
0
1) = 0.77 GeV

Input Model Parameters
Parameter Value

µ 160 GeV
M1 5.37 TeV
M2 9.47 TeV

tan β 47.66

But also high scale models, for instance: “Hybrid Gauge-Gravity Mediated Supersymmetry

Breaking Models” Ref: F. Brummer et al. hep-ph:1201.4338
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Production Processes

Production Processes:

e+e− → χ̃+
1 χ̃
−
1

e+e− → χ̃0
1χ̃

0
2

Chargino Production Diagrams:

t-channel is suppressed / Z − γ interference

Neutralino Production Diagrams:

t-channels are suppressed / No Z − γ interference

Strong polarization dependence

Weak polarization dependence
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Decay Modes

Chargino Decay Modes

I χ̃±1 → χ̃0
1W
±∗

Ref: C.-H. Chen et al. hep-ph:9512230

dm1600

dm770

Branching Ratios
Mode dm1600 dm770

π± 16.5% 60.4%
π±π0 28.5% 7.3%

eν 17.3% 15.0%
µν 16.6% 13.7%

BRs depend crucially on ∆M

Neutralino Decay Modes

I χ̃0
2 → χ̃0

1Z
0∗

I χ̃0
2 → χ̃0

1γ

Branching Ratios
Mode dm1600 dm770
γ 23.6% 74.0%
νν̄ 21.9% 9.7%

e+e− 3.7% 1.6%
µ+µ− 3.7% 1.5%

hadrons 44.9% 12.7%

.
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Separation of the Processes

Chargino Process

ä χ̃+
1 χ̃
−
1 → 2χ̃0

1 + W+∗W−∗

ä χ̃+
1 χ̃
−
1 → 2χ̃0

1 + * hadrons
* leptons

* semi-leptonic

dm1600 dm770

e/µ + π±(π0) e/µ + π±

BR = 30.5% BR = 35%

.

Neutralino Process

ä χ̃0
1χ̃

0
2 → 2χ̃0

1 + Z 0∗

ä χ̃0
1χ̃

0
2 → 2χ̃0

1 + γ

ä χ̃0
1χ̃

0
2 → 2χ̃0

1 + * hadrons
* leptons

* photon

dm1600 dm770
BR(γ) = 23.6% BR(γ) = 74.0%

.
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Higgsino Signatures and Challenges

In the Final State

ä A few soft visible particles

ä A lot of missing energy (2 χ̃0
1)

PT < 5 GeV PT < 2 GeV

It is extremely challenging for LHC to observe or resolve such a low energetic
and degenerate particles

It is also non-trivial for ILC

.
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Standard Model Background: γγ → f f̄

γγ → 2f

In the final state:

I 2 fermions with low energy, which
is very similar to the signal

Ref: PhD thesis of C. Hensel

ä We have required hard ISR photon,

e+e− → χ̃+
1 χ̃
−
1 γ

e+e− → χ̃0
1χ̃

0
2γ

to avoid this similarity of the final states.

ä Additional γ makes the beam
electron visible in the detector.

ä It also makes it possible to use the
recoil mass method for the mass
measurement
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e+e− → χ̃+
1 χ̃
−
1 γ

e+e− → χ̃0
1χ̃

0
2γ

to avoid this similarity of the final states.

ä Additional γ makes the beam
electron visible in the detector.

ä It also makes it possible to use the
recoil mass method for the mass
measurement

* This method is a well-known trick for
γγ → 2f background

* In this study, it has been observed that
this method doesn’t work for eγ → 3f
background
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Analysis Overview

Software:

ä Signal events are generated with Whizard (ILC-Whizard by generator
group) Ref: Wolfgang Kilian et al., hep-ph: 0708.4233v2

I Branching ratios are calculated by Herwig++
Ref: M. Bahr et.al., Eur.Phys.J., C58:639–707, 2008

ä DBD generated samples for SM backgrounds

ä Apply fast detector simulation SGV (ILD DBD version of SGV)
Ref: M. Berggren, physics.ins-det: 1203.0217

ä Track efficiency is applied for low Pt

I Signals
I Dominating SM backgrounds

From full simulation including
tt̄ events and pair background
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Analysis Overview

Data Set:

ä
√
s = 500 GeV

ä
∫
Ldt = 500 fb−1 for each polarization

ä Polarization:
I Pe+ = +30% , Pe− = −80%
I Pe+ = −30% , Pe− = +80%

ä Cross Sections are calculated by whizard

Aim of the Study:

To measure

ä mass of the χ̃±1 & χ̃0
2.

ä mass difference between χ̃±1 & χ̃0
1.

ä precision on the polarized cross section

ä To check if the measurements are good enough to determine µ,M1,M2

and tanβ
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Measurement Strategy

χ̃±1 & χ̃0
2 Mass Measurement (M

χ̃±1
& Mχ̃0

2
):

Recoil mass of hard ISR photon is used to measure mass of χ̃±1 & χ̃0
2

Reduced CM Energy:

s ′ = s − 2
√
sEγ

ä
√
s ′ = 2×Mχ̃ if 2 χ̃ are produced at rest

ä Fitting gives Mχ̃.

However; this method is an approximation, since

ä formula is obtained only after some assumptions

ä
√
s is assumed 500 GeV

Hence,

ä Calibration is applied to the masses.

.
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Measurement Strategy

Mass Difference Measurement (∆M(χ̃±1 , χ̃
0
1)):

ä Boost decay products to the rest frame of χ̃±1

Boosted Energy:

E∗π =
(
√
s − Eγ)Eπ + Pπ · Pγ

2M
χ̃±1

At the rest frame of χ̃±1 ;

ä χ̃0
1 is produced at rest,

E∗π =
(M

χ̃±1
−Mχ̃0

1
)(M

χ̃±1
+ Mχ̃0

1
) + m2

π

2M
χ̃±1

E∗π =
1

1/∆M + 1/
∑

M
+

m2
π

2M
χ̃±1

ä E∗decays = ∆M(χ̃±1 , χ̃
0
1)

∆M
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Measurement Strategy

χ̃±1 & χ̃0
2 Mass Measurement (M

χ̃±1
& Mχ̃0

2
):

Recoil mass of hard ISR photon is used to measure mass of χ̃+
1 & χ̃0

2

Reduced CM Energy: s ′ = s − 2
√
sEγ

Mass Difference Measurement (∆M(χ̃±1 , χ̃
0
1)):

Boost decay products to the rest frame of χ̃±1 (E∗decays = ∆M(χ̃±1 , χ̃
0
1))

Boosted Energy: E∗π = (
√

s−Eγ )Eπ+Pπ·Pγ
2M
χ̃
±
1

Polarized Cross Section Measurement (δσpolarized/σpolarized )

Statistical precision on polarized cross section

<δσmeas>
<σmeas>

= 1√
ε·π·
∫
Ldt·σsignal

σmeas = σpolarized × BR(χ̃+
1 χ̃
−
1 → 2χ̃0

1, π, e(µ))
. .

.

Estimated Precison
is based on

efficiency and purity

.
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Event Selection

Preselection:

ä Require 1 photon

I with E max
γ > 10 GeV

I within the acceptance of TPC

ä No significant activity in the BeamCal

ä Less than 15 reconstructed particles

ä Edecay products < 5 GeV

ä Emiss > 300 GeV

ä Both soft decay products and missing
particles are required not to be in the
forward region After PreSelection
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Event Selection

ä Preselection is applied

Chargino Selection

ä Select semi-leptonic decay modes

I 1 π and (1 e or 1 µ)

ä E∗π < 3 GeV

ä Φacop < 2 or
√
s ′ < 480 GeV

Neutralino Selection

ä Select photon decay modes

I Only photons

ä | cos θγsoft | < 0.85

ä E∗γsoft
> 0.5 GeV

After Chargino Selection
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Event Selection

ä Preselection is applied

Chargino Selection

ä Select semi-leptonic decay modes

I 1 π and (1 e or 1 µ)

ä E∗π < 3 GeV

ä Φacop < 2 or
√
s ′ < 480 GeV

Neutralino Selection

ä Select photon decay modes

I Only photons

ä | cos θγsoft | < 0.85

ä E∗γsoft
> 0.5 GeV

After Neutralino Selection
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Calibration Procedure

ä Choose different true masses (X-axis)

ä Apply measurement and get fitted masses (Y-axis)

ä Obtain calibration curve

+δMfit

χ̃
±
1 Mfit

χ̃
±
1−δMfit

χ̃
±
1

Mcal

χ̃
±
1

−δMcal

χ̃
±
1

+δMcal

χ̃
±
1
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χ̃+
1 Mass Measurement & Calibration
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χ̃+
1 Mass Measurement & Calibration

Calibrated value of M
χ̃±1

fits with the true value

within the statistical error!
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χ̃0
2 Mass Measurement & Calibration
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Outline Introduction Model Properties Measurement Strategy Event Selection Results Conclusion

χ̃0
2 Mass Measurement & Calibration

Statistical precision on Mcal
χ̃0

2

is 3.3/1.6 GeV

for dM1600/dM770!
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Mass Difference Measurement

The central values agree with the true values within the uncertainties

∆M can be measured with 270/40 MeV statistical precision
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Polarized Cross Section Measurement

Efficiency, Purity and Precison on Polarized Cross Sections:

Polarizations P(e+, e−) = (+30%,−80%) P(e+, e−) = (−30%,+80%)

Processes χ̃+
1 χ̃
−
1 γ χ̃0

2χ̃
0
1γ χ̃+

1 χ̃
−
1 γ χ̃0

2χ̃
0
1γ

dm1600
BR of selected mode 30.5 % 23.6 % 30.5 % 23.6 %

Efficiency(ε) 9.9 % 5.8 % 9.5 % 6.0 %
Purity(π) 70.1% 67.4 % 36.4 % 62.3 %
〈δσmeas〉
〈σmeas〉

1.9 % 3.2 % 5.3 % 3.7 %

dm770
BR of selected mode 34.7 % 74.0 % 34.7 % 74.0 %

Efficiency(ε) 12.1 % 17.1 % 12.2 % 17.2%
Purity(π) 85.3 % 85.8 % 56.1 % 82.5 %
〈δσmeas〉
〈σmeas〉

1.6 % 1.7 % 3.8 % 1.9 %

ä Efficiencies are almost same for both polarizations

ä Huge difference between purities for both
polarizations in the chargino processes are due to
the strong polarization dependence

ä Cross sections can be measured more precisely
using the polarisation with e+

R e−L

<δσmeas>
<σmeas>

= 1√
ε·π·

∫
Ldt·σsignal

σmeas = σpolarized × BR

Hale Sert | Light Higgsino Scenario | LC-Forum 2013 | 10 October 2013 | 25/29



Outline Introduction Model Properties Measurement Strategy Event Selection Results Conclusion

Parameter Determination

µ,M1 & M2 can be determined using the result of the analysis.

Fit Procedure

ä tanβ is fixed in the range [1,60]

ä Fit the mass parameters; µ,M1 and M2.

Used parameters for the fit

ä M
χ̃±1

, Mχ̃0
2
, ∆M(χ̃±1 , χ̃

0
1)

ä Statistical precision on the cross sections (δσ/σ)

ä δσ/σ at
√
s =350 GeV are also added after scaling errors by the ratio of

the production cross section,
√

30.

Relation between measured and fitted parameters

ä ∆M(χ̃±1 , χ̃
0
1) is the crucial parameter for determination of M1 and M2

ä M
χ̃±1

, Mχ̃0
2

and δσ/σ are used for the determination of the µ parameter
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Parameter Determination

Results

ä Lower limits and allowed regions for M1 and M2 can
be obtained from the correlation between M1 and M2

ä µ parameter can be determined with 6.8(2.5) GeV
statistical precision for dM1600(dM770) scenario.

dM1600
√

s = 500 GeV
√

s = 350&500 GeV

@ 500 fb−1 input lower upper lower upper
M1 1.7 ∼ 0.8 no ∼ 0.8 no
M2 4.4 ∼ 1.5 no ∼ 1.5 no
µ 165.7 165.2 172.5 165.4 170.2

dM770
√

s = 500 GeV
√

s = 350&500 GeV

@ 500 fb−1 input lower upper lower upper
M1 5.3 ∼ 2 no ∼ 2 no
M2 9.5 ∼ 3 no ∼ 3 no
µ 167.2 164.8 167.8 165.2 167.7

ä Inclusion of δσ/σ at 350 GeV only effects the determination of the µ
parameter g
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Parameter Determination

Results

ä Lower limits and allowed regions for M1 and M2 can
be obtained from the correlation between M1 and M2

ä µ parameter can be determined with 6.8(2.5) GeV
statistical precision for dM1600(dM770) scenario.

dM1600
√

s = 500 GeV
√

s = 350&500 GeV

@ 500 fb−1 input lower upper lower upper
M1 1.7 ∼ 0.8 no ∼ 0.8 no
M2 4.4 ∼ 1.5 no ∼ 1.5 no
µ 165.7 165.2 172.5 165.4 170.2

dM770
√

s = 500 GeV
√

s = 350&500 GeV

@ 500 fb−1 input lower upper lower upper
M1 5.3 ∼ 2 no ∼ 2 no
M2 9.5 ∼ 3 no ∼ 3 no
µ 167.2 164.8 167.8 165.2 167.7

ä Inclusion of δσ/σ at 350 GeV only effects the determination of the µ
parameter g

350 GeV is not sufficient to measure the masses and mass difference,
larger statistics are needed. So, analysis should be done at 500 GeV
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Parameter Determination at High Luminosity

ä Luminosity is increased to
∫
Ldt = 2 ab−1 for each polarization

ä It is assumed that experimental errors would be reduced by a factor 2

ä The measurement of the ∆M(χ̃0
2, χ̃

0
1) is also included

(not measured in this analysis)

Results:

ä Inclusion of ∆M(χ̃0
2, χ̃

0
1) breaks the dependency of M1 & M2 on the low

tanβ region

ä Increased luminosity narrows the allowed region for µ parameter

@ 2 ab−1 input lower upper
M1 5.3 ∼ 3 no
M2 9.5 ∼ 7 ∼ 15
µ 167.2 165.2 167.4

@ 500 fb−1 input lower upper
M1 5.3 ∼ 2 no
M2 9.5 ∼ 3 no
µ 167.2 164.8 167.8
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Parameter Determination at High Luminosity

ä Luminosity is increased to
∫
Ldt = 2 ab−1 for each polarization

ä It is assumed that experimental errors would be reduced by a factor 2

ä The measurement of the ∆M(χ̃0
2, χ̃

0
1) is also included

(not measured in this analysis)

Results:

ä Inclusion of ∆M(χ̃0
2, χ̃

0
1) breaks the dependency of M1 & M2 on the low

tanβ region

ä Increased luminosity narrows the allowed region for µ parameter

@ 2 ab−1 input lower upper
M1 5.3 ∼ 3 no
M2 9.5 ∼ 7 ∼ 15
µ 167.2 165.2 167.4

@ 500 fb−1 input lower upper
M1 5.3 ∼ 2 no
M2 9.5 ∼ 3 no
µ 167.2 164.8 167.8

∆M(χ̃0
2, χ̃

0
1) has an important parameter for the fit!
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Conclusion

Summary

ä Naturalness leads to have light higgsinos

ä Studied extreme case of no other sparticles accessible at the ILC

ä Assumed
√
s = 500 GeV &

∫
Ldt = 500 fb−1 with

I P(e+, e−) = (+30%,−80%) and P(e+, e−) = (−30%,+80%) each

ä Separation of Higgsinos at the reconstructed level is possible at the ILC

ä δM
χ̃±1

(Mχ̃0
2
), δ∆M(χ̃±1 , χ̃

0
1), and δ(σ × BR) are small

ä Precision is sufficent
I to determine µ to a few percent
I to constrain M1,M2 to narrow band in multi-TeV regime

Outlook
ä Do the analysis with full simulation

ä Add neutralino mass difference measurement
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Backup
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Polarized Cross Section Measurement

Number of events for two signals and all SM background:
Polarizations P(e+, e−) = (+30%,−80%) P(e+, e−) = (−30%,+80%)

Processes χ̃+
1 χ̃
−
1 γ χ̃0

2χ̃
0
1γ All SM Bkg χ̃+

1 χ̃
−
1 γ χ̃0

2χ̃
0
1γ All SM Bkg

dm1600

nocut 38672 24250 1.09× 109 9817 19071 1.07× 109

semi-lep sel 3813 897 4016 930 77 3969
photon sel 19 1395 764 3 1134 762

dm770

nocut 38130 23940 1.09× 109 9792 18773 1.07× 109

semi-lep sel 4600 36 2199 1190 32 2416
photon sel 22 4095 764 3 3230 762

Efficiency, Purity and Precison on Polarized Cross Sections:

Polarizations P(e+, e−) = (+30%,−80%) P(e+, e−) = (−30%,+80%)

Processes χ̃+
1 χ̃
−
1 γ χ̃0

2χ̃
0
1γ χ̃+

1 χ̃
−
1 γ χ̃0

2χ̃
0
1γ

dm1600
BR of selected mode 30.5 % 23.6 % 30.5 % 23.6 %

Efficiency(ε) 9.9 % 5.8 % 9.5 % 6.0 %
Purity(π) 70.1% 67.4 % 36.4 % 62.3 %
〈δσmeas〉
〈σmeas〉

1.9 % 3.2 % 5.3 % 3.7 %

dm770
BR of selected mode 34.7 % 74.0 % 34.7 % 74.0 %

Efficiency(ε) 12.1 % 17.1 % 12.2 % 17.21%
Purity(π) 85.3 % 85.8 % 56.1 % 82.5 %
〈δσmeas〉
〈σmeas〉

1.6 % 1.7 % 3.8 % 1.9 %
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Mass Measurement Procedure

Fitting Procedure

ä Fitting is done in the following order:

I SM background is fitted with an exponential function assuming that we can
precisely predict SM background.

I SM background is fixed.
I SM background + Signal are fitted using linear function for signal.
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