Renormalization of Vacuum Expectation Values and IR structure of FDH/DRED at 2-loop order

Dominik Stöckinger

TU Dresden

Loops and Legs, Weimar, May 2014

- with Marcus Sperling and Alexander Voigt [JHEP 1307, 1401]
- with Christoph Gnendiger and Adrian Signer [arxiv 1404]

Outline

(1) Renormalization of VEVs
(2) IR structure in FDH and DRED

(3) Conclusions

Outline

(1) Renormalization of VEVs

- Aim: better understanding of $\delta \hat{Z}$, general 2 -loop computation

(2) IR structure in FDH and DRED

(3) Conclusions

Renormalization of VEVs

Renormalization such that $\langle\phi\rangle=0$, i.e. tadpoles vanish

$$
\phi \rightarrow \sqrt{Z}_{\phi,} \quad v \rightarrow v+\delta v=\sqrt{Z}(v+\delta \bar{v})=\sqrt{Z} \sqrt{\hat{Z}} v
$$

Renormalization of VEVs

Renormalization such that $\langle\phi\rangle=0$, i.e. tadpoles vanish

$$
\phi \rightarrow \sqrt{Z}_{\phi}, \quad v \rightarrow v+\delta v=\sqrt{Z}(v+\delta \bar{v})=\sqrt{Z} \sqrt{\hat{Z}} v
$$

- δv needed e.g. for $\delta \tan \beta, \beta(\tan \beta), \ldots$
- $\delta \hat{Z}$ characterizes to what extent v renormalizes differently from ϕ

Renormalization of VEVs

Renormalization such that $\langle\phi\rangle=0$, i.e. tadpoles vanish

$$
\phi \rightarrow \sqrt{Z}_{\phi,} \quad v \rightarrow v+\delta v=\sqrt{Z}(v+\delta \bar{v})=\sqrt{Z} \sqrt{\hat{Z}} v
$$

- δv needed e.g. for $\delta \tan \beta, \beta(\tan \beta), \ldots$
- $\delta \hat{Z}$ characterizes to what extent v renormalizes differently from ϕ
- Observed: e.g. $\delta \tan \beta_{1-\text { loop }}^{\text {MSS }}=\frac{1}{2}\left(\delta Z_{H_{u}}-\delta Z_{H_{d}}\right), \delta Z_{H_{u}}-\delta \mathcal{Z}_{H_{d}}=$ fin.

Renormalization of VEVs

Renormalization such that $\langle\phi\rangle=0$, i.e. tadpoles vanish

$$
\phi \rightarrow \sqrt{Z} \phi, \quad v \rightarrow v+\delta v=\sqrt{Z}(v+\delta \bar{v})=\sqrt{Z} \sqrt{\hat{Z}} v
$$

- δv needed e.g. for $\delta \tan \beta, \beta(\tan \beta), \ldots$
- $\delta \hat{Z}$ characterizes to what extent v renormalizes differently from ϕ
- Observed: e.g. $\delta \tan \beta_{1-\text { loop }}^{\text {MSS }}=\frac{1}{2}\left(\delta Z_{H_{u}}-\delta Z_{H_{d}}\right), \delta{Z_{H_{u}}}-\delta \hat{Z}_{H_{d}}=$ fin.
- Aim: better understanding of $\delta \hat{Z}$, general 2 -loop computation

Possibility and question

Could get $\delta \hat{Z}$ from e.g.

$$
\frac{\delta m_{t}}{m_{t}}=\frac{\delta y_{t}}{y_{t}}+\frac{\delta Z}{2}+\frac{\delta \hat{Z}}{2}
$$

\rightarrow no insight.

Possibility and question

Could get $\delta \hat{Z}$ from e.g.

$$
\frac{\delta m_{t}}{m_{t}}=\frac{\delta y_{t}}{y_{t}}+\frac{\delta Z}{2}+\frac{\delta \hat{Z}}{2}
$$

\rightarrow no insight.
Question: Can we first renormalize the theory and then compute v, so v should be finite???

Possibility and question

Could get $\delta \hat{Z}$ from e.g.

$$
\frac{\delta m_{t}}{m_{t}}=\frac{\delta y_{t}}{y_{t}}+\frac{\delta Z}{2}+\frac{\delta \hat{Z}}{2}
$$

\rightarrow no insight.
Question: Can we first renormalize the theory and then compute v, so v should be finite???
Depends on the gauge: Yes for $\partial^{\mu} A_{\mu}, A^{3}$, etc

Possibility and question

Could get $\delta \hat{Z}$ from e.g.

$$
\frac{\delta m_{t}}{m_{t}}=\frac{\delta y_{t}}{y_{t}}+\frac{\delta Z}{2}+\frac{\delta \hat{Z}}{2}
$$

\rightarrow no insight.
Question: Can we first renormalize the theory and then compute v, so v should be finite???
Depends on the gauge: No for $R_{\xi}: \partial^{\mu} A_{\mu}-\xi \operatorname{ev}(2 \operatorname{lm} \phi)$

Investigation of δv in a nutshell

Trick: [Kraus, Sibold '95j[Kraus '97] [Holili,Kraus, Roth, Rupp,Sibold, DS '02]
Introduce background field $\hat{\phi}(x)$, only at the end: $\hat{\phi}(x)=\hat{v}=$ const

$$
\phi+\hat{\phi} \rightarrow \sqrt{Z}(\phi+\sqrt{\hat{Z}} \hat{\phi})
$$

Modified R_{ξ} gauge fixing:

$$
F=\partial^{\mu} A_{\mu}+i e \xi\left(\hat{\phi}^{\dagger} \phi-\phi^{\dagger} \hat{\phi}\right)
$$

BRS transformation

$$
s \hat{\phi}=\hat{q}
$$

Computation

Global gauge invariance+Slavnov-Taylor identity restrict divergences

$$
K_{\underline{\phi}}===\equiv \forall-\cdots-\hat{G}=-\frac{i}{2} \delta \hat{Z}
$$

Meaning: renormalization of composite operator corresponding to breaking of global symmetry by gauge fixing Very few Feynman rules for with well-defined origin
[BRS transform $\propto e$]

General model

Scalar, spinor, vector fields $\phi_{a}, \psi_{p}, V^{A}$ with Lagrangian

$$
\mathcal{L}=\left.\mathcal{L}_{\text {invv }}\right|_{\phi \rightarrow \phi_{\text {eff }}}+\mathcal{L}_{\mathrm{fix}, \mathrm{gh}}+\mathcal{L}_{\text {ext }}
$$

with

$$
\begin{aligned}
\mathcal{L}_{\mathrm{inv}}= & -\frac{1}{4} F_{\mu \nu}^{A} F^{A_{\mu \nu}}+\frac{1}{2}\left(D_{\mu} \phi\right)_{a}\left(D^{\mu} \phi\right)_{a}+i \psi_{p}^{\alpha} \sigma_{\alpha \dot{\alpha}}^{\mu}\left(D_{\mu}^{\dagger} \bar{\psi}^{\dot{\alpha}}\right)_{p} \\
& -\frac{1}{2!} m_{a b}^{2} \phi_{a} \phi_{b}-\frac{1}{3!} h_{a b c} \phi_{a} \phi_{b} \phi_{c}-\frac{1}{4!} \lambda_{a b c d} \phi_{a} \phi_{b} \phi_{c} \phi_{d} \\
& -\frac{1}{2}\left[\left(m_{f}\right)_{p q} \psi_{p}^{\alpha} \psi_{q_{\alpha}}+\text { h.c. }\right]-\frac{1}{2}\left[Y_{p q}^{a} \psi_{p}^{\alpha} \psi_{q_{\alpha}} \phi_{a}+\text { h.c. }\right] \\
\mathcal{L}_{\text {fix,gh }}= & s\left[\bar{c}^{A}\left(F^{A}+\xi B^{A} / 2\right)\right] \\
\mathcal{L}_{\text {ext }}= & K_{\phi_{a}} s \phi_{a}+K_{V_{\mu}^{A}} S V_{\mu}^{A}+K_{c^{A}} s C^{A}+\left[K_{\psi_{p}} s \psi_{p}+\text { h.c. }\right]
\end{aligned}
$$

General, modified R_{ξ} gauge fixing:

$$
F^{A}=\partial^{\mu} V_{\mu}^{A}+i g \xi(\hat{\phi})_{a} T_{a b}^{A} \phi_{b}
$$

Results: $\delta Z \rightarrow \gamma \quad \delta \hat{Z} \rightarrow \hat{\gamma} \quad \delta v=\frac{v}{2}(\delta Z+\delta \hat{Z}) \rightarrow \beta_{v}$

$$
\begin{aligned}
\hat{\gamma}^{(1)}(\mathrm{S}) & =\frac{\xi}{(4 \pi)^{2}} 2 g^{2} C^{2}(\mathrm{~S}) \\
\hat{\gamma}^{(2)}(\mathrm{S}) & =\frac{\xi}{(4 \pi)^{4}}\left\{g^{4}\left[2(1+\xi) C^{2}(\mathrm{~S}) C^{2}(\mathrm{~S})+\frac{7-\xi}{2} C_{2}(\mathrm{G}) C^{2}(\mathrm{~S})\right]\right. \\
& \left.-2 g^{2} C^{2}(\mathrm{~S}) Y^{2}(\mathrm{~S})\right\} \\
\beta_{v} & =[\gamma(S)+\hat{\gamma}(S)] v
\end{aligned}
$$

can now be implemented into spectrum generator (generators) Sarah [staub], FlexibleSUSY

Prior status for RGE coefficients

Model	$\beta_{v}^{(1)}$	$\beta_{v}^{(2)}$	
MSSM	\checkmark [Chankowski Nucl.Phys. B423]	\checkmark [Yamada 94] $O\left(g^{2} Y^{2}\right)$	
$\mathrm{E}_{6} \mathrm{SSM}$	\checkmark [Athron, DS, Voigt '12]	x	
\forall gauge theory	?	x	
\forall SUSY model	?	x	
Model	β (phys. parameter)		γ (fields)
\forall gauge theory	\checkmark [Machacek, Vaughn '83, Luo etal '03]		\checkmark
\forall SUSY model	\checkmark [Martin, Vaughn; Jack, Jones; Yamada '93]		\checkmark partially

Note in SUSY: $\gamma\left(\right.$ scalar in WZ gauge+Landau or R_{ξ} gauge $) \neq \gamma($ superfield $) \stackrel{?}{=} \gamma($ light cone gauge $)$
Here: filled the gaps

Outline

(1) Renormalization of VEVs
(2) IR structure in FDH and DRED

- Aim: IR structure at 2-loop, quark/gluon form factors (Hgg) in FDH
(3) Conclusions

Scheme definitions and differences

Scheme definitions and differences

$\gamma(\hat{g})=\int P_{\hat{g} \rightarrow \hat{g} \hat{g}}$

- RS dependence:

$$
\begin{aligned}
\gamma(\tilde{g}) & =\int P_{\tilde{g} \rightarrow \hat{g} \tilde{g}} \\
& +\int P_{\tilde{g} \rightarrow \tilde{g} \hat{g}}
\end{aligned}
$$

[Signer, DS '08]

FDH: additional state \tilde{g} : value of $\gamma(\bar{g})$ changes
DRED: additional splitting of \tilde{g} : additional $\gamma(\tilde{g})$
DRED: split $g=\hat{g}+\tilde{g}$ required to understand factorization ${ }_{[S i g n e r, ~ D S ~}{ }^{08]}$
("problem" of [Beenakker, Kuij, v Neerven, Smith' '88||v Neerven, Smith '04])

$\gamma(\hat{g})=\int P_{\hat{g} \rightarrow \hat{g} \hat{g}}$

- RS dependence:

$$
+\int P_{\hat{g} \rightarrow \tilde{g} \tilde{g}}
$$

[Kunszt, Signer, Trocsanyi '94]
[Catani, Seymour, Trocsanyi '97]

$$
\begin{aligned}
\gamma(\tilde{g}) & =\int P_{\tilde{g} \rightarrow \hat{g} \tilde{g}} \\
& +\int P_{\tilde{g} \rightarrow \tilde{g} \hat{g}}
\end{aligned}
$$

[Signer, DS '08]

FDH: additional state \tilde{g} : value of $\gamma(\bar{g})$ changes
DRED: additional splitting of \tilde{g} : additional $\gamma(\tilde{g})$
DRED: split $g=\hat{g}+\tilde{g}$ required to understand factorization ${ }_{[S i g n e r, ~ D s ~}{ }^{\circ 88}$
("problem" of [Beenakker, Kuif, v Neerven, Smith '88][v Neerven, Smith '04])

Renormalization in FDH and DRED

- Different couplings $\alpha_{s}, \alpha_{e}, \alpha_{4 \epsilon}$ (can be set equal in the end)

$$
\delta \alpha_{s} \neq \delta \alpha_{e}, \beta^{s} \neq \beta^{e}, \ldots
$$

- Required, otherwise divergent/non-unitary results
[Jack, Jones, Roberts '94][Harlander, Kant, Mihaila, Steinhauser '06][Kilgore '11]

FDH or DRED

§
HV or CDR of theory with new, ϵ-scalar of multiplicity $N_{\epsilon}=2 \epsilon$ with independent couplings and γ 's

Aim: IR structure at 2-loop, quark/gluon form factors (Hgg) in FDH

IR structure (form factors) Beacher, Newemenligari, Masmeal

 Result:$\ln \mathbf{Z}=\left(\frac{\alpha_{s}}{4 \pi}\right)\left(\frac{\Gamma_{1}^{\prime}}{4 \epsilon^{2}}+\frac{\Gamma_{1}}{2 \epsilon}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{20} \Gamma_{1}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{2}^{\prime}-4 \beta_{20} \Gamma_{1}}{16 \epsilon^{2}}+\frac{\Gamma_{2}}{4 \epsilon}\right)+.$.

Derivation:

Integrate over $\mu \rightsquigarrow$ IR structure

IR structure (form factors) Beacher, Newemenligari, Masmeal

 Result:$\ln \mathbf{Z}=\left(\frac{\alpha_{s}}{4 \pi}\right)\left(\frac{\Gamma_{1}^{\prime}}{4 \epsilon^{2}}+\frac{\Gamma_{1}}{2 \epsilon}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{20} \Gamma_{1}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{2}^{\prime}-4 \beta_{20} \Gamma_{1}}{16 \epsilon^{2}}+\frac{\Gamma_{2}}{4 \epsilon}\right)+.$.
Derivation:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} \mathbf{Z} & =-\lceil\mathbf{Z} \\
\Gamma & =-2 C_{i} \gamma^{\text {cusp }}\left(\alpha_{s}(\mu)\right) \ln \mu^{2}+2 \gamma^{i}\left(\alpha_{s}(\mu)\right)
\end{aligned}
$$

Integrate over $\mu \rightsquigarrow$ IR structure

IR structure (form factors) Beanere, Newementiaradi, Mesereal

Result:

$\ln \mathbf{Z}=\left(\frac{\alpha_{s}}{4 \pi}\right)\left(\frac{\Gamma_{1}^{\prime}}{4 \epsilon^{2}}+\frac{\Gamma_{1}}{2 \epsilon}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{20} \Gamma_{1}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{2}^{\prime}-4 \beta_{20} \Gamma_{1}}{16 \epsilon^{2}}+\frac{\Gamma_{2}}{4 \epsilon}\right)+.$.
Derivation:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} \mathbf{Z} & =-\Gamma \mathbf{Z} \\
\Gamma & =-2 C_{i} \gamma^{\text {cusp }}\left(\alpha_{s}(\mu)\right) \ln \mu^{2}+2 \gamma^{i}\left(\alpha_{s}(\mu)\right) \\
& =\sum_{n}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n}\left[\Gamma_{n}^{\prime} \ln \mu^{2}+\Gamma_{n}\right]
\end{aligned}
$$

Integrate over $\mu \rightsquigarrow$ IR structure

Changes in FDH

- Everything depends on $\alpha_{S}(\mu)$ and $\alpha_{e}(\mu)$
- Additional contributions to Γ_{n} from ϵ-scalars of order $N_{\epsilon}=2 \epsilon$ Derivation:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} \mathbf{Z} & =-\Gamma \mathbf{Z} \\
\Gamma & =-2 C_{i} \gamma^{\mathrm{cusp}}\left(\alpha_{s}(\mu)\right) \ln \mu^{2}+2 \gamma^{i}\left(\alpha_{s}(\mu)\right) \\
& =\sum_{n}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n}\left[\Gamma_{n}^{\prime} \ln \mu^{2}+\Gamma_{n}\right]
\end{aligned}
$$

Integrate over $\mu \rightsquigarrow$ IR structure

IR structure (form factors)

Changes in result:

$$
\begin{aligned}
\operatorname{In} \mathbf{Z}_{2-100 p}^{\mathrm{FDH}}= & \left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{20} \Gamma_{10}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{20}^{\prime}-4 \beta_{20} \Gamma_{10}}{16 \epsilon^{2}}+\frac{\Gamma_{20}}{4 \epsilon}\right) \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)\left(\frac{\alpha_{e}}{4 \pi}\right)\left(-\frac{3 \beta_{11}^{e} \Gamma_{01}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{11}^{\prime}-4 \beta_{11}^{e} \Gamma_{01}}{16 \epsilon^{2}}+\frac{\Gamma_{11}}{4 \epsilon}\right) \\
& +\left(\frac{\alpha_{e}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{02}^{e} \Gamma_{01}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{02}^{\prime}-4 \beta_{02}^{e} \Gamma_{01}}{16 \epsilon^{2}}+\frac{\Gamma_{02}}{4 \epsilon}\right)+\mathcal{O}\left(\alpha^{3}\right)
\end{aligned}
$$

and $\Gamma_{10}=\Gamma_{1}+\mathcal{O}\left(N_{\epsilon}\right)$ etc

- Leads to translation rules between CDR, HV, FDH
- Logic and result fully compatible with [Kilgore '12]

IR structure (form factors)

Changes in result:

$$
\begin{aligned}
\ln \mathbf{Z}_{2-100 \mathrm{p}}^{\mathrm{FPD}}= & \left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{20} \Gamma_{10}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{20}^{\prime}-4 \beta_{20} \Gamma_{10}}{16 \epsilon^{2}}+\frac{\Gamma_{20}}{4 \epsilon}\right) \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)\left(\frac{\alpha_{e}}{4 \pi}\right)\left(-\frac{3 \beta_{11}^{e} \Gamma_{01}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{11}^{\prime}-4 \beta_{11}^{e} \Gamma_{01}^{\prime}}{16 \epsilon^{2}}+\frac{\Gamma_{11}}{4 \epsilon}\right) \\
& +\left(\frac{\alpha_{e}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{02}^{e} \Gamma_{01}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{02}^{\prime}-4 \beta_{02}^{e} \Gamma_{01}}{16 \epsilon^{2}}+\frac{\Gamma_{02}}{4 \epsilon}\right)+\mathcal{O}\left(\alpha^{3}\right) .
\end{aligned}
$$

and $\Gamma_{10}=\Gamma_{1}+\mathcal{O}\left(N_{\epsilon}\right)$ etc

- Leads to translation rules between CDR, HV, FDH
- Logic and result fully compatible with [Kilgore '12]
- Differences to [Kilgore '12]: slightly different γ^{i}, other sample processes

Hgg in FDH: Computation and renormalization

Hgg in FDH: Computation and renormalization

[Spiridonov '84] applicable, but mixing occurs

Hgg in FDH: Computation and renormalization

[Spiridonov '84] applicable, but mixing occurs

$$
\delta \lambda_{\epsilon}^{(1)}=\lambda_{\epsilon}\left[\left(\frac{\alpha_{S}}{4 \pi}\right)\left(-\frac{3 C_{A}}{\epsilon}\right)+\left(\frac{\alpha_{e}}{4 \pi}\right) \frac{N_{F}}{\epsilon}+\left(\frac{\alpha_{4 \epsilon}}{4 \pi}\right) C_{A}\left(\frac{-1+N_{\epsilon}}{\epsilon}\right)\right]
$$

explicit calculation

Results

$$
\begin{aligned}
& +\left(\frac{\left(\frac{s}{4 \pi}\right)\left(\frac{\alpha_{\delta}}{4 \pi}\right)}{\left(N_{\epsilon}\right.}\left\{-\frac{C_{E} N_{E}}{2 \epsilon}\right\}+\mathcal{O}\left(N_{\epsilon} \epsilon^{0}\right)\right. \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& +C_{A} N_{F}\left[-\frac{1}{\epsilon}-\frac{17}{9 \epsilon^{2}}+\frac{\frac{64}{6}-\frac{-7^{2}}{\epsilon}}{\epsilon}-\frac{916}{81}-\frac{5 \pi^{2}}{18}-\frac{46(3)}{9}\right] \\
& \left.+C_{F} N_{F}\left[\frac{1}{\epsilon}-\frac{67}{6}+8 \zeta(3)\right]+N_{F}^{2} \frac{2}{g^{\epsilon}}\right\}+\mathcal{O}\left(\epsilon^{1}\right)
\end{aligned}
$$

Results

$$
\begin{aligned}
\bar{G}^{(2)}\left(\alpha_{s}, \alpha_{e}\right)=G^{(2)}\left(\alpha_{S}\right) & +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} N_{\epsilon}\left\{C_{A}^{2}\left[-\frac{1}{4 \epsilon^{3}}+\frac{-\frac{7}{18}+\frac{N_{\epsilon}}{12}}{\epsilon^{2}}+\frac{\frac{49}{27}-\frac{\pi^{2}}{\epsilon 2}}{\epsilon}\right]+C_{A} N_{F} \frac{1}{9 \epsilon^{2}}\right\} \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)\left(\frac{\alpha_{e}}{4 \pi}\right) N_{\epsilon}\left\{-\frac{C_{F} N_{F}}{2 \epsilon}\right\}+\mathcal{O}\left(N_{\epsilon} \epsilon^{0}\right)
\end{aligned}
$$

- Difference CDR-FDH of order $\frac{N_{\epsilon}}{\epsilon}$ in agreement with prediction of IR structure if, e.g. $\bar{\gamma}_{20}^{g}=\gamma_{20}^{g}+N_{\epsilon}\left(\frac{98}{27}-\frac{\pi^{2}}{36}\right) C_{A}^{2}$
- \Rightarrow translation rules

Summary and extensions

- Hgg computed and renormalized in FDH (independent couplings!)
- IR structure in FDH understood, leads to IR translation rules
- rules apply if the same renormalization scheme is used $(\overline{M S})$
- Also possible: IR structure prediction in FDH with $\overline{D R}$ renormalization

Outline

(1) Renormalization of VEVs

(2) IR structure in FDH and DRED

(3) Conclusions

Conclusions

Divergence structure of $\sqrt{\hat{Z}} v$ in gauge theories

- from gauge fixing, \propto squared gauge couplings and $\propto \xi$
- $\rightarrow \delta \hat{Z}_{H_{u}}-\delta \hat{Z}_{H_{d}}=$ finite in MSSM at 1-loop accidentally
- 2-loop β functions, $\gamma^{\text {SUSY }}$ complete

IR structure in FDH understood, transition rules at higher orders

$$
\left[G^{(2)}-\ln \mathbf{Z}^{(2)}\right]^{\mathrm{FDH}}=\left[G^{(2)}-\ln \mathbf{Z}^{(2)}\right]^{\mathrm{CDR}}+\mathcal{O}\left(N_{\epsilon} \epsilon^{0}\right)
$$

- all ingredients known: β, γ 's, $H \rightarrow g g$ renormalization at 2-loop
- full agreement with [Kilgore '12]
- Outlook: further checks, γ 's for ϵ-scalars soon

