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Status of LHC as discovery machine

◮ spectacular result: discovery of Higgs boson

◮ but: no new particles beyond the SM found so far

⇒ we have to be prepared for the possibility that new physics
might be very subtil and show up only as small deviations from
SM predictions

⇒ entering precision era of LHC

◮ perform precise measurements of particle couplings (e.g.
couplings of the Higgs boson)

◮ comparison with precise SM predictions ⇒ need SM
predictions at NNLO QCD and at NLO electroweak



One-loop amplitudes
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different approaches for calculation:
◮ conventional method (Feynman diagrams) → TI’s needed
◮ generalised unitarity [Ossola, Papadopoulos, Pittau ’07,

Bern, Dixon, Kosower, Britto, Cachazo, Feng,Ellis, Giele, Melnikov, . . . ]

◮ recursive methods using tensor integrals → TI’s needed
[van Hameren’09; Cascioli,Maierhöfer,Pozzorini’11;

Actis,Denner,LH,Scharf,Uccirati’12]



Tools for NLO

◮ Many tools for NLO calculatios, e.g.
FeynCalc/FormCalc,Blackhat,NGluon,aMC@NLO,
HELAC-NLO,GoSam,CutTools,HELAC-1LOOP,
Samurai,Madloop,OpenLoops,Recola,...

◮ Libraries for scalar and tensor integrals, e.g.
FF [van Oldenborgh], LoopTools [Hahn,Perez-Victoria], QCDLoop
[R.K.Ellis,Zanderighi], OneLOop [van Hameren], Golem95C
[Cullen,Guillet,Heinrich,Kleinschmidt,Pilon,...], PJFry [Fleischer,Riemann]

◮ This talk:

COLLIER = Complex one loop library
in extended regularizations

fortran-library for fast and stable numerical evaluation of
tensor integrals [Denner,Dittmaier,LH → publication in preparation]



COLLIER: Applications

◮ successfully used in many calculations of

◮ NLO QCD corrections, e.g.
pp → t̄tj [Dittmaier,Uwer,Weinzierl ’07]

pp → t̄tbb̄ [Bredenstein,Denner,Dittmaier,Pozzorini ’09]

pp → WWbb̄ [Denner,Dittmaier,Kallweit,Pozzorini ’11]

◮ NLO EW corrections, e.g.
e+e− → 4 fermions [Denner,Dittmaier,Roth,Wieders ’05]

pp → Hjj via VBF [Ciccolini,Denner,Dittmaier ’07]

pp → dilepton+jet [Denner,Dittmaier,Kasprzik,Mück ’11]

pp → H+dilepton [Denner,Dittmaier,Kallweit,Mück ’11]

pp → l+l−jj [Denner,LH,Scharf,Uccirati, in prep.](talk by A.Denner)

◮ integrated in automated NLO generators

◮ OpenLoops [Cascioli,Maierhöfer,Pozzorini] (talk by P.Maierhöfer)
◮ Recola [Actis,Denner,LH,Scharf,Uccirati] (talk by S.Uccirati)



Reduction of tensor integrals

Methods implemented in COLLIER:
applied method depends on number N of propagators

◮ N = 1, 2: explicit analytical expressions

◮ N = 3, 4: exploit Lorentz-covariance

standard PV-reduction [Passarino,Veltman ’79]

+ stable expansions in exceptional phase space regions
[Denner,Dittmaier ’05]

◮ N ≥ 5: exploit 4-dimensionality of space-time
[Melrose ’65; Denner,Dittmaier ’02,’05; Binoth et al. ’05]

Basic scalar integrals from analytic expressions
[’t Hooft,Veltman’79; Beenaker,Denner’90; Denner,Nierste,Scharf’91;

Ellis,Zanderighi’08; Denner,Dittmaier’11]

⇒ fast and stable numerical reduction algorithm
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◮ system of linear equations for coefficients:
→ invert for T N,P ’s ⇒ recursive numerical calculation

∆T N,P =
[
T N,P−1, T N,P−2, T N−1

]

Gram determinant: ∆ = det(Z) with Zij = 2pipj
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◮ TN,P−1, TN,P−2, TN−1 become linearly dependent

◮ TN,P as sum of 1/∆-singular terms

◮ spurious singularities cancel to give O(∆)/∆-result

◮ numerical determination of T N,P becomes unstable

◮ scalar integrals D0, C0, B0, A0 become linearly dependent
⇒ O(∆)/∆-instabilities intrinsic to all methods relying on
the full set of basis integrals D0, C0, B0, A0

◮ solution: choose appropriate set of base functions
depending on phase-space point
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Expansion in Gram determinant

∆TN,P+1 =
[
TN,P , TN,P−1, TN−1

]

∆TN,P+2 =
[
TN,P+1, TN,P , TN−1

]

◮ exploit linear dependence of TN,P , TN,P−1, TN for ∆ = 0 to
determine TN,P up to terms of O(∆)

◮ calculate TN,P+1 in the same way

◮ use TN,P+1 to compute O(∆) in TN,P

◮ higher orders in ∆ iteratively:
O(∆k)of TN,P requires lower-point TN−1 up to rank P + k

◮ basis of scalar integrals effectively reduced
(e.g. D0 from C0’s)



coefficients vs. tensors

(T N )µ1···µP =
∑

k

∑

i1,...,ik

T N,P

0 · · ·0
︸ ︷︷ ︸

P−k

i1···ik

{ g · · · g
︸ ︷︷ ︸

(P−k)/2

pi1 · · · pik
}µ1···µP

# of tensor coefficients (TC) vs. # of tensor elements (TE)

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

N = 3 1 3 7 13 22 34 50

N = 4 1 4 11 24 46 80 130

N = 5 1 5 16 40 86 166 296

N = 6 1 6 22 62 148 314 610

N = 7 1 7 29 91 239 553 1163

tensor 1 5 15 35 70 126 210

#TC < #TE

#TC > #TE



coefficients vs. tensors

(T N )µ1···µP =
∑

k

∑

i1,...,ik

T N,P

0 · · ·0
︸ ︷︷ ︸

P−k

i1···ik

{ g · · · g
︸ ︷︷ ︸

(P−k)/2

pi1 · · · pik
}µ1···µP

# of tensor coefficients (TC) vs. # of tensor elements (TE)

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

N = 3 1 3 7 13 22 34 50

N = 4 1 4 11 24 46 80 130

N = 5 1 5 16 40 86 166 296

N = 6 1 6 22 62 148 314 610

N = 7 1 7 29 91 239 553 1163

tensor 1 5 15 35 70 126 210

#TC < #TE

#TC > #TE

NLO generators OpenLoops and Recola:
parametrisation of one-loop amplitude in terms of tensor integrals:

M =
∑

j c
(j)
µ1...µnj

T
µ1...µnj

(j)

calculated by OpenLoops/Recola

Tensor Integrals

⇒ need full tensors!



From coefficients to tensors
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In COLLIER:
◮ output: coefficients TN

0···0i1···ik
or tensors (TN )µ1···µP

◮ efficient algorithm to construct tensors from invariant
coefficients for arbitrary N,P via recursive calculation of
tensor structures

◮ for N ≥ 6: Direct reduction at tensor level

Bi1...iP

Bµ1···µP

Ci1...iP

Cµ1···µP

Di1...iP

Dµ1···µP

Ei1...iP

Eµ1···µP

Fi1...iP

Fµ1···µP

Gi1...iP

Gµ1···µP



Features of COLLIER

◮ complete set of one-loop scalar integrals

◮ implementation of tensor integrals for (in principle) arbitrary
number of external momenta N
(tested in physical processes up to N = 6)

◮ various expansion methods implemented for exceptional
phase-space points
(to arbitrary order in expansion parameter)

◮ mass- and dimensional regularisation supported for
IR-singularities

◮ complex masses supported (unstable particles)

◮ cache-system to avoid recalculation of identical integrals

◮ output: coefficients T N
0···0i1···ik

or tensors (T N)µ1···µP

◮ two independent implementations: COLI+DD



Structure of COLLIER

Collier

Coli DD tensors

Cache system

∗ scalar integrals

∗ 2-point coefficients

∗ 3-,4- point reduction
PV + expansions

∗ 5-,6-point reduction

∗ scalar integrals

∗ 2-point coefficients

∗ 3-,4- point reduction
PV + expansions

∗ 5-,6-point reduction

∗ construction of
N -point tensors from
coefficients

∗ direct reduction for
6-point tensors

set/get parameters

in Coli and DD

N -point coeffcients
T N

i1···ir

N -point tensors

T N,µ1···µr



Output of Collier

Structure UV- or IR-singular integrals in D = 4 − 2ǫ dimensions

T N = Γ(1 + ǫ)(4π)ǫ
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T N
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ǫUV
+ aIR
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IR)
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◮ cancellation of poles can be checked varying δUV, δIR,1, δIR,2

◮ convention for prefactor = 1 + O(ǫ) can be changed by shifting
δUV, δIR,1, δIR,2 accordingly

◮ coefficient aUV of 1/ǫUV - pole returned also as separate output



Treatment of IR singularities

default: use dimensional regularization

mass regularization supported for collinear singularities:
◮ declare array of squared regulator masses:

minf2 = {m2
1,m

2
2, ...,m

2
k}

with complex (not-necessarily small) numerical values

◮ if a call of a tensor integral involves an element from minf2,
the corresponding mass is

◮ set to zero in IR finite integrals
◮ kept as regulator mass in IR-singular integrals

◮ In the case of mass regularization the IR-scale µIR can be
interpreted as gluon/photon mass



Choice of reduction scheme in COLI

Strategy for 3-,4-point integrals of rank r ≤ rmax in Coli:
(similar in DD)

1 PV reduction:

accuracy for rank rmax

better than target precision?
use PV reduction
for r ≤ rmax

2 Expansions:

do g = 0, gmax

accuracy for rank rmax

and expansion up to order g

better than target precision?

end do

use expansion
up to order g

for r ≤ rmax

3 No method optimal:
use for r ≤ rmax method
with best accuracy for rmax

do r0 = rmax, 0

is there a method with
better accuracy for rank r0?

end do
done

use this method
for r ≤ r0

yes
done

yes
done

no

no



Error estimates in COLI

Error estimates in Coli: (similar in DD)

1 PV-reduction

◮ error propagation:

δDr ∼ max{ ar δD0, br δC0, cr δCr−1 }

with ar, br ∼ 1/∆r, cr ∼ 1/∆

◮ after calculation: symmetry of coefficients

δDr ∼ |Di1i2...ir
− Di2i1...ir

|, (0 6= i1 6= i2 6= 0)
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1 PV-reduction

◮ error propagation:

δDr ∼ max{ ar δD0, br δC0, cr δCr−1 }

with ar, br ∼ 1/∆r, cr ∼ 1/∆

◮ after calculation: symmetry of coefficients

δDr ∼ |Di1i2...ir
− Di2i1...ir

|, (0 6= i1 6= i2 6= 0)

2 Expansions: Dr = D
(0)
r + ... + D

(g)
r

◮ neglected higher orders + error propagation from C’s:

δDr = max{ ar,g, br δC0, cg δCr+g }

with ar,g, cg ∼ ∆g

◮ extrapolation after calculation: δDr = D
(g)
r ×

D
(g)
r

D
(g−1)
r



Cache system

Evaluation of one-loop amplitude leads to multiple calls for the same
tensor integral (TI):

◮ within one master-call:
same TI appears several times
in reduction tree
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B(i, j)

◮ different master calls and their reductions lead to same TI



Cache system

Evaluation of one-loop amplitude leads to multiple calls for the same
tensor integral (TI):

◮ within one master-call:
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Cache system in COLLIER:

◮ Identify each TI-call via index pair (N, i):
N= number of external master call
i = binary index for internal calls (propagated in reduction)

◮ pointers for each pair (N, i) point to same address in cache if
arguments of TI’s are identical
first call: write cache further calls: read cache

◮ DD: internal cache for internal calls



Conclusions

◮ COLLIER= fortran library for numerical calculation of scalar
and tensor integrals

◮ numerical stable results thanks to expansion methods for
3-,4-point integrals

◮ dimensional and mass regularization supported, as well as
complex masses for unstable particles

◮ two independent implementations: COLLIER = COLI + DD

◮ used in NLO generators OpenLoops and Recola

◮ publication in preparation


