COLLIER
 a fortran-library for one-loop integrals

Lars Hofer
IFAE Barcelona

in collaboration with
A. Denner and S. Dittmaier

Weimar, May 2014

Status of LHC as discovery machine

- spectacular result: discovery of Higgs boson
- but: no new particles beyond the SM found so far
\Rightarrow we have to be prepared for the possibility that new physics might be very subtil and show up only as small deviations from SM predictions
\Rightarrow entering precision era of LHC
- perform precise measurements of particle couplings (e.g. couplings of the Higgs boson)
- comparison with precise SM predictions \Rightarrow need SM predictions at NNLO QCD and at NLO electroweak

One-loop amplitudes

general structure of one-loop amplitudes:

$$
\begin{aligned}
& =\int d^{D} q \frac{N(q)}{D_{0} \cdots D_{N-1}}=\sum_{r} c_{\mu_{1} \ldots \mu_{r}} \underbrace{\int d^{D} q \frac{q^{\mu_{1}} \cdots q^{\mu_{r}}}{D_{0} \cdots D_{N-1}}}_{\text {tensor integral } T^{\mu_{1} \cdots \mu_{r}}} \\
& D_{i}=\left(q+p_{i}\right)^{2}-m_{i}^{2}
\end{aligned}
$$

One-loop amplitudes

general structure of one-loop amplitudes:

$$
\begin{aligned}
& =\int d^{D} q \frac{N(q)}{D_{0} \cdots D_{N-1}}=\sum_{r} c_{\mu_{1} \ldots \mu_{r}} \underbrace{\int d^{D} q \frac{q^{\mu_{1}} \cdots q^{\mu_{r}}}{D_{0} \cdots D_{N-1}}}_{\text {tensor integral } T^{\mu_{1} \ldots \mu_{r}}} \\
& D_{i}=\left(q+p_{i}\right)^{2}-m_{i}^{2}
\end{aligned}
$$

can be decomposed in terms of scalar integrals:

$$
\begin{aligned}
\text { Q } & =\sum_{l} d_{l}+\sum_{k} c_{k} \\
& =\sum_{l} d_{l} D_{0}(l)+\sum_{k} c_{k} C_{0}(k)+\sum_{j} b_{j} B_{0}(j)+\sum_{i} a_{i} A_{0}(i)+R+R
\end{aligned}
$$

One-loop amplitudes

general structure of one-loop amplitudes:

$$
\begin{aligned}
& =\int d^{D} q \frac{N(q)}{D_{0} \cdots D_{N-1}}=\sum_{r} c_{\mu_{1} \ldots \mu_{r}} \underbrace{\int d^{D} q \frac{q^{\mu_{1}} \cdots q^{\mu_{r}}}{D_{0} \cdots D_{N-1}}}_{\text {tensor integral } T^{\mu_{1} \ldots \mu_{r}}} \\
& D_{i}=\left(q+p_{i}\right)^{2}-m_{i}^{2}
\end{aligned}
$$

can be decomposed in terms of scalar integrals:

$$
\begin{aligned}
& =\sum_{l} d_{l}+\sum_{k} c_{k} \\
& =\sum_{l} d_{l} D_{0}(l)+\sum_{k} c_{k} C_{0}(k)+\sum_{j} b_{j} B_{0}(j)+\sum_{i} a_{i} A_{0}(i)+R
\end{aligned}
$$

different approaches for calculation:

- conventional method (Feynman diagrams) \rightarrow Tl's needed
- generalised unitarity [Ossola, Papadopoulos, Pittau '07,

Bern, Dixon, Kosower, Britto, Cachazo, Feng,Ellis, Giele, Melnikov, ...]

- recursive methods using tensor integrals \rightarrow Tl's needed

Tools for NLO

- Many tools for NLO calculatios, e.g. FeynCalc/FormCalc, Blackhat, NGluon, aMC@NLO, HELAC-NLO, GoSam, CutTools, HELAC-1LOOP, Samurai, Madloop, OpenLoops, Recola, ...
- Libraries for scalar and tensor integrals, e.g. FF [van Oldenborgh], LoopTools [Hahn,Perez-Victoria], QCDLoop [R.K.Ellis,Zanderighi], OneLOop [van Hameren], Golem95C [Cullen,Guillet,Heinrich,Kleinschmidt,Pilon,...], P JFry [Fleischer,Riemann]
- This talk:

COLLIER = Complex one loop library in extended regularizations
fortran-library for fast and stable numerical evaluation of tensor integrals [Denner,Dittmaier,LH \rightarrow publication in preparation]

COLLIER: Applications

- successfully used in many calculations of
- NLO QCD corrections, e.g.
$\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t} j}$ [Dittmaier,Uwer,Weinzierl '07]
$\mathrm{pp} \rightarrow \mathrm{t} \mathrm{t} b \overline{\mathrm{~b}}$ [Bredenstein,Denner,Dittmaier,Pozzorini '09] $\mathrm{pp} \rightarrow \mathrm{WWbb}$ [Denner,Dittmaier,Kallweit,Pozzorini '11]
- NLO EW corrections, e.g.
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4$ fermions [Denner,Dittmaier,Roth,Wieders '05]
$\mathrm{pp} \rightarrow \mathrm{Hjj}$ via VBF [Ciccolini,Denner,Dittmaier '07]
pp \rightarrow dilepton+jet [Denner,Dittmaier,Kasprzik,Mück '11]
$\mathrm{pp} \rightarrow \mathrm{H}+$ dilepton [Denner,Dittmaier,Kallweit,Mück '11]
$\mathrm{pp} \rightarrow l^{+} l^{-} \mathrm{jj}$ [Denner,LH,Scharf,Uccirati, in prep.](talk by A.Denner)
- integrated in automated NLO generators
- OpenLoops [Cascioli,Maierhöfer,Pozzorini]
- Recola [Actis,Denner,LH,Scharf,Uccirati]
(talk by P.Maierhöfer) (talk by S.Uccirati)

Reduction of tensor integrals

Methods implemented in COLLIER:
applied method depends on number N of propagators

- $N=1,2$: explicit analytical expressions
- $N=3,4$: exploit Lorentz-covariance standard PV-reduction [Passarino,Veltman '79]
+ stable expansions in exceptional phase space regions
[Denner,Dittmaier '05]
- $N \geq 5$: exploit 4-dimensionality of space-time

> [Melrose '65; Denner,Dittmaier '02,'05; Binoth et al. '05]

Basic scalar integrals from analytic expressions
['t Hooft,Veltman'79; Beenaker,Denner'90; Denner,Nierste,Scharf'91;
Ellis,Zanderighi'08; Denner,Dittmaier'11]
\Rightarrow fast and stable numerical reduction algorithm

$N=3,4: \mathrm{PV}$ reduction

- $T^{\mu_{1} \ldots \mu_{r}}=\int d^{D} q \frac{q^{\mu_{1} \ldots q^{\mu_{r}}}}{D_{0} \cdots D_{N-1}}, \quad D_{i}=\left(q+p_{i}\right)^{2}-m_{i}^{2}$ contractions:

$$
p_{i}^{\mu} q_{\mu}=-f_{i}+D_{i}-D_{0}, \quad g^{\mu \nu} q_{\mu} q_{\nu}=m_{0}^{2}+D_{0}
$$

\rightarrow reduction to lower-rank and lower-point integrals

$N=3,4: \mathrm{PV}$ reduction

- $T^{\mu_{1} \ldots \mu_{r}}=\int d^{D} q \frac{q^{\mu_{1} \ldots q^{\mu_{r}}}}{D_{0} \cdots D_{N-1}}, \quad D_{i}=\left(q+p_{i}\right)^{2}-m_{i}^{2}$
contractions:

$$
p_{i}^{\mu} q_{\mu}=-f_{i}+D_{i}-D_{0}, \quad g^{\mu \nu} q_{\mu} q_{\nu}=m_{0}^{2}+D_{0}
$$

\rightarrow reduction to lower-rank and lower-point integrals

- covariant decomposition of tensors:

$$
\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}=\sum_{k} \sum_{i_{1}, \ldots, i_{k}} T_{P-k}^{T_{0}^{N, P}} i_{i_{1} \cdots i_{k}}\{\underbrace{g \cdots g}_{(P-k) / 2} p_{i_{1}} \cdots p_{i_{k}}\}^{\mu_{1} \cdots \mu_{P}}
$$

$N=3,4: \mathrm{PV}$ reduction

- $T^{\mu_{1} \ldots \mu_{r}}=\int d^{D} q \frac{q^{\mu_{1} \ldots q^{\mu_{r}}}}{D_{0} \cdots D_{N-1}}, \quad D_{i}=\left(q+p_{i}\right)^{2}-m_{i}^{2}$
contractions:

$$
p_{i}^{\mu} q_{\mu}=-f_{i}+D_{i}-D_{0}, \quad g^{\mu \nu} q_{\mu} q_{\nu}=m_{0}^{2}+D_{0}
$$

\rightarrow reduction to lower-rank and lower-point integrals

- covariant decomposition of tensors:

$$
\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}=\sum_{k} \sum_{i_{1}, \ldots, i_{k}} T_{P-k}^{T_{0}^{N, P}} \underbrace{}_{i_{1} \cdots i_{k}}\{\underbrace{g \cdots g}_{(P-k) / 2} p_{i_{1}} \cdots p_{i_{k}}\}^{\mu_{1} \cdots \mu_{P}}
$$

- system of linear equations for coefficients:
\rightarrow invert for $T^{N, P}$'s \Rightarrow recursive numerical calculation

$$
\Delta T^{N, P}=\left[T^{N, P-1}, T^{N, P-2}, T^{N-1}\right]
$$

Gram determinant: $\Delta=\operatorname{det}(Z)$ with $Z_{i j}=2 p_{i} p_{j}$

Small Gram determinants

$$
\text { (PV) } \quad \Delta T^{N, P}=\left[T^{N, P-1}, T^{N, P-2}, T^{N-1}\right]
$$

small Gram determinant: $\Delta \rightarrow 0$

- $T^{N, P-1}, T^{N, P-2}, T^{N-1}$ become linearly dependent

Small Gram determinants

$$
\text { (PV) } \quad \Delta T^{N, P}=\left[T^{N, P-1}, T^{N, P-2}, T^{N-1}\right]
$$

small Gram determinant: $\Delta \rightarrow 0$

- $T^{N, P-1}, T^{N, P-2}, T^{N-1}$ become linearly dependent
- $T^{N, P}$ as sum of $1 / \Delta$-singular terms
- spurious singularities cancel to give $\mathcal{O}(\Delta) / \Delta$-result
- numerical determination of $T^{N, P}$ becomes unstable

Small Gram determinants

$$
\text { (PV) } \quad \Delta T^{N, P}=\left[T^{N, P-1}, T^{N, P-2}, T^{N-1}\right]
$$

small Gram determinant: $\Delta \rightarrow 0$

- $T^{N, P-1}, T^{N, P-2}, T^{N-1}$ become linearly dependent
- $T^{N, P}$ as sum of $1 / \Delta$-singular terms
- spurious singularities cancel to give $\mathcal{O}(\Delta) / \Delta$-result
- numerical determination of $T^{N, P}$ becomes unstable
- scalar integrals $D_{0}, C_{0}, B_{0}, A_{0}$ become linearly dependent $\Rightarrow \mathcal{O}(\Delta) / \Delta$-instabilities intrinsic to all methods relying on the full set of basis integrals $D_{0}, C_{0}, B_{0}, A_{0}$
- solution: choose appropriate set of base functions depending on phase-space point

Expansion in Gram determinant

$$
\Delta T^{N, P}=\left[T^{N, P-1}, T^{N, P-2}, T^{N-1}\right]
$$

Expansion in Gram determinant

$$
\Delta T^{N, P+1}=\left[T^{N, P}, T^{N, P-1}, T^{N-1}\right]
$$

- exploit linear dependence of $T^{N, P}, T^{N, P-1}, T^{N}$ for $\Delta=0$ to determine $T^{N, P}$ up to terms of $\mathcal{O}(\Delta)$

Expansion in Gram determinant

$$
\begin{aligned}
& \Delta T^{N, P+1}=\left[T^{N, P}, T^{N, P-1}, T^{N-1}\right] \\
& \Delta T^{N, P+2}=\left[T^{N, P+1}, T^{N, P}, T^{N-1}\right]
\end{aligned}
$$

- exploit linear dependence of $T^{N, P}, T^{N, P-1}, T^{N}$ for $\Delta=0$ to determine $T^{N, P}$ up to terms of $\mathcal{O}(\Delta)$
- calculate $T^{N, P+1}$ in the same way

Expansion in Gram determinant

$$
\begin{aligned}
& \Delta T^{N, P+1}=\left[T^{N, P}, T^{N, P-1}, T^{N-1}\right] \\
& \Delta T^{N, P+2}=\left[T^{N, P+1}, T^{N, P}, T^{N-1}\right]
\end{aligned}
$$

- exploit linear dependence of $T^{N, P}, T^{N, P-1}, T^{N}$ for $\Delta=0$ to determine $T^{N, P}$ up to terms of $\mathcal{O}(\Delta)$
- calculate $T^{N, P+1}$ in the same way
- use $T^{N, P+1}$ to compute $\mathcal{O}(\Delta)$ in $T^{N, P}$

Expansion in Gram determinant

$$
\begin{aligned}
& \Delta T^{N, P+1}=\left[T^{N, P}, T^{N, P-1}, T^{N-1}\right] \\
& \Delta T^{N, P+2}=\left[T^{N, P+1}, T^{N, P}, T^{N-1}\right]
\end{aligned}
$$

- exploit linear dependence of $T^{N, P}, T^{N, P-1}, T^{N}$ for $\Delta=0$ to determine $T^{N, P}$ up to terms of $\mathcal{O}(\Delta)$
- calculate $T^{N, P+1}$ in the same way
- use $T^{N, P+1}$ to compute $\mathcal{O}(\Delta)$ in $T^{N, P}$
- higher orders in Δ iteratively: $\mathcal{O}\left(\Delta^{k}\right)$ of $T^{N, P}$ requires lower-point T^{N-1} up to rank $P+k$
- basis of scalar integrals effectively reduced (e.g. D_{0} from C_{0} 's)

coefficients vs. tensors

$$
\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}=\sum_{k} \sum_{i_{1}, \ldots, i_{k}} T_{\underbrace{N, P}_{P-k}}^{T_{1}, P} i_{1} \cdots i_{k}<\underbrace{g \cdots g}_{(P-k) / 2} p_{i_{1}} \cdots p_{i_{k}}\}^{\mu_{1} \cdots \mu_{P}}
$$

\# of tensor coefficients (TC) vs. \# of tensor elements (TE)

	$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$	
$N=3$	1	3	7	13	22	34	50	\#TC $<$ \#TE
$N=4$	1	4	11	24	46	80	130	\#T
$N=5$	1	5	16	40	86	166	296	
$N=6$	1	6	22	62	148	314	610	\#TC $>$ \#TE
$N=7$	1	7	29	91	239	553	1163	
tensor	1	5	15	35	70	126	210	

coefficients vs. tensors

$$
\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}=\sum_{k} \sum_{i_{1}, \ldots, i_{k}} \underbrace{T_{0}^{N, P}}_{P-k} i_{i_{1} \cdots i_{k}}\{\underbrace{g \cdots g}_{(P-k) / 2} p_{i_{1}} \cdots p_{i_{k}}\}^{\mu_{1} \cdots \mu_{P}}
$$

\# of tensor coefficients (TC) vs. \# of tensor elements (TE)

	$r=0$	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$	
$N=3$	1	3	7	13	22	34	50	\#TC $<$ \#TE
$N=4$	1	4	11	24	46	80	130	
$N=5$	1	5	16	40	86	166	296	
$N=6$	1	6	22	62	148	314	610	\#TC $>$ \#TE
$N=7$	1	7	29	91	239	553	1163	
tensor	1	5	15	35	70	126	210	

NLO generators OpenLoops and Recola: parametrisation of one-loop amplitude in terms of tensor integrals: calculated by OpenLoops/Recola
\Rightarrow need full tensors!

From coefficients to tensors

$$
\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}=\sum_{k} \sum_{i_{1}, \ldots, i_{k}} T_{\underbrace{N, P}_{P-k}}^{0 \cdots i_{1} \cdots i_{k}}\{\underbrace{g \cdots g}_{(P-k) / 2} p_{i_{1}} \cdots p_{i_{k}}\}^{\mu_{1} \cdots \mu_{P}}
$$

In COLLIER:

- output: coefficients $T_{0 \cdots 0 i_{1} \cdots i_{k}}^{N}$ or tensors $\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}$
- efficient algorithm to construct tensors from invariant coefficients for arbitrary N, P via recursive calculation of tensor structures
- for $N \geq 6$: Direct reduction at tensor level

Features of COLLIER

- complete set of one-loop scalar integrals
- implementation of tensor integrals for (in principle) arbitrary number of external momenta N (tested in physical processes up to $N=6$)
- various expansion methods implemented for exceptional phase-space points (to arbitrary order in expansion parameter)
- mass- and dimensional regularisation supported for IR-singularities
- complex masses supported (unstable particles)
- cache-system to avoid recalculation of identical integrals
- output: coefficients $T_{0 \cdots 0 i_{1} \cdots i_{k}}^{N}$ or tensors $\left(T^{N}\right)^{\mu_{1} \cdots \mu_{P}}$
- two independent implementations: COLI+DD

Structure of COLLIER

Output of Collier

Structure UV- or IR-singular integrals in $D=4-2 \epsilon$ dimensions

$$
\begin{aligned}
T^{N}= & \Gamma(1+\epsilon)(4 \pi)^{\epsilon}\left(T_{(\mathrm{fin})}^{N}+a^{\mathrm{UV}} \frac{1}{\epsilon_{\mathrm{UV}}}+a_{2}^{\mathrm{IR}} \frac{1}{\epsilon_{\mathrm{IR}}^{2}}+a_{1}^{\mathrm{IR}} \frac{1}{\epsilon_{\mathrm{IR}}}\right. \\
& \left.+b^{\mathrm{UV}} \log \left(\mu_{\mathrm{UV}}^{2}\right)+b^{\mathrm{IR}} \log \left(\mu_{\mathrm{IR}}^{2}\right)\right)
\end{aligned}
$$

Output of Collier

Structure UV- or IR-singular integrals in $D=4-2 \epsilon$ dimensions

$$
\begin{aligned}
T^{N}= & \Gamma(1+\epsilon)(4 \pi)^{\epsilon}\left(T_{(\mathrm{fin})}^{N}+a^{\mathrm{UV}} \frac{1}{\epsilon_{\mathrm{UV}}}+a_{2}^{\mathrm{IR}} \frac{1}{\epsilon_{\mathrm{IR}}^{2}}+a_{1}^{\mathrm{IR}} \frac{1}{\epsilon_{\mathrm{IR}}}\right. \\
& \left.+b^{\mathrm{UV}} \log \left(\mu_{\mathrm{UV}}^{2}\right)+b^{\mathrm{IR}} \log \left(\mu_{\mathrm{IR}}^{2}\right)\right)
\end{aligned}
$$

- scales and poles $\quad \delta_{\mathrm{UV}}=1 / \epsilon_{\mathrm{UV}}, \quad \delta_{\mathrm{IR}, 1}=1 / \epsilon_{\mathrm{IR}}, \quad \delta_{\mathrm{IR}, 2}=1 / \epsilon_{\mathrm{IR}}^{2}$ can be set to arbitrary real values
\Rightarrow output of Collier: numerical value for bracket (...)

Output of Collier

Structure UV- or IR-singular integrals in $D=4-2 \epsilon$ dimensions

$$
\begin{aligned}
T^{N}= & \Gamma(1+\epsilon)(4 \pi)^{\epsilon}\left(T_{(\mathrm{fin})}^{N}+a^{\mathrm{UV}} \frac{1}{\epsilon_{\mathrm{UV}}}+a_{2}^{\mathrm{IR}} \frac{1}{\epsilon_{\mathrm{IR}}^{2}}+a_{1}^{\mathrm{IR}} \frac{1}{\epsilon_{\mathrm{IR}}}\right. \\
& \left.+b^{\mathrm{UV}} \log \left(\mu_{\mathrm{UV}}^{2}\right)+b^{\mathrm{IR}} \log \left(\mu_{\mathrm{IR}}^{2}\right)\right)
\end{aligned}
$$

- scales and poles $\quad \delta_{\mathrm{UV}}=1 / \epsilon_{\mathrm{UV}}, \quad \delta_{\mathrm{IR}, 1}=1 / \epsilon_{\mathrm{IR}}, \quad \delta_{\mathrm{IR}, 2}=1 / \epsilon_{\mathrm{IR}}^{2}$ can be set to arbitrary real values
\Rightarrow output of Collier: numerical value for bracket (...)
- cancellation of poles can be checked varying $\delta_{\mathrm{UV}}, \delta_{\mathrm{IR}, 1}, \delta_{\mathrm{IR}, 2}$
- convention for prefactor $=1+\mathcal{O}(\epsilon)$ can be changed by shifting $\delta_{\mathrm{UV}}, \delta_{\mathrm{IR}, 1}, \delta_{\mathrm{IR}, 2}$ accordingly
- coefficient a^{UV} of $1 / \epsilon_{\mathrm{UV}}$ - pole returned also as separate output

Treatment of IR singularities

default: use dimensional regularization
mass regularization supported for collinear singularities:

- declare array of squared regulator masses:

$$
\operatorname{minf} 2=\left\{m_{1}^{2}, m_{2}^{2}, \ldots, m_{k}^{2}\right\}
$$

with complex (not-necessarily small) numerical values

- if a call of a tensor integral involves an element from minf2, the corresponding mass is
- set to zero in IR finite integrals
- kept as regulator mass in IR-singular integrals
- In the case of mass regularization the IR-scale μ_{IR} can be interpreted as gluon/photon mass

Choice of reduction scheme in COLI

Strategy for 3-,4-point integrals of rank $r \leq r_{\text {max }}$ in Coli:
(similar in DD)
1 PV reduction:
accuracy for rank $r_{\text {max }}$ better than target precision?
$\xrightarrow{\text { yes }} \xlongequal{\text { use PV reduction }}$ for $r \leq r_{\max }$ done

2 Expansions:
do $g=0, g_{\text {max }}$
accuracy for rank $r_{\text {max }}$ yes use expansion
and expansion up to order g
better than target precision?
end do
 up to order g done for $r \leq r_{\text {max }}$
use for $r \leq r_{\text {max }}$ method
No method optimal:
do $r_{0}=r_{\text {max }}, 0$
is there a method with
better accuracy for rank r_{0} ?

with best accuracy for $r_{\text {max }}$
end do
done

Error estimates in COLI

Error estimates in Coli: (similar in DD)
1 PV-reduction

- error propagation:

$$
\delta D_{r} \sim \max \left\{a_{r} \delta D_{0}, b_{r} \delta C_{0}, c_{r} \delta C_{r-1}\right\}
$$

with

$$
a_{r}, b_{r} \sim 1 / \Delta^{r}, \quad c_{r} \sim 1 / \Delta
$$

- after calculation: symmetry of coefficients

$$
\delta D_{r} \sim\left|D_{i_{1} i_{2} \ldots i_{r}}-D_{i_{2} i_{1} \ldots i_{r}}\right|, \quad\left(0 \neq i_{1} \neq i_{2} \neq 0\right)
$$

Error estimates in COLI

Error estimates in Coli: (similar in DD)
1 PV-reduction

- error propagation:

$$
\delta D_{r} \sim \max \left\{a_{r} \delta D_{0}, b_{r} \delta C_{0}, c_{r} \delta C_{r-1}\right\}
$$

with

$$
a_{r}, b_{r} \sim 1 / \Delta^{r}, \quad c_{r} \sim 1 / \Delta
$$

- after calculation: symmetry of coefficients

$$
\delta D_{r} \sim\left|D_{i_{1} i_{2} \ldots i_{r}}-D_{i_{2} i_{1} \ldots i_{r}}\right|, \quad\left(0 \neq i_{1} \neq i_{2} \neq 0\right)
$$

2 Expansions: $D_{r}=D_{r}^{(0)}+\ldots+D_{r}^{(g)}$

- neglected higher orders + error propagation from C's:

$$
\delta D_{r}=\max \left\{a_{r, g}, b_{r} \delta C_{0}, c_{g} \delta C_{r+g}\right\}
$$

with

$$
a_{r, g}, c_{g} \sim \Delta^{g}
$$

- extrapolation after calculation: $\quad \delta D_{r}=D_{r}^{(g)} \times \frac{D_{r}^{(g)}}{D_{r}^{(g-1)}}$

Cache system

Evaluation of one-loop amplitude leads to multiple calls for the same tensor integral (TI):

- within one master-call: same TI appears several times in reduction tree

- different master calls and their reductions lead to same TI

Cache system

Evaluation of one-loop amplitude leads to multiple calls for the same tensor integral (TI):

- within one master-call: same TI appears several times in reduction tree

- different master calls and their reductions lead to same TI

Cache system in COLLIER:

- Identify each TI-call via index pair (N, i):
$N=$ number of external master call
$i=$ binary index for internal calls (propagated in reduction)
- pointers for each pair (N, i) point to same address in cache if arguments of Tl's are identical first call: write cache
- DD: internal cache for internal calls

Conclusions

- COLLIER= fortran library for numerical calculation of scalar and tensor integrals
- numerical stable results thanks to expansion methods for 3-,4-point integrals
- dimensional and mass regularization supported, as well as complex masses for unstable particles
- two independent implementations: COLLIER = COLI + DD
- used in NLO generators OpenLoops and Recola
- publication in preparation

