Automated one-loop calculations with GoSam 2.0

Gudrun Heinrich

Max Planck Institute for Physics, Munich

In collaboration with G.Cullen, H.van Deurzen, N.Greiner, G.Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, J. Reichel, J. Schlenk, J.F. von Soden-Fraunhofen, F. Tramontano

Loops & Legs 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Particle physics after the Higgs discovery

- the big question: is there something beyond the SM ?
- how to find out in the absence of "smoking gun" signals ?

• the key is **precision**

scrutinize Higgs properties/EWSB

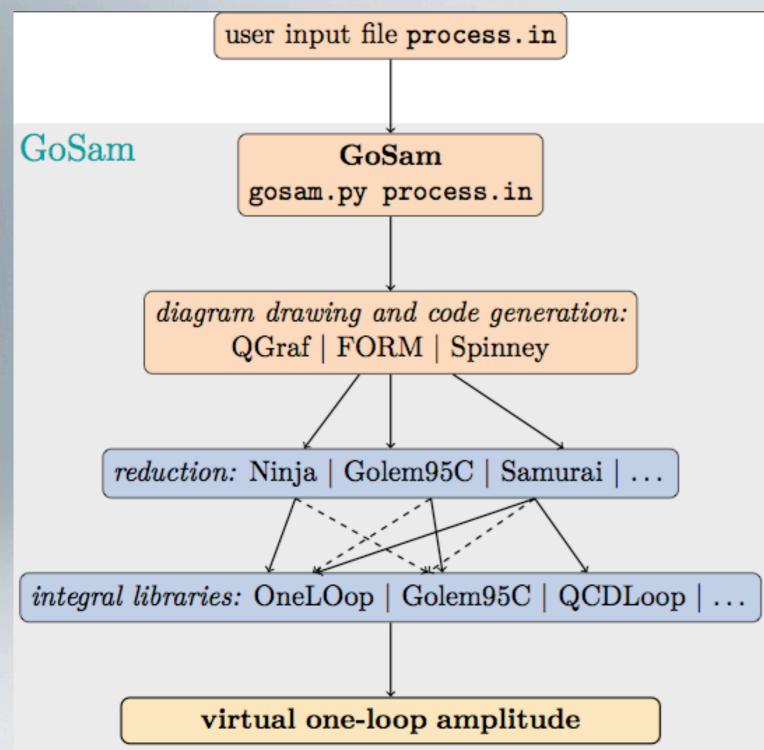
(signal strengths, decay channels, couplings to gauge bosons and 3rd generation fermions, ...)

- NN(N)LO QCD predictions
- NLO + parton shower matching
- impact of electroweak corrections
- reduction of PDF uncertainties
- quark mass effects
- resummation ...

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

NLO automation

- "loops & legs number" is always increasing
- advanced techniques allow automation
- move from "proof of concept" multi-particle one-loop calculations towards automated tools with direct link to phenomenological analysis/experiment
- NLO matched to parton shower is new state of the art


many automated NLO tool, e.g. FeynArts/FormCalc, BlackHat, Helac-NLO, aMC@NLO, NJet, OpenLoops, Recola, VBFNLO, MCFM, ..., GoSam

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

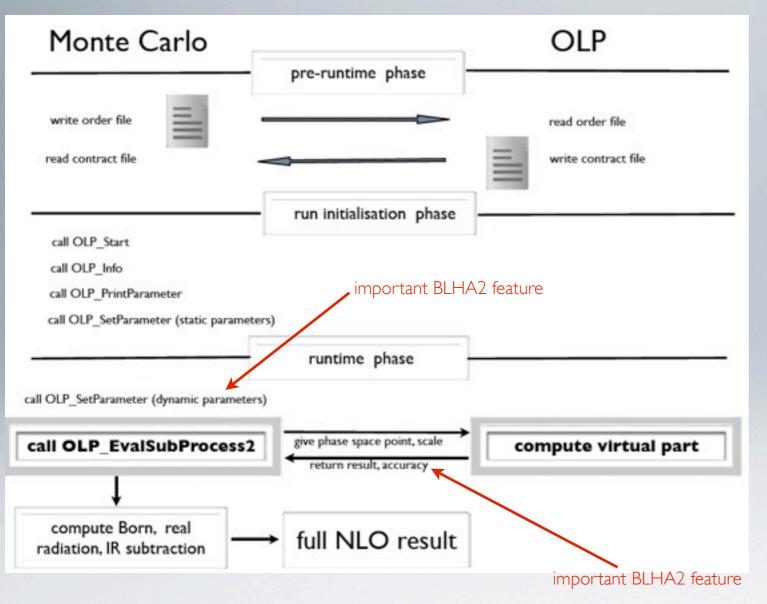
Structure of GoSam-2.0

arXiv:1404.7096

program available at http://gosam.hepforge.org

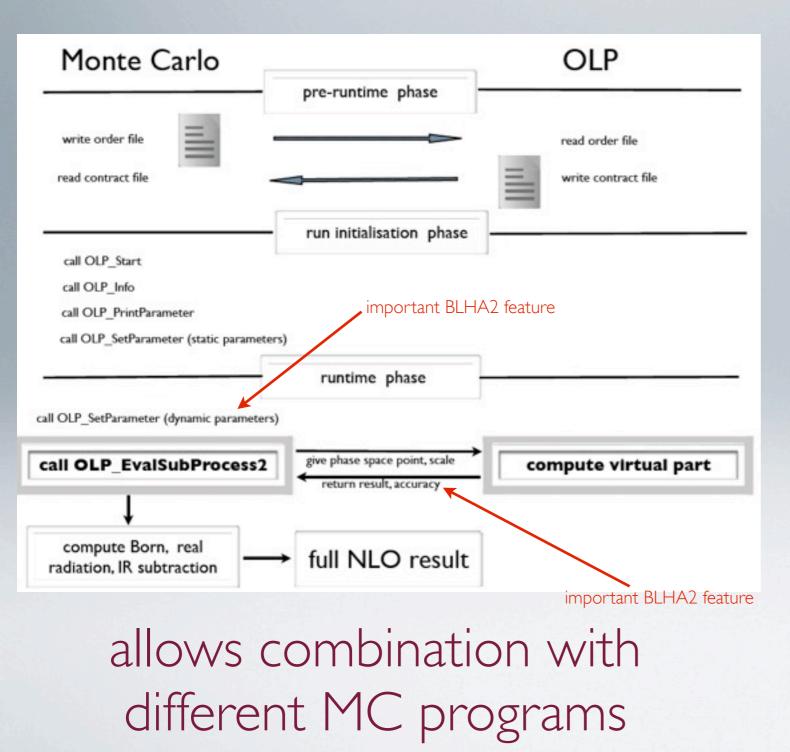
very simple usage example input file for

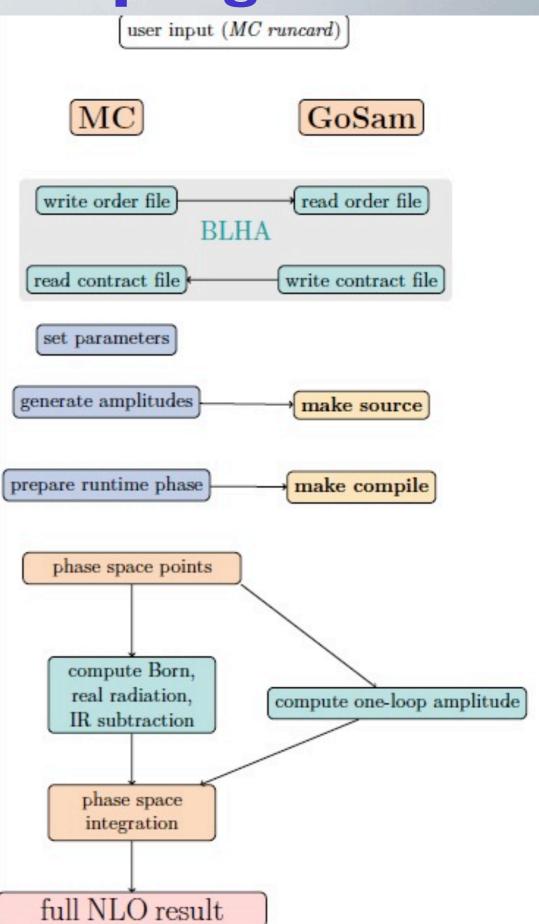
 $e^+e^- \to t\,\bar{t}$


process_path=eett						
in=	e+,	e-				
out=	t,	t~				
order=	gs,	Ο,	2			

Interface to Monte Carlo programs

both original Binoth-Les-Houches-Accord and extended standards are supported




allows combination with different MC programs

Interface to Monte Carlo programs

both original Binoth-Les-Houches-Accord and extended standards are supported

Examples of processes calculated with GoSam

GoSam + MadDipole/MadGraph/MadEvent

 $pp \to W^+W^- + 2 jets$ $pp \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 + jet$ $pp \to (G \to \gamma\gamma) + 1 jet$ $pp \to \gamma\gamma + 1, 2 jets$ $pp \to HH + 2 jets$

[Greiner, GH, Mastrolia, Ossola, Reiter, Tramontano '12] [Cullen, Greiner, GH '12] [Greiner, GH, Reichel, von Soden-Fraunhofen '13] [Gehrmann, Greiner, GH '13]

[Dolan, Englert, Greiner, Spannowsky '13]

- GoSam + Sherpa $pp \rightarrow W^+W^+ + 2jets$ [Greiner, GH, Luisoni, Mastrolia, Ossola, Reiter, Tramontano '12] $pp \rightarrow H + 2jets$ [van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13] $pp \rightarrow W^+W^- b\bar{b}$ [GH, Maier, Nisius, Schlenk, Winter '13] $pp \rightarrow t\bar{t} + 0, 1 jet$ (includes shower) [Höche, Huang, Luisoni, Schönherr, Winter '13] $pp \rightarrow H t\bar{t} + 0, 1 jet$ [van Deurzen, Luisoni, Mastrolia, Mirabella, Ossola, Peraro '13]
- GoSam + Powheg (includes shower) $pp \rightarrow HW/HZ + 0, 1 \, jet$ [Luisoni, Nason, Oleari, Tramontano '13]
- GoSam + Herwig++/Matchbox (includes shower) $pp \rightarrow Z + jet$ [Bellm, Gieseke, Greiner, GH, Plätzer, Reuschle, von Soden-Fraunhofen '13]
- GoSam + MadDipole/MadGraph/MadEvent + Sherpa

 $pp
ightarrow H + 3\,jets$ [Cullen, van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano '13]

Examples of processes calculated with GoSam

GoSam + MadDipole/MadGraph/MadEvent

 $pp \to W^+W^- + 2 jets$ $pp \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 + jet$ $pp \to (G \to \gamma\gamma) + 1 jet$ $pp \to \gamma\gamma + 1, 2 jets$ $pp \to HH + 2 jets$

[Greiner, GH, Mastrolia, Ossola, Reiter, Tramontano '12]
[Cullen, Greiner, GH '12]
[Greiner, GH, Reichel, von Soden-Fraunhofen '13]
[Gehrmann, Greiner, GH '13]
[Dolan, Englert, Greiner, Spannowsky '13]

- GoSam + Sherpa $pp \rightarrow W^+W^+ + 2 jets$ [Greiner, GH, Luisoni, Mastrolia, Ossola, Reiter, Tramontano '12] $pp \rightarrow H + 2 jets$ [van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13] $pp \rightarrow W^+W^- b\bar{b}$ [GH, Maier, Nisius, Schlenk, Winter '13] $pp \rightarrow t\bar{t} + 0, 1 jet$ (includes shower) [Höche, Huang, Luisoni, Schönherr, Winter '13] $pp \rightarrow H t\bar{t} + 0, 1 jet$ [van Deurzen, Luisoni, Mastrolia, Mirabella, Ossola, Peraro '13]
- GoSam + Powheg (includes shower) $pp \rightarrow HW/HZ + 0, 1 \, jet$ [Luisoni, Nason, Oleari, Tramontano '13]
- GoSam + Herwig++/Matchbox (includes shower) pp → Z + jet [Bellm, Gieseke, Greiner, GH, Plätzer, Reuschle, von Soden-Fraunhofen '13]
 GoSam + MadDipole/MadGraph/MadEvent + Sherpa see also talk by F.Tramontano

 $pp
ightarrow H + 3\,jets~$ [Cullen, van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano '13]

Improvements in code generation

Improvements in code generation

more compact code, faster evaluation

- Improvements in code generation more compact code, faster evaluation
- New reduction methods

 Improvements in code generation more compact code, faster evaluation

New reduction methods

more flexibility and stability, improved system to detect and rescue unstable points

- Improvements in code generation more compact code, faster evaluation
- New reduction methods more flexibility and stability, improved system to detect and rescue unstable points
- Extended range of applicability

- Improvements in code generation more compact code, faster evaluation
- New reduction methods more flexibility and stability, improved system to detect and rescue unstable points
- Extended range of applicability

EW schemes, complex masses, effective vertices, higher tensor ranks, BSM physics

- Improvements in code generation more compact code, faster evaluation
- New reduction methods more flexibility and stability, improved system to detect and rescue unstable points
- Extended range of applicability

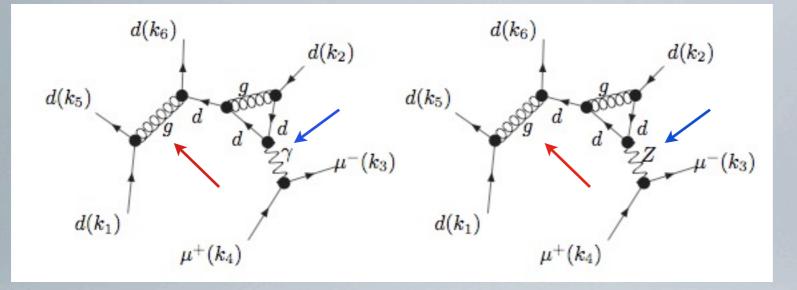
EW schemes, complex masses, effective vertices, higher tensor ranks, BSM physics

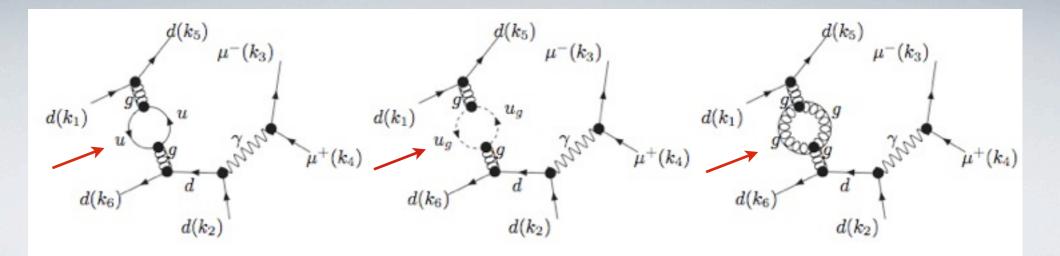
Easy installation

- Improvements in code generation more compact code, faster evaluation
- New reduction methods more flexibility and stability, improved system to detect and rescue unstable points
- Extended range of applicability

EW schemes, complex masses, effective vertices, higher tensor ranks, BSM physics

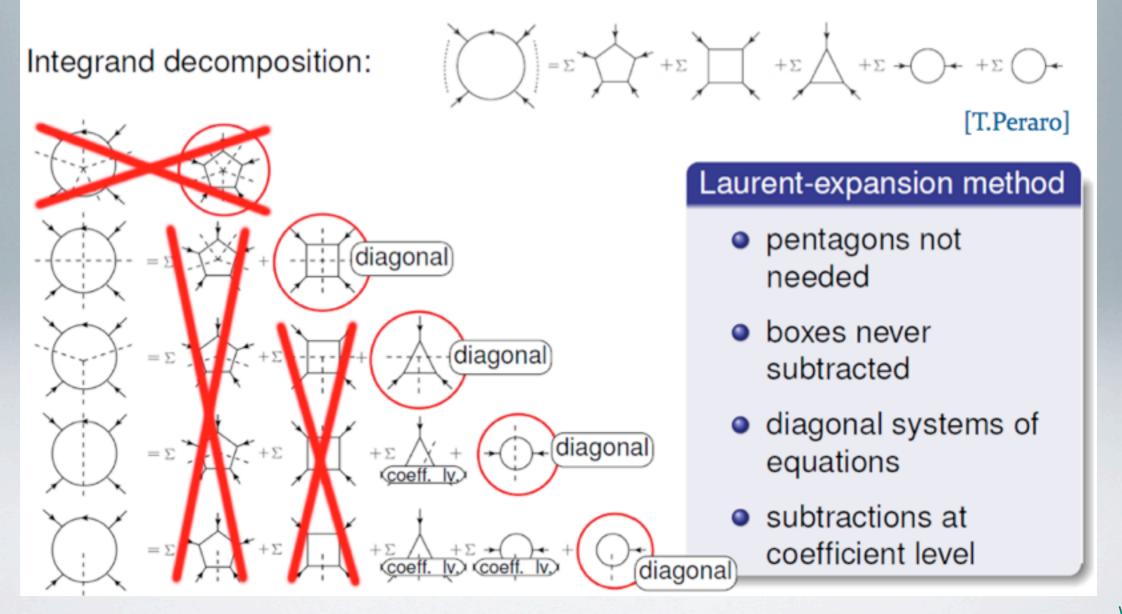
Easy installation


installation script installs and builds the code and all libraries



New code generation methods

- code optimisation with FORM version 4 [Vermaseren, Kuipers, Ueda, Vollinga]
- construction of "meta-diagrams" from diagrams sharing common substructures

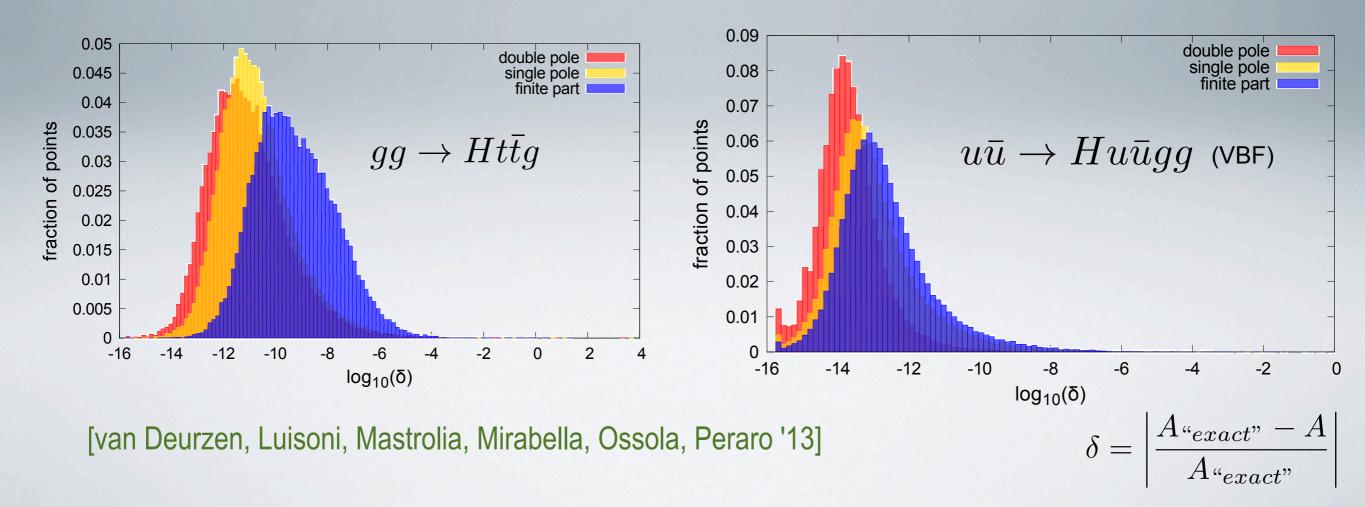

share a loop sub-diagram

New reduction methods

basic idea: extract the coefficients of the residues of a loop integral by performing a Laurent expansion of the integrand [Mastrolia, Mirabella, Peraro '12]

implemented in the code Ninja [T. Peraro '14]

Max-Planck-Institut für Physik

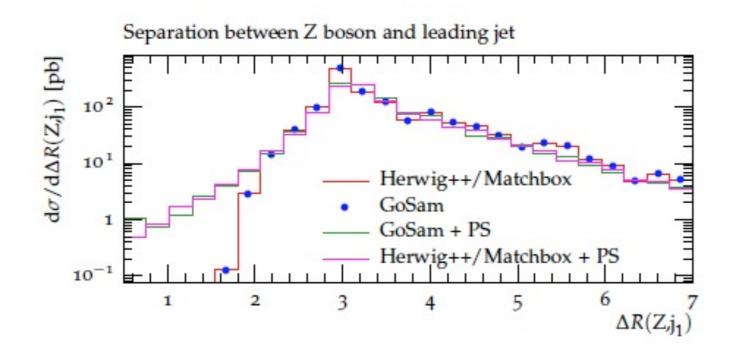


New reduction methods

• in GoSam-2.0 several reduction libraries available:

Ninja, Golem95C, Samurai

- switch between different reduction algorithms "on the fly" \Rightarrow flexible rescue system for problematic points
- Ninja performs particularly well for massive particles in the loops


new range of applicability

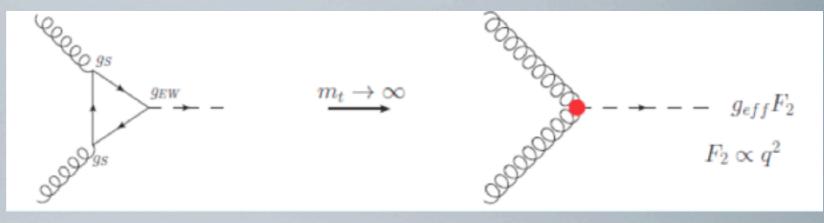
- electroweak scheme choice
- support of complex masses

ewchoice	input parameters	derived parameters
1	G_F, m_W, m_Z	e, $\sin \theta_w$
2	α, m_W, m_Z	e, $\sin \theta_w$
3	$\alpha, \sin \theta_w, m_Z$	e, m _W
4	$\alpha, \sin \theta_w, G_F$	e, m _W
5	α, G_F, m_Z	e, m _W , $\sin \theta_w$
6	e, mw, mz	$\sin \theta_w$
7	e, $\sin \theta_w$, m _Z	mw
8	e, $\sin \theta_w$, G _F	m _W , m _Z

complex masses/parameters in generated code and in loop integrals supported $m_V^2 \rightarrow \mu_V^2 = m_V^2 - i m_V \Gamma_V, \quad V = W, Z$ $\cos^2 \theta_W = \mu_W^2 / \mu_Z^2$

• colour- and spin-correlated tree amplitudes can be used e.g. to build subtraction terms for NLO real radiation

[Bellm, Gieseke, Greiner, GH, Plätzer, Reuschle, von Soden-Fraunhofen '13]

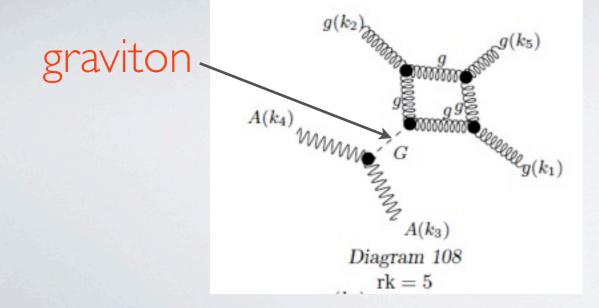

higher rank tensor integrals

$$I_{N}^{n,\mu_{1}...\mu_{r}}(S) = \int d^{n}k \frac{k^{\mu_{1}}\cdots k^{\mu_{r}}}{\prod_{i=1}^{N} \left((k+r_{i})^{2} - m_{i}^{2} + i\delta \right)}$$

with $r \geq N+1$

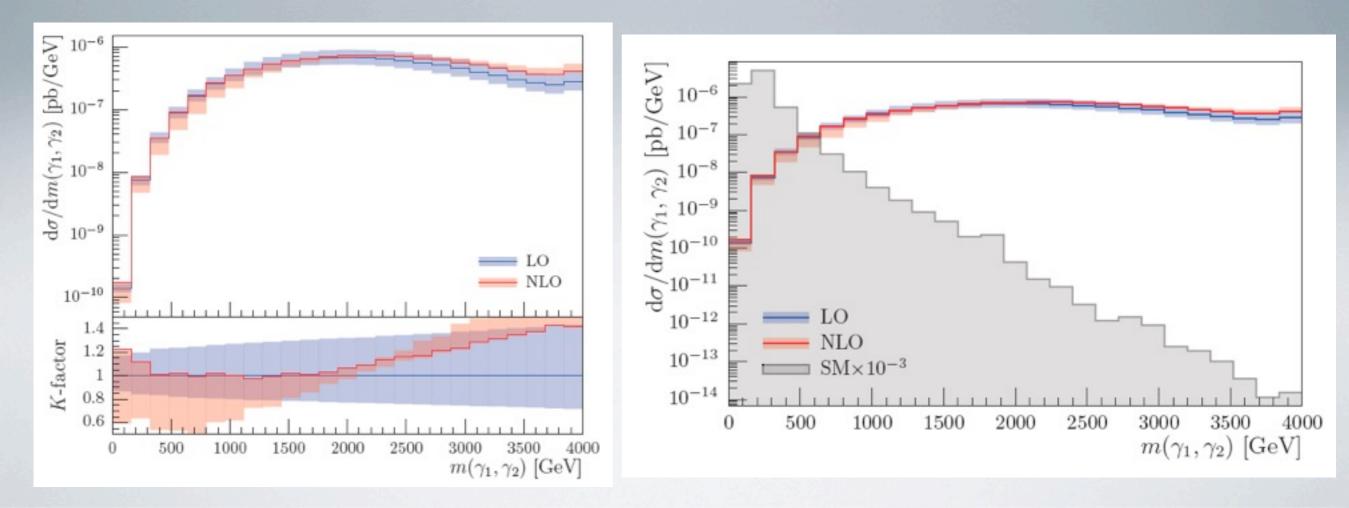
needed for example in

effective theories


• BSM models involving spin-2 particles

all reduction programs, **Ninja, Golem95C, Samurai** have been extended to support higher rank integrals

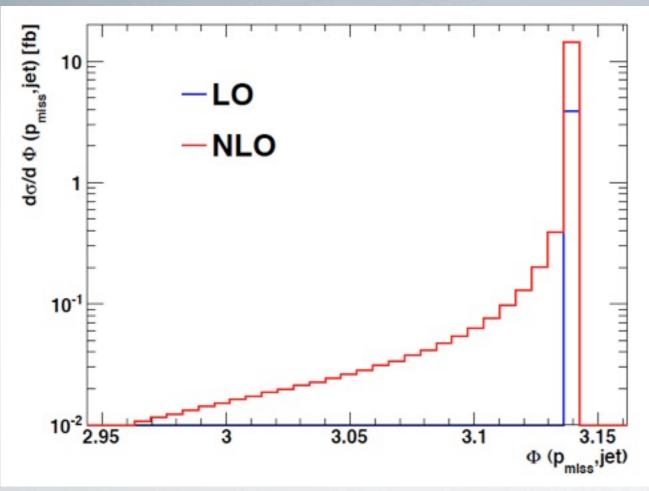
Ninja, Samurai:

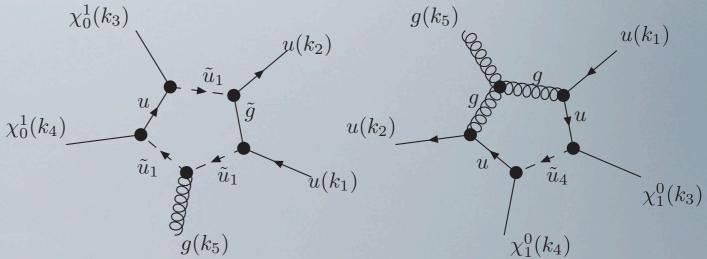

van Deurzen, Mastrolia, Mirabella, Peraro '13, '14

Golem95C: Guillet, GH, von Soden-Fraunhofen '13

BSM applications of GoSam

 $pp \rightarrow (\text{graviton} \rightarrow \gamma \gamma) + 1 \text{ jet}$ [Greiner, GH, Reichel, von Soden-Fraunhofen '13] within ADD models of large extra dimensions non-standard propagator for gravitons \Rightarrow customspin2prop in GoSam involves rank 5 box integrals import of model file in UFO (Universal Feynrules Output [Degrande, Duhr et al.]) format only task for the user: specify format and path to model file in input card, e.g. model=FeynRules, [gosampath]/examples/model/LED_UFO


BSM applications of GoSam


 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 + jet$ [Cullen, Greiner, GH '13]

(SUSY QCD corrections)

signature monojet + missing ET

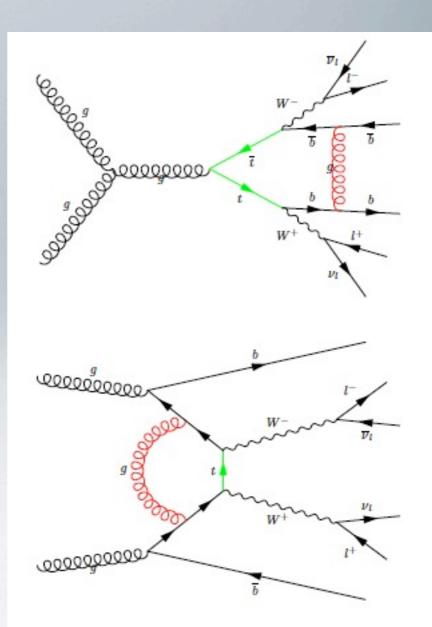
- full off-shell effects included
- complex masses
- UFO model file import, renormalisation done separately

SUSY Parameters			
$M_{\tilde{\chi}^0_1} = 299.5$	$\Gamma_{\tilde{\chi}^0_1} = 0$		
$M_{\bar{q}} = 415.9$	$\Gamma_{\tilde{q}} = 4.801$		
$M_{\bar{u}_L} = 339.8$	$\Gamma_{\bar{u}_L} = 0.002562$		
$M_{\tilde{u}_R} = 396.1$	$\Gamma_{\bar{u}_{R}} = 0.1696$		
$M_{\tilde{d}_{L}} = 348.3$	$\Gamma_{\tilde{d}_L} = 0.003556$		
$M_{\tilde{d}_R} = 392.5$	$\Gamma_{\tilde{d}_R} = 0.04004$		
$M_{\tilde{b}_L} = 2518.0$	$\Gamma_{\bar{b}_L} = 158.1$		
$M_{\tilde{b}_R} = 2541.8$	$\Gamma_{\tilde{b}_{R}} = 161.0$		
$M_{\tilde{t}_L} = 2403.7$	$\Gamma_{\bar{t}_L} = 148.5$		
$M_{\tilde{t}_R} = 2668.6$	$\Gamma_{\tilde{t}_{R}} = 182.9$		

angle between leading jet and missing momentum

SM applications of GoSam

 $pp \to W^+ W^- b\bar{b}$

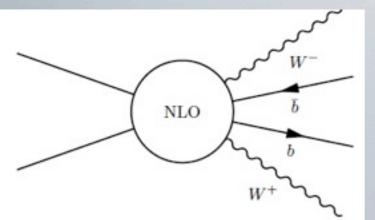

[GH, Maier, Nisius, Schlenk, Winter '13][Denner, Dittmaier, Kallweit, Pozzorini '11][Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11]

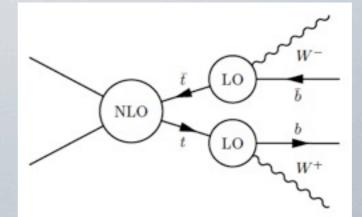
investigate influence of NLO decays and non-resonant contributions on top mass determination

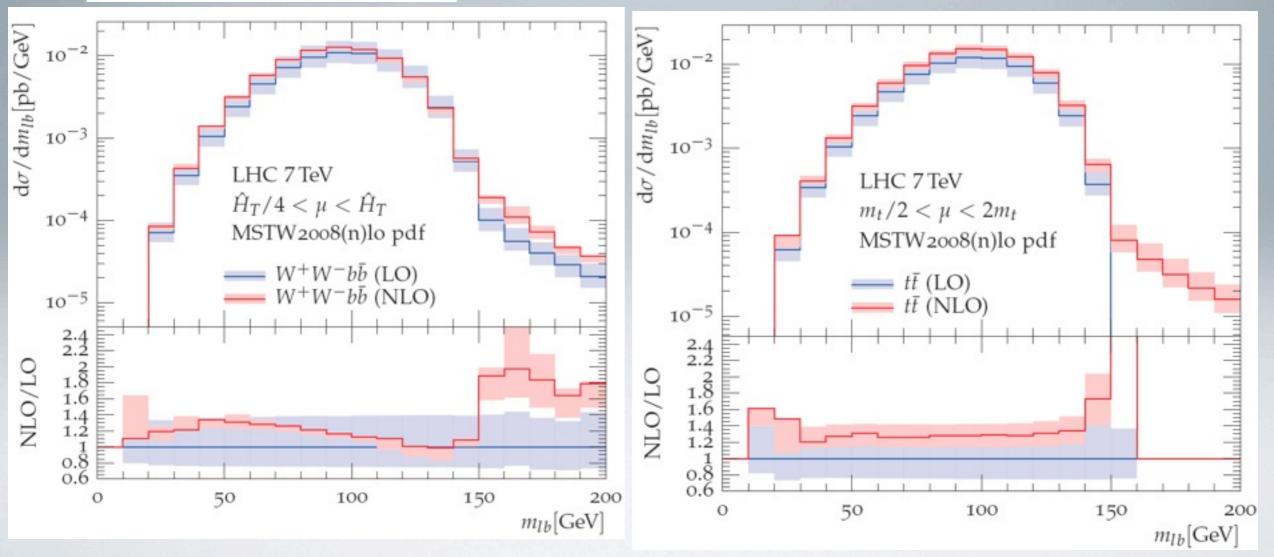
- leptonic W-decays
- use $m_{lb}^2 = (p_{b-jet} + p_l)^2$ for mass

measurement, following ATLAS-CONF-2013-77

 analysis is sensitive to the shape of the distribution, independent of the rate






• compare full versus factorized calculation for observable m_{lb}

full (WWbb)

factorized ($t\bar{t}$)

shape differences in full calculation, amplified by scale variations, have important consequences on uncertainties on m_top

Installation and usage of GoSam

installation: installation script downloads GoSam and reduction libraries and installs everything

wget http://gosam.hepforge.org/gosam-installer/gosam_installer.py

chmod +x gosam_installer.py

./gosam_installer.py [--prefix=installation_path]

installation script will also install FORM [J.Vermaseren et al.] and QGraf [P. Nogueira] if not present already

usage: create template for input file process.in:

gosam.py --template process.in

edit input file process.in

to generate amplitude (standalone):

gosam.py process.in

within BLHA:

gosam.py --olp order.lh

example input file:

```
process_name=eett
process_path=eett
in= e+, e-
out= t, t~
model= smdiag
model.options=ewchoose
order= gs, 0, 2
zero=me
one=gs,e
regularisation_scheme=dred
```

many more options available, will take defaults if not set

Summary

 GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations

- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)

- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times

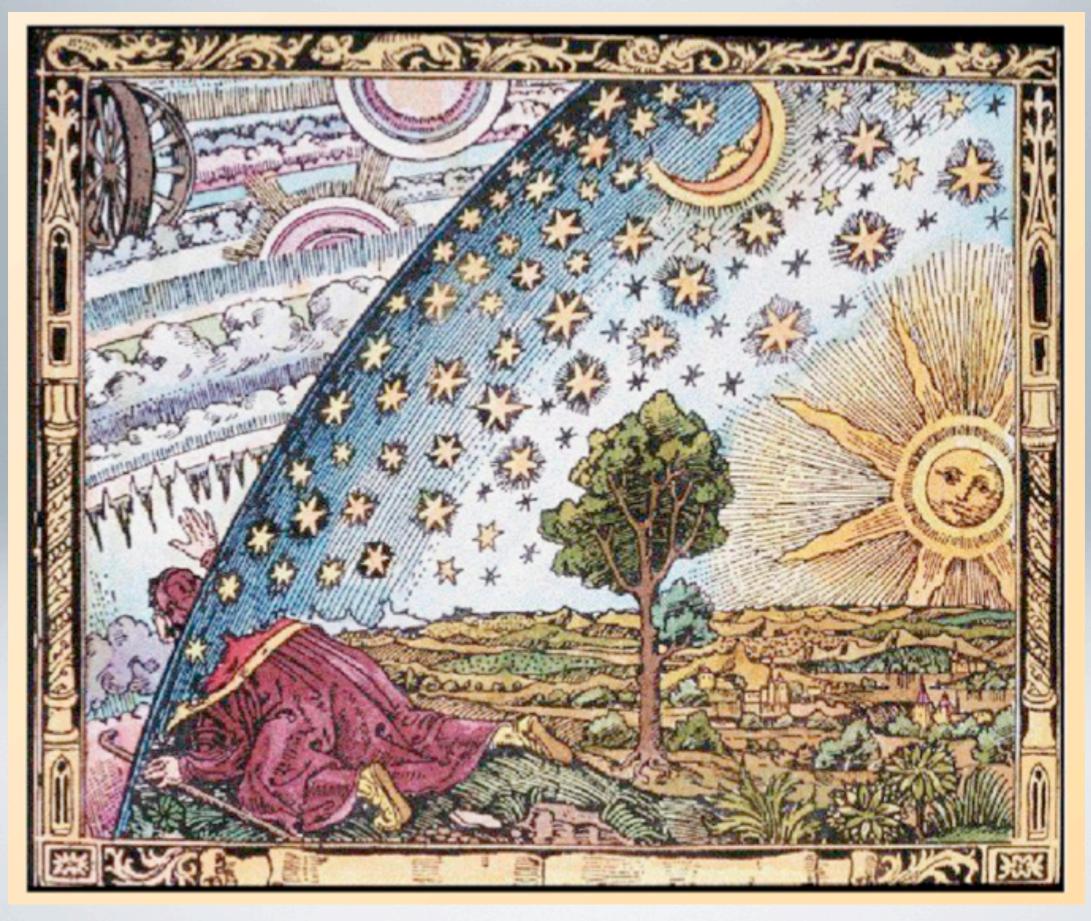
- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times
- new reduction method (library Ninja)

- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times
- new reduction method (library Ninja)
- refined stability tests and rescue system

- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times
- new reduction method (library Ninja)
- refined stability tests and rescue system
- large flexibility for combination with Monte Carlo programs

- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times
- new reduction method (library Ninja)
- refined stability tests and rescue system
- large flexibility for combination with Monte Carlo programs
- can also provide spin-and colour correlated tree amplitudes

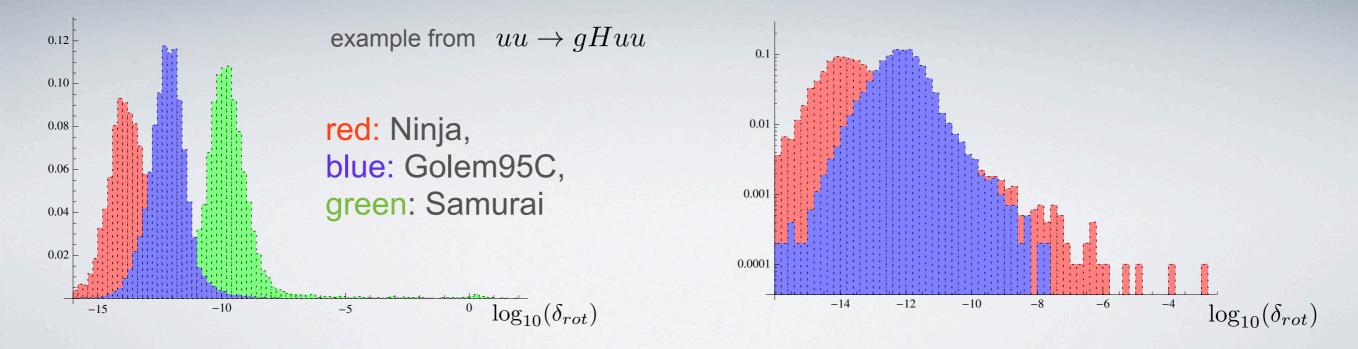
- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times
- new reduction method (library Ninja)
- refined stability tests and rescue system
- large flexibility for combination with Monte Carlo programs
- can also provide spin-and colour correlated tree amplitudes
- easy installation and usage


- GoSam-2.0 is a highly automated tool for one-loop multi-leg calculations
- large range of applicability: QCD, electroweak, BSM (higher rank integrals, complex masses, model file import)
- more compact code, faster evaluation times
- new reduction method (library Ninja)
- refined stability tests and rescue system
- large flexibility for combination with Monte Carlo programs
- can also provide spin-and colour correlated tree amplitudes
- easy installation and usage

looking forward to a multitude of phenomenological applications !

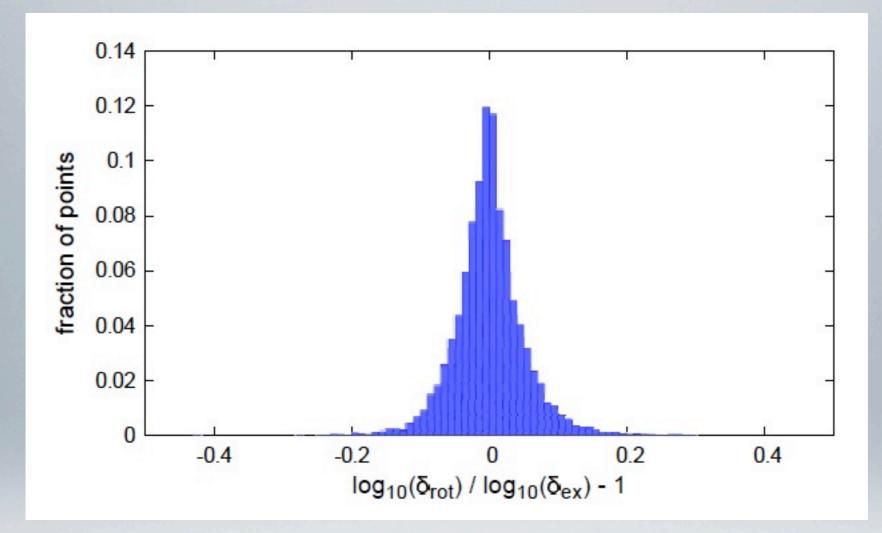
Additional Slides

stability tests and rescue system

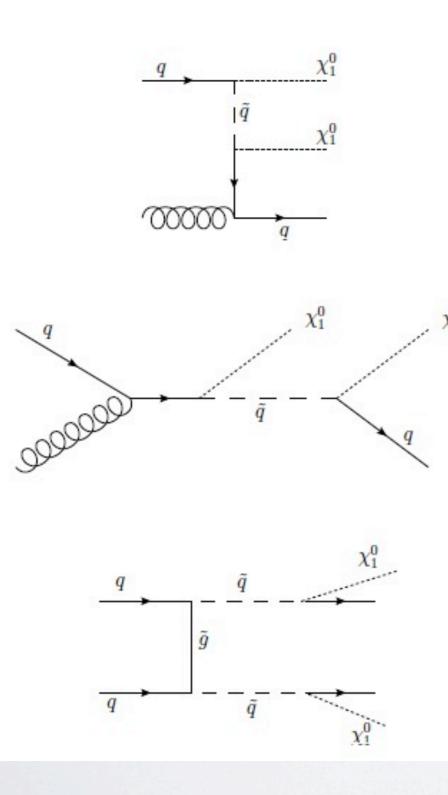

• pole test :

$$\delta_{pole} = \left| \frac{S_{IR} - S}{S_{IR}} \right| \qquad P_{pole} = -\log_{10} \left(\delta_{pol} \right)$$

e


rotation test:
$$\delta_{rot} = 2 \left| \frac{A_{rot}^{\text{fin}} - A^{\text{fin}}}{A_{rot}^{\text{fin}} + A^{\text{fin}}} \right|$$

- three thresholds P_high (default 8), P_low (default 3), P_set (default 5)
 - if P_pole > P_high: accept
 - if P_pole < P_low: discard
 - if P_high > P_pole > P_low: do rotation test, discard if P_rot < P_set


GoSam default: reduction with Ninja, rescue with golem95C

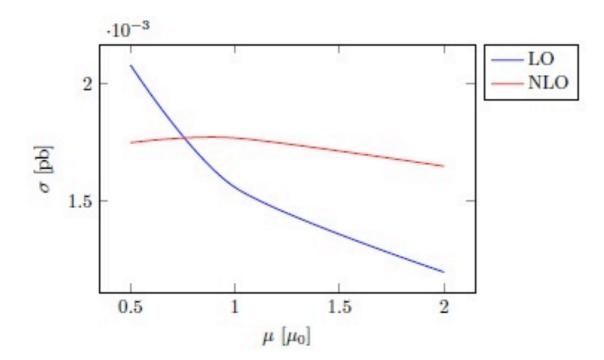
stability tests and rescue system

correlation plot based on 10^4 points between accuracy estimate based on "exact" and "rotated" for $ud \to Wbbg$ (massive b's)

GOSAM & SUSY

t-channel squark exchange

s-channel squark exchange


appears at NLO, can also be regarded as LO for squark pair production \Rightarrow huge contribution

$pp \rightarrow (\text{graviton} \rightarrow \gamma \gamma) + 1 \text{ jet}$

	cross section [fb]	MC error [fb]	scale uncertainty [fb]	
LO	1.561	$\pm 6.5 imes 10^{-4}$	0.522 -0.363	$\mu = \mu_0/2$ $\mu = 2\mu_0$
NLO	1.767	$\pm 7.1 imes 10^{-3}$	-0.02 -0.11	$\mu = \mu_0/2$ $\mu = 2\mu_0$

Cuts and parameters

$$\begin{split} p_{\mathcal{T},\gamma} &\geq 25 \, \text{GeV} \quad |\eta_{\gamma}| \leq 2.5 \quad 0.4 \leq \Delta R_{\gamma\gamma} \\ &140 \, \text{GeV} \leq m_{\gamma\gamma} < 3.99 \, \text{TeV} \\ p_{\mathcal{T},\text{leading jet}} &\geq 30 \, \text{GeV} \quad |\eta_{\text{jet}}| \leq 4 \quad 0.4 \leq \Delta R_{\text{jet},\gamma} \\ &\mu_0^2 = \mu_F^2 = \frac{1}{4} \left(m_{\gamma\gamma}^2 + p_{\mathcal{T},\text{jet}}^2 \right) \end{split}$$

4 (5 u. 6) extra dimensionens $M_s = 4 \text{ TeV}$

GoSam input card options

```
1
   process_name=eett
2
   process_path=eett
3
   in=
          e+. e-
4
   out= t, t~
5
   model= smdiag
   model.options=ewchoose
6
7
   order= gs, 0, 2
8
   zero=me
9
   one=gs,e
10
   regularisation_scheme=dred
11
   helicities=
12
   qgraf.options=onshell, notadpole, nosnail
   qgraf.verbatim= True=iprop[Z, 0, 0];\n\
13
14
                    true=iprop[H, 0, 0];
15
   ggraf.verbatim.lo=
16
   qgraf.verbatim.nlo=
17
   polvec=numerical
18
  diagsum=True
19 reduction_programs=ninja,golem95,samurai
20
   extensions=shared
21
   debug=nlo
22 select.lo=
23 select.nlo=
24 filter.lo=
25 filter.nlo=
26 filter.module=
27 renorm_beta=True
28 renorm_mqwf=True
29 renorm_decoupling=True
30 renorm_mqse=True
31 renorm_logs=True
32 renorm_gamma5=True
33 reduction_interoperation=-1
34 reduction_interoperation_rescue=-1
35 samurai_scalar=2
36 nlo_prefactors=0
37 PSP_check=True
38 PSP_rescue=True
39 PSP_verbosity=False
40 PSP_chk_th1=8
41 PSP_chk_th2=3
42 PSP_chk_th3=5
43 PSP_chk_kfactor=10000
44 reference-vectors=
45 abbrev.limit=0
```


- 46 templates=
- 47 qgraf.bin=qgraf
- 48 form.bin=form
- 49 form.threads=2
- 50 form.tempdir=/tmp
- 51 haggies.bin=
- 52 fc.bin=/usr/bin/gfortran
- 53 python.bin=python
- 54 ninja.fcflags=
- 55 ninja.ldflags=
- 56 samurai.fcflags=
- 57 samurai.ldflags=
- 58 golem95.fcflags=
- 59 golem95.ldflags=
- 60 r2=explicit
- 61 symmetries=family,generation
- 62 crossings=