On the QCD cusp

anomalous dimension

Johannes M. Henn

Institute for Advanced Study
supported in part by the Department of Energy grant DE-SC0009988
Marvin L. Goldberger Member
based on work in progress with

A. Grozin

G. Korchemsky

P. Marquard

Cusp anomalous dimension

- Cusp anomalous dimension describes infrared divergences
[cf. L. Magnea's talk on Friday]
- $\Gamma_{\text {cusp }}(\phi)$ governs UV divergences at cusp
[Polyakov; I loop]

[2 loops: Korchemsky, Radyushkin (1987)]

$$
\langle W\rangle \sim e^{-\left|\ln \frac{\mu_{U} V}{\mu_{I R}}\right| \Gamma_{\mathrm{cusp}}}
$$

- relation to light-like anomalous dimension K
[Korchemsky et al]

$$
x=e^{i \phi} \quad \lim _{x \rightarrow 0} \Gamma_{\text {cusp }}=-K \log x+\mathcal{O}\left(x^{0}\right)
$$

- N=4 SYM susy/non-susy Wilson loop operator

$$
\xi=\frac{\cos \theta-\cos \phi}{i \sin \phi} \quad \theta=\frac{\pi}{2} \quad \longrightarrow \quad \xi=\frac{1+x^{2}}{1-x^{2}}
$$

Beautiful answers

- Observation: constants in N=4 SYM anomalous dimensions have uniform 'transcendentality'
- generalize: pure functions of uniform weight (UT)
- suggests iterative differential structure
- what about QCD?
ref. [JMH, PRL $110(2013)]$ suggests QCD integrals can also be chosen UT
do physical results look nice when expressed in a good basis?

Perturbative results in $\mathrm{N}=4 \mathrm{SYM}$

- I loop $A^{(1)}(\phi)=-\xi \log x$
- 2 loops

$$
A^{(2)}(\phi)=\frac{1}{3} \xi\left[\pi^{2} \log x+\log ^{3} x\right]
$$

[Makeenko, Oleson, Semenoff (2006)]
[Drukker, Forini (2OI2)]

$$
-\xi^{2}\left[\zeta_{3}+\zeta_{2} \log x+\frac{1}{3} \log ^{3} x+\log x \operatorname{Li}_{2}\left(x^{2}\right)-\operatorname{Li}_{3}\left(x^{2}\right)\right]
$$

- bosonic Wilson loop in N=4 SYM, 2 loops

$$
\begin{aligned}
\Gamma_{\text {cusp }}^{(2) g}(\phi) & =A^{(2)}(\phi)-A^{(2)}(0)+B^{(2)}(\phi)-B^{(2)}(0), \quad \theta=\frac{\pi}{2} \\
B^{(2)}(\phi) & =\left[\log ^{2} x+\frac{1}{3} \pi^{2}\right]-\xi\left[\zeta_{2}+\log ^{2} x+2 \log x \operatorname{Li}_{1}\left(x^{2}\right)-\operatorname{Li}_{2}\left(x^{2}\right)\right] .
\end{aligned}
$$

- 3 loops; ξ term at any loop order [Correa, JMH, Maldacena, Sever (2012)]
- 4 loops planar; nonplanar ξ^{4} term;
- d-log algorithm for ladder integrals

A new look at two loops in QCD

- QCD result

$$
\begin{aligned}
\Gamma^{(1)}= & C_{F}\left[A^{(1)}(\phi)-A^{(1)}(0)\right] \quad \text { [Kidonakis (2009)] } \\
\Gamma^{(2)}= & C_{F} C_{A}\left[A^{(2)}(\phi)-A^{(2)}(0)+B^{(2)}(\phi)-B^{(2)}(0)\right] \\
& +\left(-\frac{5}{9} C_{F} T_{F} n_{f}-\frac{67}{36} C_{F} C_{A}\right)\left[A^{(1)}(\phi)-A^{(1)}(0)\right] .
\end{aligned}
$$

Only functions from N=4 SYM needed!

- $A^{(1)}$ uniform weight I : from susy WL
- $B^{(2)}$ uniform weight 2 : from bosonic WL
- $A^{(2)}$ uniform weight 3 : from susy WL
- what happens at 3 loops?
- why functions of uniform weight?

Why should we get pure functions?

- ForWilson line integrals, this is easy to see
- key:'d-log representations'
- make it obvious that result is given by pure functions
- provides algorithm for computing the answer

$$
\begin{aligned}
I_{\mathrm{NP}, \text { four-loop }}(x)= & -2 \zeta_{2}\left(18 H_{1,1,1,2}+24 H_{1,1,2,1}+18 H_{1,2,1,1}+30 H_{1,1,1,1,1}\right) \\
& +48 H_{1,1,1,4}+64 H_{1,1,2,3}+64 H_{1,1,3,2}+48 H_{1,2,1,3} \\
& +48 H_{1,2,2,2}+80 H_{1,1,1,1,3}+80 H_{1,1,1,2,2}+24 H_{1,1,1,3,1} \\
& +64 H_{1,1,2,1,2}+32 H_{1,1,2,2,1}+32 H_{1,1,3,1,1}+48 H_{1,2,1,1,2} \\
& +24 H_{1,2,1,2,1}+24 H_{1,2,2,1,1}+62 H_{1,1,1,1,1,2}+40 H_{1,1,1,1,2,1} \\
& +22 H_{1,1,1,2,1,1}+8 H_{1,1,2,1,1,1}+6 H_{1,2,1,1,1,1}+H_{1,1,1,1,1,1,1}
\end{aligned}
$$

- note: implies that all functions of this family have this property! see this more generally: [JMH, PRL IIO (IOI3) 25]
- algorithm also works for the multi-line case.
other method:
[cf. E. Gardi's talk on Thursday]

Master integrals

- abelian eikonal exponentiation: need only planar integrals

- 7I master integrals $\vec{f}(x ; \epsilon) \quad D=4-2 \epsilon \quad x=e^{i \phi}$
- differential equations in suitable basis
$\partial_{x} \vec{f}(x ; \epsilon)=\epsilon\left[\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}\right] \vec{f}(x ; \epsilon)$
a, b, c constant $71 \times 7 \mathrm{I}$ matrices
- boundary conditions trivially from $x=1$
- solution in terms of harmonic polylogarithms
one integral: [Chetyrkin,
Grozin, NP B666 (2003)]

Example

$$
\begin{aligned}
& f_{44}=\epsilon^{5} \frac{1-x^{2}}{x} G_{1,0,1,0,1,0,1,1,2,0,1,0} \\
& x=e^{i \phi}
\end{aligned}
$$

$$
\begin{aligned}
f_{44}=\epsilon^{4}[- & \frac{1}{6} \pi^{2} H_{0,0}(x)-\frac{2}{3} \pi^{2} H_{1,0}(x)-4 H_{0,-1,0,0}(x)+2 H_{0,0,-1,0}(x) \\
& \left.+2 H_{0,1,0,0}(x)-4 H_{1,0,0,0}(x)+4 \zeta_{3} H_{0}(x)-\frac{17 \pi^{4}}{360}\right]+\mathcal{O}\left(\epsilon^{5}\right)
\end{aligned}
$$

- all basis integrals are pure functions of uniform weight
- numerical checks with FIESTA
- confirmed previously known `N=4 SYM` result

Calculation at three loops

(I) compute proper vertex function
(2) take into account renormalization of Lagrangian
(3) compute vertex renormalization
(4) extract Gamma cusp $\quad \Gamma_{\text {cusp }}=\frac{\partial}{\partial \log \mu} \log Z$

- color structures $\Gamma_{\text {cusp }}^{(3)}: c_{1} C_{F} C_{A}^{2}+c_{2} C_{F}\left(T_{f} n_{f}\right)^{2}+c_{3} C_{F}^{2} T_{f} n_{f}+c_{4} C_{F} C_{A} T_{F} n_{f}$

$$
\begin{aligned}
& C_{F}\left(T_{F} n_{f}\right)^{2} \quad \text { [Braun, Beneke, I 995] } \\
& \left.\begin{array}{l}
C_{F}^{2} T_{F} n_{f} \\
C_{F} C_{A} T_{F} n_{f}
\end{array}\right\} \text { this talk } \\
& C_{F} C_{A}^{2} \quad \text { stay tuned! }
\end{aligned}
$$

Results $\Gamma_{\mathrm{cusp}}^{(3)}: c_{1} C_{F} C_{A}^{2}+c_{2} C_{F}\left(T_{f} n_{f}\right)^{2}+c_{3} C_{F}^{2} T_{f} n_{f}+c_{4} C_{F} C_{A} T_{F} n_{f}$

$$
\begin{aligned}
c_{2} & =-\frac{1}{27} A^{(1)} \quad c_{3}=\left(\zeta_{3}-\frac{55}{48}\right) A^{(1)} \\
c_{4} & =-\frac{5}{9}\left(A^{(2)}+B^{(2)}\right)-\frac{1}{6}\left(7 \zeta_{3}+\frac{209}{36}\right) A^{(1)} \\
A & =A(\phi)-A(0) \quad \text { Only functions from } \mathrm{N}=4 \text { SYM needed! }
\end{aligned}
$$

- Checks: expected divergence structure

$$
\log Z=-\frac{1}{2 \epsilon}\left(\frac{\alpha_{s}}{\pi}\right) \Gamma^{(1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left[\frac{\beta_{0}}{16 \epsilon^{2}} \Gamma^{(1)}-\frac{1}{4 \epsilon} \Gamma^{(2)}\right]+\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left[-\frac{\beta_{0}^{2} \Gamma^{(1)}}{96 \epsilon^{3}}+\frac{\beta_{1} \Gamma^{(1)}+4 \beta_{0} \Gamma^{(2)}}{96 \epsilon^{2}}-\frac{\Gamma^{(3)}}{6 \epsilon}\right]
$$

- Known limit $\lim _{x \rightarrow 0} \Gamma_{\text {cusp }}=-K \log x+\mathcal{O}\left(x^{0}\right)$

$$
\begin{aligned}
K^{(3)}= & \frac{1}{4} C_{F} C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right)+C_{F}^{2} n_{f} T_{F}\left(-\frac{55}{48}+\zeta_{3}\right) \\
& +\frac{1}{2} C_{F} C_{A} n_{f} T_{F}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+C_{F} n_{f}^{2} T_{F}^{2}\left(-\frac{1}{27}\right)
\end{aligned}
$$

[Vogt (200I)] [Berger (2002)] [Moch,Vermeaseren,Vogt (2004)]

Iterative structure of loop integrals

cf. [Caron-Huot, J.M.H. (20|4)

- The physical result is finite as $D \rightarrow 4$
- Obtain it from a subset of finite integrals/functions?
graded by weight
3

2

0

- Note: functions appear already in `simpler` N=4 SYM calculations!
- top-down vs. bottom-up approach

Conclusions

- computed nf terms of cusp anomalous dimension at 3 loops
- simple result; closely related to $\mathrm{N}=4 \mathrm{SYM}$
- iterative structure of finite loop integrals
- CA^2 CF term in progress

Extra slides

Example: choice of integral basis three-loop N=4 SYM form factor

$$
\begin{align*}
& F_{S}^{(3)}=R_{\epsilon}^{3}\left[+\frac{(3 D-14)^{2}}{(D-4)(5 D-22)} A_{9,1}-\frac{2(3 D-14)}{5 D-22} A_{9,2}-\frac{4(2 D-9)(3 D-14)}{(D-4)(5 D-22)} A_{8,1}\right. \\
& -\frac{20(3 D-13)(D-3)}{(D-4)(2 D-9)} A_{7,1}-\frac{40(D-3)}{D-4} A_{7,2}+\frac{8(D-4)}{(2 D-9)(5 D-22)} A_{7,3} \\
& -\frac{16(3 D-13)(3 D-11)}{(2 D-9)(5 D-22)} A_{7,4}-\frac{16(3 D-13)(3 D-11)}{(2 D-9)(5 D-22)} A_{7,5} \\
& -\frac{128(2 D-7)(D-3)^{2}}{3(D-4)(3 D-14)(5 D-22)} A_{6,1} \\
& -\frac{16(2 D-7)(5 D-18)\left(52 D^{2}-485 D+1128\right)}{9(D-4)^{2}(2 D-9)(5 D-22)} A_{6,2} \\
& -\frac{16(2 D-7)(3 D-14)(3 D-10)(D-3)}{(D-4)^{3}(5 D-22)} A_{6,3} \\
& -\frac{128(2 D-7)(3 D-8)\left(91 D^{2}-821 D+1851\right)(D-3)^{2}}{3(D-4)^{4}(2 D-9)(5 D-22)} A_{5,1} \\
& -\frac{128(2 D-7)\left(1497 D^{3}-20423 D^{2}+92824 D-140556\right)(D-3)^{3}}{9(D-4)^{4}(2 D-9)(3 D-14)(5 D-22)} A_{5,2} \\
& +\frac{4(D-3)}{D-4} B_{8,1}+\frac{64(D-3)^{3}}{(D-4)^{3}} B_{6,1}+\frac{48(3 D-10)(D-3)^{2}}{(D-4)^{3}} B_{6,2} \\
& -\frac{16(3 D-10)(3 D-8)\left(144 D^{2}-1285 D+2866\right)(D-3)^{2}}{(D-4)^{4}(2 D-9)(5 D-22)} B_{5,1} \\
& +\frac{128(2 D-7)\left(177 D^{2}-1584 D+3542\right)(D-3)^{3}}{3(D-4)^{4}(2 D-9)(5 D-22)} B_{5,2} \\
& +\frac{64(2 D-5)(3 D-8)(D-3)}{9(D-4)^{5}(2 D-9)(3 D-14)(5 D-22)} \\
& \times\left(2502 D^{5}-51273 D^{4}+419539 D^{3}-1713688 D^{2}+3495112 D-2848104\right) B_{4,1} \\
& \left.+\frac{4(D-3)}{D-4} C_{8,1}+\frac{48(3 D-10)(D-3)^{2}}{(D-4)^{3}} C_{6,1}\right] \tag{B.1}
\end{align*}
$$

Gehrmann, J.M.H., Huber (20II)
m

Figure 1: Master integrals for the three-loop form factors. Labels in brackets indicate the naming convention of Ref. [25].

Gehrmann, Glover, Huber, Ikizlerli, Studerus;
Lee, Smirnov \& Smirnov

Example: choice of integral basis three-loop $\mathrm{N}=4 \mathrm{SYM}$ form factor

$$
F_{S}^{(3)}=R_{\epsilon}^{3} \cdot\left[8 F_{1}^{\exp }-2 F_{2}^{\exp }+4 F_{3}^{\exp }+4 F_{4}^{\exp }-4 F_{5}^{\exp }-4 F_{6}^{\exp }-4 F_{8}^{\exp }+2 F_{9}^{\exp }\right]
$$

$$
\begin{align*}
F_{S}^{(3)}= & R_{\epsilon}^{3} \cdot\left[8 F_{1}^{\exp }-2 F_{2}^{\exp }+4 F_{3}^{\exp }+4 F_{4}^{\exp }-4 F_{5}^{\exp }-4 F_{6}^{\exp }-4 F_{8}^{\exp }+2 F_{9}^{\exp }\right] \\
= & -\frac{1}{6 \epsilon^{6}}+\frac{11 \zeta_{3}}{12 \epsilon^{3}}+\frac{247 \pi^{4}}{25920 \epsilon^{2}}+\frac{1}{\epsilon}\left(-\frac{85 \pi^{2} \zeta_{3}}{432}-\frac{439 \zeta_{5}}{60}\right) \\
& -\frac{883 \zeta_{3}^{2}}{36}-\frac{22523 \pi^{6}}{466560}+\epsilon\left(-\frac{47803 \pi^{4} \zeta_{3}}{51840}+\frac{2449 \pi^{2} \zeta_{5}}{432}-\frac{385579 \zeta_{7}}{1008}\right) \\
& +\epsilon^{2}\left(\frac{1549}{45} \zeta_{5,3}-\frac{22499 \zeta_{3} \zeta_{5}}{30}+\frac{496 \pi^{2} \zeta_{3}^{2}}{27}-\frac{1183759981 \pi^{8}}{7838208000}\right)+\mathcal{O}\left(\epsilon^{3}\right) \tag{5.2}
\end{align*}
$$

- each integral has uniform (and maximal)
"transcendentality"
T[Zeta[n]] = n
T[eps^n] = n
$T[A B]=T[A]+T[B]$
- for theories with less susy, other integrals also needed

F_{1}

F_{2}

F_{4}

F_{8}

F_{9}
g_{10}

3

2

1

0

Iterative structure for finite loop integrals
[Caron-Huot, J.M.H. (20|4)

