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Cusp anomalous dimension

• Cusp anomalous dimension describes infrared divergences

• N=4 SYM susy/non-susy Wilson loop operator

[cf. L. Magnea’s talk on Friday]

Cusp anomalous dimension

J. M. Henn, IAS

governs ultraviolet (UV) divergences at cusp

�cusp(�,�, N)

hW i ⇠ e�| ln µUV
µIR

| �cusp

� = g2YMN

Wilson loop with cusp

�cusp

Polyakov; Brandt, Neri, Sato
Korchemsky & Radyushkin ’87

cos(�) =
p · qp
p2q2

This quantity B also determines the energy emitted by a moving quark

�E = 2⇡B � dt(v̇)2 (5)

in the small velocity limit. The result for any velocity can be obtained by performing a

boost and it is the same old formula that one has in electrodynamics, up to the replacement
2e

2

3

→ 2⇡B, see [11] for a discussion at strong coupling. Its appearance in (5) is what

prompted us to call it the Bremsstrahlung function.
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Figure 1: (a) A Wilson line that makes a turn by an angle �. (b) Under the plane to cylinder

map, the same line is mapped to a quark anti-quark configuration. The quark and antiquark

are sitting at two points on S3 at a relative angle of ⇡ − �. Of course, they are extended

along the time direction.

The cusp anomalous dimension is an interesting quantity that is related to a variety of

physical observables as particular cases.

Originally it was defined in [12] as the logarithmic divergence that arises for a Wilson

loop operator when there is a cusp in the contour. A cusp is a region where a straight line

makes a sudden turn by an angle �, see figure 1(a). In that case the Wilson loop develops a

logarithmic divergence of the form

�W � ∼ e−�cusp(�,�) log L
✏̃ (6)

where L is an IR cuto↵ and ✏̃ a UV cuto↵. One can also consider the continuation � = i' so

that now ' is a boost angle in Lorentzian signature.

�
cusp

is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored particles

in the planar limit. Here ' is the boost angle between two external massive particle

3

similar to anomalous dimensions of composite operators
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•              governs UV divergences at cusp�cusp(�)
[Polyakov;  I loop]

[2 loops:  Korchemsky, Radyushkin (1987)]

• relation to light-like anomalous dimension K

x = e

i�
lim

x!0
�cusp = �K log x+O(x

0
)

[Korchemsky et al]
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Beautiful answers
• Observation: constants in N=4 SYM anomalous dimensions
have uniform ‘transcendentality’

• generalize: pure functions of uniform weight (UT)

• what about QCD?

do physical results look nice when expressed in a good basis?

ref.                              suggests QCD integrals can also be chosen UT[JMH, PRL 110 (2013)]

[Kotikov, Lipativ, Velizhanin]

• suggests iterative differential structure



Perturbative results in N=4 SYM
• 1 loop

• 3 loops;      term at any loop order [Correa, JMH, Maldacena, Sever (2012)]⇠

• 4 loops planar; nonplanar      term;
• d-log algorithm for ladder integrals

[JMH, Huber (2013)]
⇠4

[Makeenko, Oleson, Semenoff (2006)]
[Drukker, Forini (2012)]

• bosonic Wilson loop in N=4 SYM, 2 loops
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The log x term in the second line looks like a finite leftover from the counter
term, and should cancel between the two diagrams.

We need to compute the contribution of the integral corresponding to
Fig. 2(b). Our guess is that it is given by
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such that the UV counter terms cancel between the two diagram. The guess
for the remaining terms is motivated by comparing to the QCD result (see
below).

The equations above are also consistent with Grisha’s notes QCD-cusp-
GK.pdf. It would be nice to convert the results for the line integrals there to
those for HQET integrals.

2.2 Final result at two loops for �(2)g
cusp(�)

We expect the final answer to be given by
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5Need to check that 1/✏ terms are the same for HQET integrals as defined in Andrei’s
HQET book. Actually, in [6] there seems to be a di↵erent 1/✏ term, presumably due to a
di↵erent regulator.
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A new look at two loops in QCD
[Korchemsky, Radyushkin (1987)]
nf [Braun, Beneke,1995]
[Kidonakis (2009)]

• QCD result

�(2) =CFCA

h
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Only functions from N=4 SYM needed!

•         uniform weight 1 :  from susy WL 

•         uniform weight 2 :  from bosonic WL

•         uniform weight 3 :  from susy WL 

A(1)

A(2)

B(2)

• what happens at 3 loops?

• why functions of uniform weight?



Why should we get pure functions?
• For Wilson line integrals, this is easy to see

• algorithm also works for the multi-line case.

[JMH, Huber, JHEP 1309 (2013) 147]

other method: 
[cf. E. Gardi’s talk on Thursday]

- key: ‘d-log representations’

- make it obvious that result is given by pure functions 

- provides algorithm for computing the answer

Nonplanar correction to scaling limit

J. M. Henn, IAS

first correction appear at four loops 
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- note: implies that all functions of this family have this property!
see this more generally: [JMH, PRL 110 (1013) 25]



Master integrals
• abelian eikonal exponentiation: need only planar integrals

[cf. V. Smirnov’s and T. Huber’s talks later today 
for applications to multi-scale cases]

• differential equations in suitable basis
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• boundary conditions trivially from x = 1

• solution in terms of harmonic polylogarithms

a, b, c constant 71x71 matrices

[method: see JMH, PRL 110 (1013) 25]

one integral: [Chetyrkin, 
Grozin, NP B666 (2003)]



Example

v1 -v2

q

f44 = ✏4
h
� 1

6
⇡2H0,0(x)� 2

3
⇡2H1,0(x)� 4H0,�1,0,0(x) + 2H0,0,�1,0(x)
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• all basis integrals are pure functions of uniform weight

• numerical checks with FIESTA

• confirmed previously known `N=4 SYM` result



Calculation at three loops
 (1) compute proper vertex function

 (2) take into account renormalization of Lagrangian

 (3) compute vertex renormalization

 (4) extract Gamma cusp

• color structures

CFC
2
A stay tuned!

CF (TFnf )
2

C2
FTFnf

CFCATFnf
this talk

[Braun, Beneke,1995]

�cusp =

@

@ logµ
logZ

�(3)
cusp : c1CFC

2
A + c2CF (Tfnf )

2 + c3C
2
FTfnf + c4CFCATFnf

}



Results �(3)
cusp : c1CFC

2
A + c2CF (Tfnf )

2 + c3C
2
FTfnf + c4CFCATFnf

• Checks: expected divergence structure

Only functions from N=4 SYM needed!

lim

x!0
�cusp = �K log x+O(x

0
)• Known limit

[Berger (2002)]
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Iterative structure of loop integrals
cf. [Caron-Huot, J.M.H. (2014) 

• Obtain it from a subset of finite integrals/functions?

• The physical result is finite as D ! 4

• Note: functions appear already in `simpler` N=4 SYM calculations!

• top-down vs. bottom-up approach

A(2)
1 A(2)

2

B(2)
1 B(2)

2

A(1)

graded by weight

3

2

1

0 1

d log(x/1� x

2
)

d log(x)

d log(x)

d log(x)

d log(x)

(a
)

(b
)

F
igu

re
1:

Integrals
n
eed

ed
to

com
p
u
te

�
(2)
cu

sp (
�
,
✓)

at
tw

o
loop

s.

2
.
1

F
r
o
m

t
h
e
s
u
p
e
r
s
y
m
m
e
t
r
i
c
W

i
l
s
o
n
l
o
o
p
t
o
t
h
e
b
o
s
o
n
i
c

W
i
l
s
o
n

l
o
o
p

i
n

N
=

4
S
Y
M

R
ecall

th
e
d
efi
n
ition

of
th
e
su
p
ersym

m
etric

W
ilson

loop
inN

=
4
S
Y
M
.
T
h
e

W
ilson

loop
op

erator
is
given

by
[7]

W
⇠

T
r[
P
e

i H
A
·
d
x
+ H

|
d
x|
~
n·
~

�
]

(2)

w
ritten

in
E
u
clid

ean
sign

atu
re.

O
n
e
can

con
sid

er
a
loop

w
ith

a
con

stant
d
irection

~
n
,
w
ith

@

⌧

~
n

=
0.

C
on

sid
er

su
ch

straight
W

ilson
lin

e
m
akin

g
a

su
d
d
en

tu
rn

by
an

an
gle

�
.
A
t
th
e
cu
sp

w
e
ch
an

ge
th
e
d
irection

~
n
by

an
an

gle
✓,

cos
✓
=

~
n·

~
n

0,
w
h
ere

~
n
an

d
~
n

0
are

th
e
d
irection

s
b
efore

an
d
after

th
e

cu
sp
.

2
.
1
.
1

R
e
v
i
e
w

o
f
t
w
o
-
l
o
o
p

s
u
p
e
r
s
y
m
m
e
t
r
i
c
r
e
s
u
l
t

T
h
e
resu

lt
for

th
e
cu
sp

an
om

alou
s
d
im

en
sion

at
tw

o
loop

s
is

�
(2)
cu

sp (
�
,
✓)

=
�

12
⇠

�
23
log

x

�log
2
x
+
⇡

2
�

�

(3)

�
12
⇠

2



23
log

3
x
+
2
log

x

�

⇣

2
+
L
i2 (

x

2)
��

2L
i3 (

x

2)
+
2
⇣

3

�

,

3

(a
)

(b
)

F
igu

re
1:

Integrals
n
eed

ed
to

com
p
u
te

�
(2)
cu

sp (
�
,
✓)

at
tw

o
loop

s.

2
.
1

F
r
o
m

t
h
e
s
u
p
e
r
s
y
m
m
e
t
r
i
c
W

i
l
s
o
n
l
o
o
p
t
o
t
h
e
b
o
s
o
n
i
c

W
i
l
s
o
n
l
o
o
p
i
n

N
=

4
S
Y
M

R
ecall

th
e
d
efi
n
ition

of
th
e
su
p
ersym

m
etric

W
ilson

loop
inN

=
4
S
Y
M
.
T
h
e

W
ilson

loop
op

erator
is
given

by
[7]

W
⇠

T
r[
P
e

i H
A
·
d
x
+ H

|
d
x|
~
n·
~

�
]

(2)

w
ritten

in
E
u
clid

ean
sign

atu
re.

O
n
e
can

con
sid

er
a
loop

w
ith

a
con

stant
d
irection

~
n
,
w
ith

@

⌧

~
n

=
0.

C
on

sid
er

su
ch

straight
W

ilson
lin

e
m
akin

g
a

su
d
d
en

tu
rn

by
an

an
gle

�
.
A
t
th
e
cu
sp

w
e
ch
an

ge
th
e
d
irection

~
n
by

an
an

gle
✓,

cos
✓
=

~
n·

~
n

0,
w
h
ere

~
n
an

d
~
n

0
are

th
e
d
irection

s
b
efore

an
d
after

th
e

cu
sp
.

2
.
1
.
1

R
e
v
i
e
w

o
f
t
w
o
-
l
o
o
p

s
u
p
e
r
s
y
m
m
e
t
r
i
c
r
e
s
u
l
t

T
h
e
resu

lt
for

th
e
cu
sp

an
om

alou
s
d
im

en
sion

at
tw

o
loop

s
is

�
(2)
cu

sp (
�
,
✓)

=
�

12
⇠

�
23
log

x

�log
2
x
+
⇡

2
�

�

(3)

�
12
⇠

2



23
log

3
x
+
2
log

x

�

⇣

2
+
L
i2 (

x

2)
��

2L
i3 (

x

2)
+
2
⇣

3

�

,

3



Conclusions
• computed nf terms of cusp anomalous dimension at 3 loops

• simple result; closely related to N=4 SYM

• iterative structure of finite loop integrals

• CA^2 CF term in progress



Extra slides



Example: choice of integral basis

Rutgers - J. M. Henn, IAS

B. Form factor in terms of master integrals

Just as in QCD, the three-loop scalar form factor in N = 4 can be reduced to master inte-

grals by means of the Laporta algorithm [44], for which we used the program REDUZE [45].

One obtains
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R

✏

is given in Eq. (2.14). In order to arrive at Eq. (5.2) we have to plug in D = 4�2✏ and

the ✏-expansions for the master integrals from Eqs. (A.7) – (A.27) of [30], together with

their higher order ✏-terms from [32].

C. Four-point amplitude to two loops

Here we summarise the known four-point amplitude in N = 4 super Yang-Mills to two

loop order. As we have seen in the main text, both leading and subleading terms in colour

are required when computing the form factor at leading colour using unitarity.
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three-loop N=4 SYM form factor 

Gehrmann, J.M.H., Huber (2011)

A5,1 A5,2 A6,1 A6,2

A6,3 A7,1 A7,2 A7,3

,2

A7,4 A7,5 A8,1 A9,1

A9,2 A9,4

B4,1 [= A4] B5,2 [= A5,4] B6,2 [= A6,4] B8,1

B5,1 [= A5,3] B6,1 [= A6,6] C6,1 [= A6,5] C8,1

Figure 1: Master integrals for the three-loop form factors. Labels in brackets indicate the naming
convention of Ref. [25].

corresponding to weight eight numerically to a precision of one per-mille or better using

MB.m [30] and FIESTA [31, 32]. All other of the 22 master integrals we even confirm ana-

lytically through to weight eight by expanding the closed form in terms of hypergeometric

functions given in [20, 21] using the HypExp package [33].
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Gehrmann, Glover, Huber, Ikizlerli, Studerus;
Lee, Smirnov & Smirnov



Example: choice of integral basis

Rutgers - J. M. Henn, IAS

three-loop N=4 SYM form factor 

Gehrmann, J.M.H., Huber (2011)
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Figure 7: Diagrams of which the three-loop form factor F (3)
S

in N = 4 SYM is built. All internal
lines are massless. The incoming momentum is q = p1+p2, outgoing lines are massless and on-shell,
i.e. p21 = p

2
2 = 0. Diagrams with labels p

a

and p

b

on arrow lines have an irreducible scalar product
(p

a

+ p

b

)2 in their numerator (diagrams that lack these labels have unit numerator). All diagrams
displayed exhibit uniform transcendentality (UT) in their Laurent expansion in ✏ = (4�D)/2.

same colour representation, which is achieved by setting C

A

= C

F

= 2T
F

and n

f

= 1 in

the QCD result [27]. It turns out that with this adjustment the leading transcendentality
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following expression satisfies all cuts that we have evaluated,
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(4.13)

We will now argue that Eq. (4.13) is the complete result for the three-loop form factor. In

fact, potential corrections to equation (4.13) can come only from seven-propagator integrals

that have vanishing two-particle cuts. An example of such an integral is F
10

shown in Fig. 6.

As we will see in section 7, the appearance of such integrals is highly unlikely due to their

bad UV behaviour, violating a bound based on supersymmetry power counting.

Moreover, in section 6, we will perform an even more stringent check on Eq. (4.13) by

verifying the correct exponentiation of infrared divergences. In particular, this means that

any potentially missing terms in equation (4.13) would have to be IR and UV finite, and

vanish in all unitarity cuts that we considered.

5. Final result for the form factor at three loops

In the previous section we obtained the extension of Eq. (2.13) to three loops,
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The expressions for F
i

, and F

exp

i

are again given in appendix A. All diagrams are displayed

in Fig. 7. This yields
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We can make a very interesting observation here. For anomalous dimensions of twist

two operators, there is a heuristic leading transcendentality principle [54–56], which relates

the N = 4 SYM result to the leading transcendental part of the QCD result. We can

investigate whether a similar property holds for the form factor.

For the comparison, we specify the QCD quark and gluon form factor to a super-

symmetric Yang-Mills theory containing a bosonic and fermionic degree of freedom in the
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We can make a very interesting observation here. For anomalous dimensions of twist

two operators, there is a heuristic leading transcendentality principle [54–56], which relates

the N = 4 SYM result to the leading transcendental part of the QCD result. We can

investigate whether a similar property holds for the form factor.

For the comparison, we specify the QCD quark and gluon form factor to a super-

symmetric Yang-Mills theory containing a bosonic and fermionic degree of freedom in the
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• each integral has uniform (and maximal) 
``transcendentality’’
 T[ Zeta[n] ] = n 
 T[eps^-n] = n
 T[A B] = T[A] + T[B]

• for theories with less susy, other integrals 
also needed



Iterative structure
for finite 

loop integrals
[Caron-Huot, J.M.H. (2014) 
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Figure 4. Hierarchy of master integrals up to two loops. The integrals are classified according
to their (transcendental) weight, shown in the leftmost column. Each arrow corresponds to one
non-zero element of the derivative matrix A, cf. eq. (4.11). The fact that arrows only link integrals
in adjacent rows is the statement that the matrix is block triangular. The result for an integral
can immediately be written down by summing over all paths leading up from the tadpole integral
g1 = 1. Each path gives a contribution to an iterated integral, with the integration kernels being
specified by the ‘letters’ written next to the corresponding arrows. Solid and dashed lines denote
massive and massless propagators, respectively. Note that the pictures are intended to give an idea
of how the integrals look like, but omit details such as e.g. numerator factors.
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