Automatizing one-loop computation in the SM with RECOLA

Sandro Uccirati

Torino University and INFN

In collaboration with S. Actis, A. Denner, L. Hofer, A. Scharf

Loops\&Legs 2014, 27 April - 02 May 2014

After the discovery of the Higgs boson:

- Precise investigation of the Standard Model and beyond
- Need to have under control potential large corrections for several processes

After the discovery of the Higgs boson:

- Precise investigation of the Standard Model and beyond
- Need to have under control potential large corrections for several processes
- QCD corrections are known to be large
- EW corrections can be enhanced:
- in high energy regions (Sudakov log's)
- in Higgs physics
- by photon emission (mass-singular log's)

Let's concentrate on one loop corrections

Les Houches wishlist 2013 at one loop

- QCD:

$$
p p \rightarrow t \bar{t} H, \quad p p \rightarrow t \bar{t}+j \quad \text { (top decays) }
$$

- EW:

$$
\begin{aligned}
& p p \rightarrow 3 j, \\
& p p \rightarrow t \bar{t}, \quad p p \rightarrow t \bar{t} H, \quad p p \rightarrow t \bar{t}+j \quad \text { (top decays) } \\
& p p \rightarrow V+2 j, \quad p p \rightarrow V V^{\prime}, \quad p p \rightarrow V V+j, \\
& p p \rightarrow V V+2 j \quad p p \rightarrow V V^{\prime} \gamma, \quad p p \rightarrow V V^{\prime} V^{\prime \prime}, \\
& \left(V, V^{\prime}, V^{\prime \prime}=W, Z\right. \text { decay leptonically) }
\end{aligned}
$$

- Many issues at hadronic level:

Multi-channel MCs, Real emission, PDFs, Parton Shower, ...

- At least the partonic processes should be automatized

Many codes have been produced:

MCFM	Campbell, Ellis
FormCalc	Agrawal, Hahn, Mirabella
BlackHat	Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maître
VBFNLO	Arnold, Bähr, Bozzi, Campanario, Englert, Figy, Greiner, Hackstein, Hankele, Jäger, Klämke, Kubocz, Oleari, Plätzer, Prestel, Worek, Zeppenfeld
HELAC-NLO	Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos, Pittau, Worek
GoSam	Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
SANC	Sadykov, Arbuzov, Bardin, Bondarenko, Christova, Kalinovskaya, NJet
Kolesnikov, Sapronov, Uglov AMC@NLO OpenLger, Biedermann, Uwer, Yundin	
Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau	
Most of them are efficient codes for QCD	

RECOLA

REcursive Computation of One Loop Amplitudes (in the full Standard Model)

Based on recursive relations for off-shell currents

Off-shell tree currents

Given a process with L external legs:

$$
\underbrace{\mathcal{P}_{1}+\ldots+\mathcal{P}_{L-1}}_{\text {primary }}+\underbrace{\mathcal{P}_{L}}_{\text {last }} \rightarrow 0
$$

Off-shell current of a particle \mathcal{P} with n primary legs:
Def: Amplitude made of n primary on-sheel particles and the off-sheel particle \mathcal{P}

List of primary legs

- w is a scalar, spinor or vector
- The off-shell currents for external legs are the wave functions:

$$
\longrightarrow \bullet=u_{\lambda}(p) \quad \longrightarrow=\bar{u}_{\lambda}(p) \quad \rightsquigarrow_{\bullet}=\epsilon_{\lambda}(p) \quad--\bullet=1
$$

Recursion relation for tree amplitudes

(incoming currents) $\times($ coupling $) \times($ propagator $)$

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

2-leg currents:

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

3-leg currents:

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

4-leg currents:

Recursion relation for tree amplitudes

- Recursive procedure:

etc. . . .

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

etc. . . .
- Amplitude: $\mathcal{A}=w\left(\overline{\mathcal{P}}_{L}, 2^{L-1}-1\right) \times(\text { propagator })^{-1} \times w\left(\mathcal{P}_{L}, 2^{L-1}\right)$

Recursion relation for loop amplitudes

General form of the amplitude:

$$
\begin{gathered}
\mathcal{A}=\sum_{t} \underbrace{c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)}}_{(t)} T_{(t)}^{\mu_{1} \cdots \mu_{r_{t}}}=\int \frac{d^{n} q q^{\mu_{1}} \cdots q^{\mu_{r_{t}}}}{D_{0}^{(t)} \cdots D_{k_{t}}^{(t)}} \quad D_{k_{t}}^{(t)}=\left(q+p_{k_{t}}^{(t)}\right)^{2}-\left(m_{k_{t}}^{(t)}\right)^{2}
\end{gathered}
$$

Indices $\mu_{1}, \ldots, \mu_{r_{t}}$ are computed numerically in $\mathrm{D}=4$ dimensions.

Recursion relation for loop amplitudes

General form of the amplitude:

$$
\begin{gathered}
\mathcal{A}=\sum_{t} \underbrace{c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)}} T_{(t)}^{T_{1} \ldots \mu_{r_{t}}}+\mathcal{A}_{\mathrm{R} 2} \\
T_{(t)}^{\mu_{1} \cdots \mu_{r_{t}}}=\int \frac{d^{n} q q^{\mu_{1}} \cdots q^{\mu_{r_{t}}}}{D_{0}^{(t)} \cdots D_{k_{t}}^{(t)}} \quad D_{k_{t}}^{(t)}=\left(q+p_{k_{t}}^{(t)}\right)^{2}-\left(m_{k_{t}}^{(t)}\right)^{2}
\end{gathered}
$$

Indices $\mu_{1}, \ldots, \mu_{r_{t}}$ are computed numerically in $\mathrm{D}=4$ dimensions.
\rightsquigarrow Add the rational part $\mathcal{A}_{\mathrm{R} 2}$

- Effective Feynman rules
[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09-'10]

Recursion relation for loop amplitudes

General form of the amplitude:

$$
\begin{aligned}
& \text { Tensor Coefficients (TCs) } \\
& \mathcal{A}=\sum_{t} c_{\text {Tensor Integrals (TIs) }}^{c_{\mu_{1} \ldots \mu_{r}}^{(t)}} \\
& T_{(t)}^{\mu_{1} \cdots \mu_{r_{t}}}=\int \frac{d^{n} q q^{\mu_{1}} \cdots q^{\mu_{r_{t}}}}{D_{0}^{(t)} \cdots D_{k_{t}}^{(t)}} \quad D_{k_{t}}^{(t)}=\left(q+p_{k_{t}}^{(t)}\right)^{2}-\left(m_{k_{t}}^{(t)}\right)^{2}
\end{aligned}
$$

Indices $\mu_{1}, \ldots, \mu_{r_{t}}$ are computed numerically in $\mathrm{D}=4$ dimensions.
\rightsquigarrow Add the rational part $\mathcal{A}_{\mathrm{R} 2}$

- Effective Feynman rules
[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09-'10]
\rightsquigarrow Add the counterterms contribution $\mathcal{A}_{\mathrm{CT}}$

Recursion relation for loop amplitudes

General form of the amplitude:

$$
\begin{gathered}
\mathcal{A}=\sum_{t} \underbrace{c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)}} T_{(t)}^{\text {Tensor Coefficients (JCs) }_{\mu_{1} \ldots \mu_{r_{t}}}+\mathcal{A}_{\mathrm{R} 2}+\mathcal{A}_{\mathrm{CT}}} \\
T_{(t)}^{\mu_{1} \cdots \mu_{r_{t}}}=\int \frac{d^{n} q q^{\mu_{1}} \cdots q^{\mu_{r_{t}}}}{D_{0}^{(t)} \cdots D_{k_{t}}^{(t)}} \quad D_{k_{t}}^{(t)}=\left(q+p_{k_{t}}^{(t)}\right)^{2}-\left(m_{k_{t}}^{(t)}\right)^{2}
\end{gathered}
$$

Indices $\mu_{1}, \ldots, \mu_{r_{t}}$ are computed numerically in $\mathrm{D}=4$ dimensions.
\rightsquigarrow Add the rational part $\mathcal{A}_{\mathrm{R} 2} \longrightarrow$ tree-like amplitudes

- Effective Feynman rules
[Draggiotis, Garzelli, Malamos, Papadopouløs, Pittau '09-'10]
\rightsquigarrow Add the counterterms contribution

Basic idea: Cut the loop line and consider tree diagrams with two more legs. [A. van Hameren, JHEP 0907 (2009) 088]

Given the loop process

$$
\mathcal{P}_{1}+\ldots+\mathcal{P}_{L} \rightarrow 0
$$

we consider the tree processes

$$
\underbrace{\mathcal{P}_{1}+\ldots+\mathcal{P}_{L}+\mathcal{P}}_{\text {primary }}+\underbrace{\overline{\mathcal{P}}}_{\text {last }} \rightarrow 0 \quad \forall \mathcal{P} \in\{\text { Particle of the } \mathrm{SM}\}
$$

Basic idea: Cut the loop line and consider tree diagrams with two more legs.
[A. van Hameren, JHEP 0907 (2009) 088]

Problem:

Associated tree diagrams are more than the original loop diagrams:

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow

The current containing the first external line enters the loop flow first

Rules to avoid double counting of the associated trees:

Rule 1: $\quad \rightarrow$ Fix starting point of loop flow
The current containing the first external line enters the loop flow first

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow
The current containing the first external line enters the loop flow first

OK

NO

NO

NO

NO

Rule 2: \rightarrow Fix direction of loop flow
The 3 currents with the 3 smallest binaries enter the loop flow in fixed order

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow
The current containing the first external line enters the loop flow first

OK

NO

NO

NO

NO

Rule 2: \rightarrow Fix direction of loop flow
The 3 currents with the 3 smallest binaries enter the loop flow in fixed order

- Recursion relation for loop currents

- Recursion relation for loop currents

Remark: Indices μ_{1}, \ldots, μ_{r} are symmetrized at each step

- The coefficients $a_{k, r}^{\mu_{1} \cdots \mu_{r}}$ of the last current give the TCs $c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)}$

Loop off-shell currents

in loop propagators
Sequence of masses in loop propagators

- i_{k} is the tensorial index:

$$
\begin{array}{lll}
i_{k}=0 & \rightarrow & w_{i_{k}}=a_{k, 0} \\
i_{k}=1, \ldots, 4 & \rightarrow & w_{i_{k}}=a_{k, 1}^{\mu_{1}} \\
i_{k}=5, \ldots, 14 & \rightarrow & w_{i_{k}}=a_{k, 2}^{\mu_{2}} \mu_{2}
\end{array}
$$

- Special wave functions for the cutted line:

where the components are $\left(\psi_{i}\right)_{j}=\left(\bar{\psi}_{i}\right)_{j}=\delta_{i j}, \epsilon_{i}^{\mu}=\delta_{i \mu}$.

Treatment of the colour

Color-flow representation [Maltoni, Paul, Stelzer, Willenbrock '02]:
Gluon field : $\left.\sqrt{2} \overparen{A_{\mu}^{a}}\left(\lambda^{a}\right)_{j}^{i}=\left(\mathcal{A}_{\mu}\right)_{j}^{i}\right)$ gluon with color-flow ${ }_{j}^{i}$

$$
i, j=1,2,3
$$

"usual" gluon with color index $a=1, \ldots, 8$ $\sum_{i}\left(A_{\mu}\right)_{i}^{i}=0$

Feynman rules:

- Multiply gluon fields A_{μ}^{a} by $\left(\lambda^{a}\right)_{j}^{i} / \sqrt{2}$ and use properties of $\left(\lambda^{a}\right)_{j}^{i}$
- The color part of the Feynman rules is just product of deltas:

$$
{ }_{j_{1}}^{i_{1} \oiint_{i}}{ }_{i_{2}}^{j_{2}}=i_{j_{1} \longrightarrow}^{i_{1}} i_{2} \times \frac{-i g_{\mu \nu}}{p^{2}}=\delta_{j_{2}}^{i_{1}} \delta_{j_{1}}^{i_{2}} \times \frac{-i g_{\mu \nu}}{p^{2}}
$$

$$
\text { Structure of amplitude: } \quad \mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}=\sum_{P\left(j_{1}, \ldots, j_{n}\right)} \delta_{j_{1}}^{i_{1}} \cdots \delta_{j_{n}}^{i_{n}} \mathcal{A}_{P}
$$

Structure of amplitude:

$$
\mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}=\sum_{P\left(j_{1}, \ldots, j_{n}\right)} \delta_{j_{1}}^{i_{1}} \cdots \delta_{j_{n}}^{i_{n}} \mathcal{A}_{P}
$$

- Colour-dressed amplitudes:
\rightarrow Compute $\mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}$ for all possible colours $\left(N_{c}^{2 n}\right)$

$$
\text { Squared amplitude: } \quad \overline{\mathcal{M}^{2}}=\sum_{i_{1} \ldots i_{n}, j_{1}, \ldots, j_{n}}\left(\mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}\right)^{*} \mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}
$$

It requires colour-dressed currents

Structure of amplitude:

$$
\mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}=\sum_{P\left(j_{1}, \ldots, j_{n}\right)} \delta_{j_{1}}^{i_{1}} \cdots \delta_{j_{n}}^{i_{n}} \mathcal{A}_{P}
$$

- Colour-dressed amplitudes:
\rightarrow Compute $\mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}$ for all possible colours $\left(N_{c}^{2 n}\right)$
Squared amplitude: $\quad \overline{\mathcal{M}^{2}}=\sum_{i_{1} \ldots i_{n}, j_{1}, \ldots, j_{n}}\left(\mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}\right)^{*} \mathcal{A}_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}}$
It requires colour-dressed currents
- Structure-dressed (or colour-ordered) amplitudes:
\rightarrow Compute \mathcal{A}_{P} for all possible $P(n!)$
Squared amplitude: $\quad \overline{\mathcal{M}^{2}}=\sum_{P, P^{\prime}} \mathcal{A}_{P}^{*} C_{P P^{\prime}} \mathcal{A}_{P^{\prime}}$
It requires structure-dressed currents

Structure-dressed off-shell currents

Colour structure of off-shell current:

with all possible permutations of $j_{1}, \ldots j_{n}, \beta$

In the recursion procedure:

- Saturated parts of incoming currents multiply
- Open parts of incoming currents are contracted

Optimization: Compute once currents differing just by the colour structure
\rightsquigarrow Overcome lack of colour factorization

Example: $\begin{gathered}\bar{u} \\ \\ \\ 1\end{gathered}$

$$
\begin{aligned}
& \text { Example: } \begin{array}{c}
\bar{u} \\
1
\end{array} \\
& 2 \longrightarrow \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right) \quad 4 \omega_{\beta}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right) \quad 8 ண_{\beta}^{\alpha}=w\left(g, \delta_{\beta}^{i_{8}} \delta_{j_{8}}^{\alpha}, 8\right)
\end{aligned}
$$

$2 \rightarrow \bullet \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right)$
$4{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right)$
$8{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i 8} \delta_{j 8}^{\alpha}, 8\right)$

$$
2 \rightarrow \bullet \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right) \quad 4{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right) \quad 8{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{8}} \delta_{j_{8}}^{\alpha}, 8\right)
$$

$$
2 \rightarrow \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right) \quad 4{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right) \quad 8{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{8}} \delta_{j_{8}}^{\alpha}, 8\right)
$$

$$
2 \rightarrow \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right) \quad 4{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right) \quad 8 \rightsquigarrow_{\beta}^{\alpha}=w\left(g, \delta_{\beta}^{i_{8}} \delta_{j_{8}}^{\alpha}, 8\right)
$$

8

$$
\underbrace{w\left(g, \delta_{j_{4}}^{i_{8}} \delta_{\beta}^{i_{4}} \delta_{j_{8}}^{\alpha}, 12\right)}_{\mathrm{A}} \quad \underbrace{w\left(g, \delta_{j_{8}}^{i_{4}} \delta_{\beta}^{i_{8}} \delta_{j_{4}}^{\alpha}, 12\right)}_{-\mathrm{A}}
$$

$$
\begin{array}{ll}
w\left(u, \delta_{j_{8}}^{i_{2}} \delta_{j_{4}}^{i_{8}} \delta_{\beta}^{i_{4}}, 14\right) & w\left(u, \delta_{j_{4}}^{i_{2}} \delta_{j_{8}}^{i_{4}} \delta_{\beta}^{i_{8}}, 14\right) \\
w\left(u, \delta_{j_{8}}^{i_{4}} \delta_{j_{4}}^{i_{8}} \delta_{\beta}^{i_{2}}, 14\right) & w\left(u, \delta_{j_{8}}^{i_{4}} \delta_{j_{4}}^{i_{8}} \delta_{\beta}^{i_{2}}, 14\right)
\end{array}
$$

Example: $\begin{gathered}\bar{u} \\ 1\end{gathered}$

$$
2 \rightarrow \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right) \quad 4{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right) \quad 8 \rightsquigarrow_{\beta}^{\alpha}=w\left(g, \delta_{\beta}^{i_{8}} \delta_{j_{8}}^{\alpha}, 8\right)
$$

$2 \rightarrow \bullet \beta=w\left(u, \delta_{\beta}^{i_{2}}, 2\right)$
$4{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i_{4}} \delta_{j_{4}}^{\alpha}, 4\right)$
$8{\underset{\beta}{\beta}}_{\alpha}^{\alpha}=w\left(g, \delta_{\beta}^{i 8} \delta_{j_{8}}^{\alpha}, 8\right)$

S. Uccirati

Features of RECOLA (fortran 95)

e Full Standard Model:

- Complex mass scheme
- Feynman rules for rational parts and on-shell Counterterms
- Select/unselect powers of α_{s} in the amplitude
- Selection of resonant contributions

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme
- Mass and dimensional regularization for collinear and soft singularities

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme
- Mass and dimensional regularization for collinear and soft singularities
- Dynamical running of α_{s}

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme
- Mass and dimensional regularization for collinear and soft singularities
- Dynamical running of α_{s}
- Numerical check of cancellation of UV divergences

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme
- Mass and dimensional regularization for collinear and soft singularities
- Dynamical running of α_{s}
- Numerical check of cancellation of UV divergences
- Optimizations:
- Use partial factorization of colour structures
- Avoids recalculation of currents in helicity sum
- Use conservation of helicity for massless fermions

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme
- Mass and dimensional regularization for collinear and soft singularities
- Dynamical running of α_{s}
- Numerical check of cancellation of UV divergences
- Optimizations: - Use partial factorization of colour structures
- Avoids recalculation of currents in helicity sum
- Use conservation of helicity for massless fermions
- Computation of Colour- and Spin-correlations

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme
- Mass and dimensional regularization for collinear and soft singularities
- Dynamical running of α_{s}
- Numerical check of cancellation of UV divergences
- Optimizations: - Use partial factorization of colour structures
- Avoids recalculation of currents in helicity sum
- Use conservation of helicity for massless fermions
- Computation of Colour- and Spin-correlations
- Need external libraries for TIs \rightsquigarrow link to the COLLIER library

Structure of the code

- Definition of the processes

```
call define_process_rcl(1,'u g -> u g e+ e-','NLO')
call define_process_rcl(2,'u g -> u g e+[+] e-[-]','NLO')
call define_process_rcl(3,'u g -> u g Z(e+ e-)','NLO')
```


Structure of the code

- Definition of the processes

```
call define_process_rcl(1,'u g -> u g e+ e-','NLO')
call define_process_rcl(2,'u g -> u g e+[+] e-[-]','NLO')
call define_process_rcl(3,'u g -> u g Z(e+ e-)','NLO')
```

- Generation phase

```
call generate_processes_rcl
```


Structure of the code

- Definition of the processes

```
call define_process_rcl(1,'u g -> u g e+ e-','NLO')
call define_process_rcl(2,'u g -> u g e+[+] e-[-]','NLO')
call define_process_rcl(3,'u g -> u g Z(e+ e-)','NLO')
```

- Generation phase

```
call generate_processes_rcl
```

- Computation of the amplitudes

```
call compute_process_rcl(1,p,A2lo(1),A2nlo(1))
call compute_process_rcl(2,p,A2lo(2),A2nlo(2))
call compute_process_rcl(3,p,A2lo(3),A2nlo(3))
```

(the momenta $\mathrm{p}(1:$ legs, $0: 3)$ come from MC)

Performances

- Memory needed for executables, object files and libraries: negligible
- RAM needed: less than 2 Gbyte also for complicated processes
- CPU time (processor Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz):

Process	(single helicity)	(partial hel. sum)	(helicity sum)
$\underset{\text { (QCD) }}{u \bar{u} \rightarrow W^{+} W^{-} g}$	(hel: - + - + -)	(hel: S S - + S)	(hel: S S S S S)
$u \bar{d} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} g g g$	(hel: - + - - - -)	(hel: S S - S S S)	(hel: S S S S S S)
$u g \underset{(\mathrm{EW})}{\rightarrow u} g Z$	(hel: -- - - -)	(hel: S S S S -)	(hel: S S S S S)
$u g \rightarrow \underset{(\mathrm{EW})}{u g \tau^{-} \tau^{+}}$	(hel: ----- +)	(hel: S S S S - +)	(hel: S S S S S S)

S = sum over helicity

Performances

- Memory needed for executables, object files and libraries: negligible
- RAM needed: less than 2 Gbyte also for complicated processes
- CPU time (processor Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz):

Process	$\begin{aligned} & t_{\text {gen }} \\ & \text { (single helicity) } \end{aligned}$	$t_{\text {gen }}$ (partial hel. sum)	$t_{\text {gen }}$ (helicity sum)
$u \bar{u} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} W^{-} g$	$\begin{aligned} & 0.3 \mathrm{~s} \\ & \text { (hel: - + - + -) } \end{aligned}$	$\begin{aligned} & 0.4 \text { s } \\ & \text { (hel: S S - + S) } \end{aligned}$	$\begin{aligned} & 1.6 \text { s } \\ & \text { (hel: S S S S S) } \end{aligned}$
$u \bar{d} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} g g g$	$\begin{aligned} & 14 \mathrm{~s} \\ & \text { (hel: - + - - - } \end{aligned}$	```25 s (hel: S S - S S S)```	$\begin{aligned} & 52 \text { s } \\ & \text { (hel: S S S S S S) } \end{aligned}$
$u g \underset{(\mathrm{EW})}{\rightarrow} u g Z$	$\begin{aligned} & 0.5 \mathrm{~s} \\ & \text { (hel: - - - -) } \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~s} \\ & \text { (hel: S S S S -) } \end{aligned}$	$2.2 \mathrm{~s}$ (hel: S S S S S)
$u g \rightarrow u g \tau^{-} \tau^{+}$ (EW)	$\begin{aligned} & 1.3 \mathrm{~s} \\ & \text { (hel: - - - - +) } \end{aligned}$	$\begin{aligned} & 2.0 \text { s } \\ & \text { (hel: S S S S - +) } \end{aligned}$	$\begin{aligned} & 3.8 \text { s } \\ & \text { (hel: S S S S S S) } \end{aligned}$

S = sum over helicity

Performances

- Memory needed for executables, object files and libraries: negligible
- RAM needed: less than 2 Gbyte also for complicated processes
- CPU time (processor Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz):

Process	$\begin{gathered} t_{\mathrm{TIs}} \\ (\mathrm{COLLIER}) \end{gathered}$	$\begin{aligned} & t_{\text {gen }} \\ & \text { (single helicity) } \end{aligned}$	t_{gen} (partial hel. sum)	$t_{\text {gen }}$ (helicity sum)
$u \bar{u} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} W^{-} g$	2.8 ms	$\begin{aligned} & 0.3 \mathrm{~s} \\ & \text { (hel: - + - + -) } \end{aligned}$	$\begin{aligned} & 0.4 \text { s } \\ & \text { (hel: S S - + S) } \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~s} \\ & \text { (hel: S S S S S) } \end{aligned}$
$u \bar{d} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} g g g$	130 ms	$\begin{aligned} & 14 \mathrm{~s} \\ & \text { (hel: - + - - --) } \end{aligned}$	$\begin{aligned} & 25 \text { s } \\ & \text { (hel: S S - S S S) } \end{aligned}$	52 s (hel: S S S S S S)
$u g \underset{(\mathrm{EW})}{\rightarrow u g} Z$	8.2 ms	$\begin{aligned} & 0.5 \mathrm{~s} \\ & \text { (hel: - - - - }) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~s} \\ & \text { (hel: S S S S -) } \end{aligned}$	$2.2 \mathrm{~s}$ (hel: S S S S S)
$u g \rightarrow \underset{(\mathrm{EW})}{u g \tau^{-}} \tau^{+}$	28 ms	$\begin{aligned} & 1.3 \mathrm{~s} \\ & \text { (hel: - - - - +) } \end{aligned}$	$2.0 \mathrm{~s}$ (hel: S S S S - +)	$3.8 \mathrm{~s}$ (hel: S S S S S S)

S = sum over helicity

Performances

- Memory needed for executables, object files and libraries: negligible
- RAM needed: less than 2 Gbyte also for complicated processes
- CPU time (processor Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz):

Process	$\begin{gathered} t_{\mathrm{TIs}} \\ (\mathrm{COLLIER}) \end{gathered}$	$\begin{aligned} & t_{\text {gen }} \quad t_{\mathrm{TCs}} \\ & \text { (single helicity) } \end{aligned}$	$t_{\text {gen }} \quad t_{\mathrm{TCs}}$ (partial hel. sum)	$t_{\text {gen }} \quad t_{\mathrm{TCs}}$ (helicity sum)
$u \bar{u} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} W^{-} g$	2.8 ms	$\begin{aligned} & 0.3 \mathrm{~s} \quad 0.6 \mathrm{~ms} \\ & \text { (hel: - + + - } \end{aligned}$	$\begin{gathered} 0.4 \mathrm{~s} \quad 1.3 \mathrm{~ms} \\ \text { (hel: S S - + S) } \end{gathered}$	$\begin{aligned} & 1.6 \mathrm{~s} \quad 9.8 \mathrm{~ms} \\ & \text { (hel: S S S S S) } \end{aligned}$
$u \bar{d} \rightarrow \underset{(\mathrm{QCD})}{W^{+}} g g g$	130 ms	$\begin{aligned} & 14 \mathrm{~s} \quad 14 \mathrm{~ms} \\ & \text { (hel: - + -- - } \end{aligned}$	$\begin{aligned} & 25 \mathrm{~s} \quad 76 \mathrm{~ms} \\ & \text { (hel: S S - S S S) } \end{aligned}$	$\begin{array}{lrl} 52 \mathrm{~s} & 221 \mathrm{~ms} \\ \text { (hel: S S S S S S) } \end{array}$
$u g \underset{(\mathrm{EW})}{\rightarrow u g Z}$	8.2 ms	$\begin{aligned} & 0.5 \mathrm{~s} \quad 1.4 \mathrm{~ms} \\ & \text { (hel: - -- - - } \end{aligned}$	$1.0 \mathrm{~s} \quad 6.7 \mathrm{~ms}$ (hel: S S S S -)	$\begin{array}{rr} 2.2 \mathrm{~s} & 20.2 \mathrm{~ms} \\ \text { (hel: S S S S S) } \end{array}$
$u g \rightarrow \underset{(\mathrm{EW})}{u g} \tau^{-} \tau^{+}$	28 ms	$1.3 \mathrm{~s} \quad 2.5 \mathrm{~ms}$ (hel: ---- - +)	$2.0 \mathrm{~s} \quad 14.2 \mathrm{~ms}$ (hel: S S S S - +)	$\begin{aligned} & 3.8 \mathrm{~s} \quad 29.0 \mathrm{~ms} \\ & \text { (hel: S S S S S S) } \end{aligned}$

S = sum over helicity

Summary

- Efficient automatization for elementary EW and QCD processes at NLO
- Recursion relations \rightarrow good tool also in the EW sector
- used for EW corrections to $p p \rightarrow l^{+} l^{-} j j \rightsquigarrow$ Talk by Ansgar Denner

Summary

- Efficient automatization for elementary EW and QCD processes at NLO
- Recursion relations \rightarrow good tool also in the EW sector
- used for EW corrections to $p p \rightarrow l^{+} l^{-} j j \rightsquigarrow$ Talk by Ansgar Denner

Outlook

- Publication of the code
- Allow extensions to other Models
- Let's compute other LHC processes
- Binary notation for $\left\{l_{1}, \ldots, l_{n}\right\}$ (HELAC):

Binary numbers $1,2,4,8, \ldots, 2^{L-1}$ for the primary legs
$\left\{l_{1}, \ldots, l_{n}\right\}$ can be expressed by $\mathcal{B}_{n}=$ sum of the n binaries
Example: $\quad\{1,2,8\} \quad \rightarrow \quad \mathcal{B}_{3}=1+2+8=11$

Note: The off-shell currents just keep trace of the primary legs used to build them, not the way it has been done.

Example: \quad Process $\begin{aligned} & e^{-}+e^{+}+\tau^{+}+\tau^{-} \rightarrow 0 \\ & 1\end{aligned}$

