Bottom Quark Mass from Υ Sum Rules to $\mathcal{O}(\alpha_s^3)$

Nikolai Zerf in collaboration with A. Penin

Department of Physics University of Alberta

Loops and Legs in Quantum Field Theory, Weimar 2014

JHEP 1404 (2014) 120

[arXiv:1401.7035 [hep-ph]]

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_h^{\mathsf{MS}}(m_h) @N^3 LO^*$

< 6 b

Overview

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\overline{\text{MS}}}(m_b) @N^3 LO^*$

L&L in QFT 2014 2 / 18

Motivation

Bottom quark mass $m_b^{\overline{\text{MS}}}(m_b^{\overline{\text{MS}}})$:

- Fundamental parameters of SM
- Precise determination relevant for:
 - Flavour physics
 - GUT physics
 - Collider physics
 - Higgs physics

A >

m_b

- Is a free parameter of the SM
- Its value doesn't follow from a first principle, yet
- Currently, one can only extract its value from experimental data

Extraction methods

- Lattice simulations of Υ bound states/spectrum (N.P.) [HPQCD'13]
- EFT predictions for Υ_{1S} bound state energy (P.T.) [Penin,Steinhauser'02][Beneke,Kiyo,Schuller'05]
- Relativistic Υ sum rules (P.T.)

[Chetyrkin,Kühn,Maier,Maierhöfer,Marquard,Steinhauser,Sturm('12)]

[Beneke, Bodwin, Braaten, Brambilla, Caswell, Hoang, Kiyo, Kniehl, Kuhn, Lepage, Penin, Pineda, Pivovarov, Ruiz-Femenia, Schuller, Signer, V.A. Smirnov, Soto, Stahlhofen, Steinhauser, Vairo, Voloshin, Yelkhovsky, Yndurain, Zaitsev]

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\mathsf{MS}}(m_b) @N^3 LO^*$

• Match (p)NRQCD perturbatively to QCD $\rightarrow H$

$$\mathcal{H} = \mathcal{H}_C + \dots$$
$$\mathcal{H}_C = -\frac{\partial^2}{M_b} - \alpha_s \frac{C_F}{r}$$

- Sind M_b such that $2M_b + E_{1S} - M_{\Upsilon_{1S}}(exp) = 0$
- $M_b \to m_b^{\overline{\text{MS}}} \text{ transition}$

- Match (p)NRQCD perturbatively to $QCD \rightarrow H$
- 2 Find energy Eigenvalue E_{1S} in dependence of M_b

$$\begin{aligned} \mathcal{H}\psi_{1S} &= E_{1S}\psi_{1S} \,, \\ \mathcal{H}_{C}\psi_{1S}^{C} &= E_{1S}^{C}\psi_{1S}^{C} \,, \\ E_{1S} &= E_{1S}^{C}(1+\dots) \,, \\ E_{nS}^{C} &= -\frac{M_{b}C_{F}^{2}\alpha_{s}^{2}}{4n^{2}} \,. \end{aligned}$$

Find *M_b* such that

$$2M_b + E_{1S} - M_{\Upsilon_{1S}}(exp) = 0$$
M_b $\rightarrow m_b^{\overline{MS}}$ transition

- Match (p)NRQCD perturbatively to QCD $\rightarrow H$
- 2 Find energy Eigenvalue E_{1S} in dependence of M_b
- Sind M_b such that $2M_b + E_{1S} - M_{\Upsilon_{1S}}(exp) = 0$
- $M_b \to m_b^{\overline{\text{MS}}} \text{ transition}$

- Match (p)NRQCD perturbatively to QCD $\rightarrow H$
- 2 Find energy Eigenvalue E_{1S} in dependence of M_b
- Sind M_b such that $2M_b + E_{1S} - M_{\Upsilon_{1S}}(exp) = 0$
- $M_b \to m_b^{\overline{\text{MS}}} \text{ transition}$

- least matching effort
- simple extraction method
- misses large N.P. effects $\sim \Lambda_{OCD}^4/(\alpha_s^4 M_h^4)$

Relativistic Υ Sum Rules (low moments) Motivation

Consider more "inclusive" observables in order to reduce N.P. effects:

$$\mathcal{M}_n = (4M_b^2)^n \int_0^\infty \frac{R_b(s)ds}{s^{n+1}}$$

Optical theorem:

$$R_b(s) = 12\pi \text{Im}\Pi(s+i\epsilon)$$
$$(p_\mu p_\nu - g_{\mu\nu}p)\Pi(p^2) = i\int d^d x e^{ipx} \langle 0|Tj_\mu(x)j_\nu(0)|0\rangle$$
$$j_\mu = \overline{b}\gamma_\mu b$$

Analytic properties of $\Pi(s + i\epsilon)$:

$$\mathcal{M}_n = \frac{12\pi^2}{n!} (4M_b^2)^n \frac{d^n}{ds^n} \Pi(s) \Big|_{s=0}$$

 $\sum \Upsilon \rightarrow m_b^{\mathsf{MS}}(m_b) @N^3 LO^*$

Relativistic Υ Sum Rules (low moments)

Calculate
$$\Pi(s)$$
 around $z = \frac{s}{4m_{\mu}^2} \approx 0$ in pQCD:

$$\Pi(p^2) \sim \sum_{n \ge 0} C_n z^n$$
$$\mathcal{M}_n^{\text{th}} \sim C_n$$

② Obtain experimental measurement for R_b(s) → R^{exp}_b(s)
③ Use the analytic id. of the *n*-th moment to extract m_b for n = {1,...,4}

• Calculate $\Pi(s)$ around $z = \frac{s}{4m_b^2} \approx 0$ in pQCD:

$$\Pi(p^2) \sim \sum_{n \ge 0} C_n z'$$
$$\mathcal{M}_n^{\text{th}} \sim C_n$$

② Obtain experimental measurement for $R_b(s) \rightarrow R_b^{exp}(s)$:

$$R_b^{\exp}(s) = \frac{1}{Q_b} \frac{\sigma(e^+e^- \to b\bar{b})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Solution Use the analytic id. of the *n*-th moment to extract m_b for $n = \{1, \dots, 4\}$

• Calculate $\Pi(s)$ around $z = \frac{s}{4m_b^2} \approx 0$ in pQCD:

$$\Pi(p^2) \sim \sum_{n \ge 0} C_n z^n$$
$$\mathcal{M}_n^{\text{th}} \sim C_n$$

Obtain experimental measurement for $R_b(s) \rightarrow R_b^{exp}(s)$:

$$R_b^{\exp}(s) = \frac{1}{Q_b} \frac{\sigma(e^+e^- \to b\bar{b})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Use the analytic id. of the *n*-th moment:

$$\underbrace{\mathcal{M}_n(R_b^{\mathsf{ex}}(s))}_{\mathcal{M}_n^{\mathsf{exp}}} \stackrel{!}{=} \underbrace{\mathcal{M}_n(C_n)}_{\mathcal{M}_n^{\mathsf{th}}},$$

to extract m_b for $n = \{1, \dots, 4\}$

- Calculate $\Pi(s)$ around $z = \frac{s}{4m_b^2} \approx 0$ in pQCD
- 2 Obtain experimental measurement for $R_b(s) \rightarrow R_b^{exp}(s)$
- Use the analytic id. of the *n*-th moment to extract m_b for $n = \{1, \dots, 4\}$
- Pure pQCD calculation for $\Pi(p^2)$
 - Very small N.P. contributions
- $= R_b^{exp}(s)$ cannot be defined unambiguously (Padé approximations!)
- Sensitive to experimental error dominated s regions

Relativistic Υ Sum Rules (low moments)

< 6 b

Relativistic Υ Sum Rules (low moments)

 $\sum \Upsilon \rightarrow m_b^{MS}(m_b) @N^3LO$

L&L in QFT 2014 7 / 18

< 61

- Calculate $\Pi(s)$ around $z = \frac{s}{4m_b^2} \approx 0$ in pQCD
- 2 Obtain experimental measurement for $R_b(s) \rightarrow R_b^{exp}(s)$
- Use the analytic id. of the *n*-th moment to extract m_b for $n = \{1, \dots, 4\}$
- Pure pQCD calculation for $\Pi(p^2)$
 - Very small N.P. contributions
- $= R_b^{exp}(s)$ cannot be defined unambiguously (Padé approximations!)
- Sensitive to experimental error dominated s regions

Motivation

Avoid experimental data above threshold

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\overline{\text{MS}}}(m_b)@N^3LO^*$

L&L in QFT 2014 8 / 18

Motivation

Avoid experimental data above threshold

Choose "high" *n* values ($6 \leq n \leq 20$):

$$\mathcal{M}_n^{\mathsf{exp}} = (4M_b^2)^n \int_0^\infty \frac{R_b^{\mathsf{exp}}(s)ds}{s^{n+1}}$$

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\mathsf{MS}}(m_b) @N^3 LO^*$

Motivation

Avoid experimental data above threshold

Choose "high" *n* values ($6 \leq n \leq 20$)

Motivation

Avoid experimental data above threshold

Choose "high" *n* values ($6 \leq n \leq 20$)

Motivation

Avoid experimental data above threshold

Choose "high" *n* values ($6 \leq n \leq 20$)

Motivation

Avoid experimental data above threshold

Choose "high" *n* values ($6 \leq n \leq 20$)

Motivation

Avoid experimental data above threshold

Choose "high" *n* values ($6 \leq n \leq 20$)

- Avoid experimental data above threshold
 - Choose "high" *n* values ($6 \le n \le 20$)

- $\Pi(s)$ expanded in pQCD (α_s) around $z = \frac{s}{4m_r^2} \approx 0$ misses relevant contributions for high n
- €<mark>∭</mark>€ Naive α_s expansion breaks down close to threshold because of the non-relativistic scaling $\frac{1}{\sqrt{n}} \sim v \sim \alpha_s$:

$$\left(\frac{\alpha_s}{v}\right)^m \sim 1$$

Resummation required. New power counting:

$$LO: \sum_{m=0}^{\infty} \left(\frac{\alpha_s}{\nu}\right)^m, \qquad NLO: \sum_{m=0}^{\infty} \left(\frac{\alpha_s}{\nu}\right)^m \{\nu, \alpha_s\},$$
$$NNLO: \sum_{m=0}^{\infty} \left(\frac{\alpha_s}{\nu}\right)^m \{\nu^2, \alpha_s \nu, \alpha_s^2\}, \qquad N^3LO: \sum_{m=0}^{\infty} \left(\frac{\alpha_s}{\nu}\right)^m \{\nu^3, \alpha_s \nu^2, \alpha_s^2 \nu, \alpha_s^3\}$$

Motivation

Thoose "high" *n* values ($6 \leq n \leq 20$)

Radiative corrections on top of the Coulomb resummation implemented systematically within (p)NRQCD

$$\mathcal{H}_{\mathsf{pNRQCD}} = -\frac{\partial^2}{M_b} - \frac{C_F \alpha_s}{r} [1 + \mathcal{O}(\alpha_s)] + \dots$$

known including $\sim lpha_s^3$ (a_3) [Anzai,Kiyo,Sumino'09][2xSmirnov,Steinhauser'09]

Non-Relativistic Υ Sum Rules (high moments) Construct $\mathcal{M}_n^{\text{th}}$ from Green function

•
$$\Pi(s) \ (E = \sqrt{s} - 2M_b \sim M_b v^2)$$

$$\Pi(s) = \frac{N_c}{2m_q^2} \underbrace{\left(c_v - \frac{E}{m_q} \frac{d_v}{6} + \dots\right)^2}_{C^2(E)} \left(1 + \frac{E}{2m_q}\right)^{-2} G^s(0, 0; E)$$

• Spectral representation of $G^{s}(0,0;E)$

$$G^{s}(0,0;E) = \sum_{n=1}^{\infty} \frac{|\psi_{n}(0)|^{2}}{E_{n} - E - i\epsilon} + \dots$$

• $\mathcal{M}_n^{\text{th}}$

$$\mathcal{M}_{n}^{\mathsf{th}} = (4m_{b}^{2})^{n} \left(12\pi^{2}N_{c} \sum_{m=1}^{\infty} \frac{C^{2}(E_{m})|\psi_{m}(0)|^{2}}{(2m_{b} + E_{m})^{2n+3}} + \int_{4m_{b}^{2}}^{\infty} \frac{R(s)ds}{s^{n+1}} \right)$$

Non-Relativistic Υ Sum Rules (high moments) Basic building blocks for $\mathcal{M}_n^{\text{th}}$

Vector current MC

$$C(E) = 1 - 2C_F rac{lpha_s}{\pi} + \mathcal{O}(lpha_s^2, v^2) oxtimes_{N^3LO}$$
[Marquard,Piclum,Seidel,Steinhauser'14]

Binding energy

$$E_n = E_n^C \sum_{m=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^m e_n^{(m)} \boxtimes_{N^3LO}$$
[Penia, V.A. Smirnov, Steinhauser'05]
[Beneke, Kiyo, Schuller'05]

Wave function at origin

$$|\psi_n(0)|^2 = |\psi_n^C(0)|^2 \sum_{m=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^m \delta^{(m)} |\psi_n(0)|^2 \mathbb{Z}_{N^3LO} \quad \begin{array}{l} \text{[Beneke,Kiyo,Schuller'5813]} \\ \text{[Beneke,Kiyo,Penin'7]} \end{array}$$

Green function above threshold

$$G^{s}(0,0;E) = G^{s}_{C}(0,0;E) + \sum_{m=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{m} \delta^{(m)} G^{s} \square_{N^{3}LO}$$

Non-Relativistic Υ Sum Rules (high moments) Basic building blocks for $\mathcal{M}_n^{\text{th}}$

- Vector current MC
- Binding energy
- Wave function at origin
- Green function above threshold

$$G^{s}(0,0;E) = G^{s}_{C}(0,0;E) + \sum_{m=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{m} \delta^{(m)} G^{s} \square_{N^{3}LO}$$

Ultrasoft corrections [Beneke,Kiyo'08]

N³LO coulomb corrections [Beneke,Kiyo,Schuller'07]

Continuum contribution small (by construction)

Approximation:

$$R^{N^{3}LO}(s) \approx \rho \frac{R^{N^{3}LO}}{R^{NNLO}}(s) \bigg|_{s=M_{\Upsilon(1S)}} R^{NNLO}(s) \qquad \frac{1}{2} \le \rho \le 2$$

Definition of \mathcal{M}_n^{exp}

$$\mathcal{M}_{n}^{\mathsf{exp}} = (4M_b^2)^n \frac{9\pi}{Q_b^2 \alpha^2 (2M_b)} \left(\sum_m \frac{\Gamma_{\Upsilon(mS) \to l^+ l^-}}{M_{\Upsilon(mS)}^{2n+1}} + \ldots \right)$$

Very precise data for the first 6 Υ_{nS} resonances [PDG]:

n	1	2	3	
$M_{\Upsilon(nS)}$ (GeV)	9.46030(26)	10.02326(31)	10.3552(5)	
$\Gamma_{\Upsilon(nS) \rightarrow e^+e^-}$ (keV)	1.340(18)	0.612(11)	0.443(8)	
n	4	5	6	
$M_{\Upsilon(nS)}$ (GeV)	10.5794(12)	10.876(11)	11.019(8)	
$\Gamma_{\Upsilon(nS) \to e^+e^-}$ (keV)	0.272(29)	0.31(7)	0.130(30)	

< 6 b

Extraction of M_b

$$\mathcal{M}_{n}^{\exp}(M_{b}) \stackrel{!}{=} \mathcal{M}_{n}^{\mathsf{th}}(M_{b},\mu) \to M_{b}(n,\mu)$$

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\overline{\text{MS}}}(m_b) @N^3 LO^*$

L&L in QFT 2014 12 / 18

The Sec. 74

Non-Relativistic Υ Sum Rules (high moments) $OS \rightarrow \overline{MS}$ conversion

OS mass M_b suffers from Renormalon ambiguity (IR sensitive). Its value does not converge in P.T.

 $m_{h}^{MS} = \overline{m}_{h}$ is a short distance mass and is infrared insensitive. Better convergence in P.T.

$$M_b^{N^mLO}(\mu) = r^{N^{m+1}LO}(\mu, \overline{m}_b(\overline{m}_b))\overline{m}_b(\overline{m}_b)$$

- Constant piece of r^{N^4LO} is currently unknown
- $r_{\beta_0}^{N^4LO}$: large β_0 approximation

 $r_{ren}^{N^4LO}$: renormalon based estimate (default) [Pineda'01]

$$M_b(\mathbf{n},\boldsymbol{\mu}) \to \overline{m}_b(\overline{m}_b)(\mathbf{n},\boldsymbol{\mu})$$

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{MS}(m_b) @N^3LO$

4 3 > 4 3

< 🗇 🕨

P.T. Series for $\overline{m}_b(\overline{m}_b)$

$$\overline{m}_b(\overline{m}_b) = 4.294 \left(1_{LO} + 0.0262_{NLO} - 0.0038_{NNLO} + 0.0010_{N^3LO^*} + \ldots \right) GeV$$

=4.194GeV

Charm quark mass effects

All results have been obtained for $m_c = 0$. First *NNLO* approximation [Hoang'00] applied to our values:

$$\overline{m}_b(\overline{m}_b)\Big|_{m_c\neq 0}\approx \overline{m}_b(\overline{m}_b)\Big|_{m_c=0}-(25\pm 5)MeV$$

Error Estimation in MeV

Δ_{exp}	Δ_{α_s}	Δ_{ρ}	$\Delta_{r^{(4)}}$	Δ_n	$\Delta_{p.t.}$	$\Delta_{n.p.}$	Δ_{m_c}
2.3	1.9	4.2	2.2	3.4	2.1	0.8	5.0

• Δ_{exp} : Coherent variation of experimental data within given errors

•
$$\Delta_{lpha_s}$$
: $lpha_s(M_Z)=0.1184\pm 0.0007$ [PDG]

•
$$\Delta_{\rho}: \frac{1}{2} |\overline{m}_b(\overline{m}_b, \rho = \frac{1}{2}) - \overline{m}_b(\overline{m}_b, \rho = 2)|$$

•
$$\Delta_{r^{(4)}}$$
: $\left|\overline{m}_b(\overline{m}_b, r_{\mathsf{ren}}^{N^4LO}) - \overline{m}_b(\overline{m}_b, r_{\beta_0}^{N^4LO})\right|$

•
$$\Delta_n: \frac{1}{2} | \overline{m}_b(\overline{m}_b, n=20) - \overline{m}_b(\overline{m}_b, n=10) |$$

•
$$\Delta_{p.t.}: \frac{1}{2} \left| \overline{m}_b^{N^3LO}(\overline{m}_b) - \overline{m}_b^{N^2LO}(\overline{m}_b) \right|$$

- $\Delta_{n.p.}$: Gluon condensate estimate [Voloshin'95]
- Δ_{m_c} : Unknown contributions from $m_c \neq 0$ effects. [Hoang'00]

Final result

$$\overline{m}_b(\overline{m}_b) = 4.169 \pm 0.008_{th} \pm 0.002_{\alpha_s} \pm 0.002_{exp}$$

Comparison with literature

Reference	Method	Approximation	$\overline{m}_b(\overline{m}_b)$ (GeV)
[HPQCD'13]	Lattice	$\mathcal{O}(\alpha_s^2)$	4.166 ± 0.043
[Penin:2002zv]	$\Upsilon(1S)$ mass $\mathcal{O}(\alpha_s^3)$		4.346 ± 0.070
[Beneke:2005hg]	$\Upsilon(1S)$ mass	$\mathcal{O}(\alpha_s^3)$	4.25 ± 0.08
[Pineda:2006gx]	high moments	partial NNLL	4.190 ± 0.060
[Hoang:2012us]	high moments	partial NNLL	4.235 ± 0.055
[Chetyrkin:2010ic]	low moments	$\mathcal{O}(\alpha_s^3)$	4.163 ± 0.016
This work	high moments	$\mathcal{O}(lpha_s^3)$	4.169 ± 0.009

The Sec. 74

Summary and Outlook

Summary

- **1** N^3LO^* extraction of $\overline{m}_b(\overline{m}_b)$ using n.r. Υ sum rules now available
- Great stability improvement going from N²LO to N³LO*
- **(a)** We find: $\overline{m}_b(\overline{m}_b) = 4.169 \pm 0.008_{th} \pm 0.002_{\alpha_s} \pm 0.002_{exp}$
- Good agreement with values obtained by complementary methods
 Outlook
 - $\sim N^3 LO^*$ continuum contribution to the moments

M. Buffer

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \to m_b^{\overline{\text{MS}}}(m_b) @N^3 LO^*$

æ

イロト イヨト イヨト イヨト

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{MS}(m_b) @N^3 LO^3$

Non-Relativistic Υ Sum Rules (high moments)

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\text{MS}}(m_b) @N^3LO$

N^3LO continuum contribution

Contribution from continuum is strongly suppressed for high *n*

Use estimate for the N^3LO continuum corrections to G:

$$Z_{m} = C^{2}(E) \left(1 + \frac{E_{m}}{2M_{b}}\right)^{-2} |\psi_{m}(0)|^{2}$$
$$\frac{R^{N^{3}LO}}{R^{NNLO}}(s) \bigg|_{s=M_{\Upsilon(1S)}} = \frac{Z_{1}^{N^{3}LO}}{Z_{1}^{NNLO}}$$
$$R^{N^{3}LO}(s) \approx \frac{Z_{1}^{N^{3}LO}}{Z_{1}^{NNLO}} R^{NNLO}(s)$$

 $\sum \Upsilon \rightarrow m_b^{\mathsf{MS}}(m_b) @N^3 LO^*$

N^3LO continuum contribution

Contribution from continuum is strongly suppressed for high *n*

Use estimate for the N^3LO continuum corrections to G:

$$Z_{m} = C^{2}(E) \left(1 + \frac{E_{m}}{2M_{b}}\right)^{-2} |\psi_{m}(0)|^{2}$$
$$\frac{R^{N^{3}LO}}{R^{NNLO}}(s) \bigg|_{s=M_{\Upsilon(1S)}} = \frac{Z_{1}^{N^{3}LO}}{Z_{1}^{NNLO}}$$
$$R^{N^{3}LO}(s) \approx \rho \frac{Z_{1}^{N^{3}LO}}{Z_{1}^{NNLO}} R^{NNLO}(s) \qquad \frac{1}{2} \le \rho \le 2$$

 $\sum \Upsilon \rightarrow m_b^{\mathsf{MS}}(m_b) @N^3 LO^*$

 ρ -Variation: $\frac{1}{2} \le \rho \le 2$

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{MS}(m_b) @N^3LC$

L&L in QFT 2014 22

 ρ -Variation: $\frac{1}{2} \le \rho \le 2$

Nikolai Zerf (Dep. of Phys. UofA)

 $\sum \Upsilon \rightarrow m_b^{\text{MS}}(m_b) @N^3LC$

Extraction @ NNLO

23

Extraction @ N³LO*

24