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The Discovery of the Millennium

ATLAS and CMS have discovered a scalar boson with mass ∼ 126 GeV!

Is this the Higgs BosonTM?
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It looks like a Higgs

It’s still early in the LHC program and the measurements are not very precise,

but the gross features look like the Higgs.
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How can we tell?

How can we tell if this is the Higgs?

Measure the cross section.

Measure the couplings.

Look for more Higgs bosons.

Look for some other new physics.

The cross section measurement is limited by a large theoretical uncertainty.
The couplings measurements will require a lot of data and will never by
“precision” measurements. The high energy runs at LHC will have great
reach in the search for new physics, but the most “natural” models have
already been excluded.
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Higgs production at the LHC

The inclusive Higgs production cross section is dominated by the gluon
fusion channel.
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Cuts can bias the event selection toward the vector boson fusion channel, but
there are also forward jets in gluon fusion so one can never get a pure sample.
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Theoretical Uncertainty

Even at NNLO, the theoretical uncertainty is very large.

The dominant contributions are scale uncertainty of the partonic cross
sections and parton distribution uncertainty.
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Improving the theoretical uncertainty

How can we improve the theoretical uncertainty?
Reduce the uncertainty in the parton distributions.

Collect more data to improve the fits.
Compute the N3LO splitting kernels to improve parton evolution.

Reduce the scale uncertainty in the partonic cross sections.
Compute the partonic cross sections at N3LO.

In this talk, I will be concerned with improving the theoretical prediction for
the total cross section.
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Improving the partonic cross sections

Improving the calculation of the partonic cross sections, however, is a real
challenge.

The partonic cross sections are already known at next-to-next-to-leading
order. No hadronic scattering process is known to higher order and only a
handful of processes (Drell-Yan, t t, Higgs + jet production and (soon) dijet
production) are known at NNLO.

The difference is that Higgs production through gluon fusion is anomalously
slow to converge and has unusually large scale dependence.
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“Normal” Perturbative Convergence

The theoretical predictions for both Drell-Yan and t t production show
dramatic improvement when computed to NNLO.
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Higgs Perturbative Convergence

Higgs production through gluon fusion converges much more slowly and has
large scale dependence.

The only way to improve this situation is to push to higher order.
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Contributions to Higgs Production at N3LO

Virtual production through 3 loops,

Single-real-emission through 2 loops,

Double-real-emission through 1 loop and Triple-real-emission at tree-level.
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One-Loop Single-Real-Emissions Contributions

I will discuss only one set of contributions to the N3LO cross-section: those
arising from one-loop single-real-emission

Although drawn as a cut loop integral, I will compute this contribution as a
squared amplitude integrated over phase space.

One-loop amplitudes can be computed in closed form.
The phase-space element for single-real-emission is very simple.

This gives strong analytic control of the functions involved and allows one to
attack the problem from multiple directions.
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Single-real-emission Amplitudes

The single-real-emission amplitudes (H ggg, H gqq) can be written, at any
loop order, in terms of linearly independent gauge invariant tensors.

M (H;g1,g2,g3) =
g
v

C1(αs) f ijk
ε

i
1µε

j
2ν

ε
k
3ρ

3

∑
n=0

An Y µνρ
n ,

M (H;g,q,q) = i
g
v

C1(αs)(Tg)ı̄
j εµ(pg)

(
B1 X µ

1 +B2 X µ

2

)
,

I calculate the amplitudes as follows: I generate the Feynman diagrams with
QGRAF and use FORM to implement the Feynman rules and contract the
diagrams with projectors onto the gauge invariant tensors. I use REDUZE2 to
reduce Feynman integrals to master integrals by means of Integration-by-Parts
[Chetyrkin, Tkachov] identities coupled with the LaPorta algorithm.
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One-loop Master Integrals

There are only two master Feynman integrals at one loop, the one-loop bubble
and the one-loop box with a single massive external leg.
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Mathematical Framework

The key to performing the calculation I am describing is to have clear control
of the mathematical framework involved. Otherwise, one can easily be
overwhelmed by the size and complexity of the expressions.

The key mathematical elements that organize the calculation are:

Harmonic Polylogarithms

Multiple ζ -functions

Functions of Uniform Transcendentality
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Harmonic Polylogarithms

The class of functions called harmonic polylogarithms (HPLs) [Goncharov;
Vermaseren,Remiddi] are ubiquitous in the solution of Feynman integrals. The
standard HPLs are defined in terms of weight functions, f+1, f0, and f−1:

f+1(x) =
1

1− x
, f0(x) =

1
x
, f−1(x) =

1
1+ x

The rank 1 HPLs are defined by

H(0;x) = ln x , H(±1;x) =
∫ x

0
dz f±1(z) .

Higher ranks are defined by iterated integrations against weight functions:

H(wn,wn−1, . . . ,w0;x) =
∫ x

0
dz fwn(z)H(wn−1, . . . ,w0;z) ,

The HPLs include the classic polylogarithms, Lin(x) as special cases. For
example, Li1(x) = H(1;x), Li2(x) = H(0,1;x), Li3(x) = H(0,0,1;x), etc.
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More HPLs

An important property is that the HPLs form a shuffle algebra, so that

H(~w1;x)H(~w2;x) = ∑
~w′∈~w1X~w2

H(~w′;x) ,

where ~w1X~w2 is the set of shuffles, or mergers of the sequences ~w1 and ~w2
that preserve their relative orderings.

It is also possible to “unshuffle” in order to separate out H(~0;x) or H(~1;x),
thereby exposing the logarithmic dependence on x or 1− x, respectively.

To see that HPLs are ubiquitous in the solution of Feynman Integrals,
consider the 1-loop master integrals, which involved functions like

2F1 (1,−ε; 1− ε; z) = 1−
∞

∑
n=1

ε
n Lin(z) = 1−

∞

∑
n=1

ε
n H(n;z) ,

z−ε =
∞

∑
n=0

(−ε)n

n!
lnn(z) =

∞

∑
n=0

(−ε)n H(~0n;z) .
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Multiple ζ -Functions

The Multiple ζ -function is a generalization of the Riemann ζ -function,
defined by

ζ (w1, . . . wk)≡
∞

∑
n1>n2>...>nk

1
nw1

1 · · ·n
wk
k

.

The multiple ζ -functions are, in some sense, the endpoints of the harmonic
polylogarithms, since

H(~w;1) = ζ (~w) .

Like the Harmonic Polylogarithms, multiple ζ -functions form a shuffle
algebra,

ζ (~w1)ζ (~w2) = ∑
~w′∈~w1X~w2

ζ (~w′) .

There are many identities relating the values of ζ (~w) to one another, allowing
for reduction to a compact result.
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Functions of Uniform Transcendentality

Define the degree of transcendentality T (f ) of a function f to be the number
of iterated integrations needed to define the function. For an HPL, T (H(~w,x)
is equal to the rank of ~w. A function of uniform transcendentality (FUT) is a
sum of functions with the same T [Henn].

T is also assigned to constants obtained from transcendental functions.

ζ (5) = H(5;1) is assigned T (ζ (5)) = 5.

The transcendentality of a product of functions is equal to the sum of the
transcendentalities of the individual functions,

T (f1 f2) = T (f1)+T (f2) .

This is consistent with the shuffle operation, where the product of functions of
ranks r1 and r2 is expressed as a sum of functions of rank r1 + r2.
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FUTs and Feynman Integrals

The results of Feynman integrals are typically expressed as Laurent
expansions in the parameter ε . By assigning T (ε) =−1 the concepts of
FUTs can be usefully applied to these functions.

Examples of functions that occur in Feynman integrals that are FUTs are

zε =
∞

∑
n=0

(−ε)n H(~0n;z) .

2F1 (1,−ε; 1− ε; z) = 1−
∞

∑
n=1

ε
n H(n;z) .

The computation of master integrals is greatly simplified, whether one uses
differential equations or threshold expansion, if one can ensure that they are
FUTs.
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Computing the Partonic Cross Sections

With the preliminaries out of the way, I will now describe the computation of
the partonic cross section. This proceeds as follows:

Squaring the amplitude and integrating over phase space

Use Integration-by-Parts to map the full set of phase space integrals onto
a small set of master phase space integrals

Evaluate the master integrals.
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Phase Space Integration

The partonic cross section is computed by squaring the production
amplitudes, averaging (summing) over initial- (final-) state colors and spins,
and integrating over phase space.

σ =
1

16π s12

1
S ∑

spin/color

∫ (
4π µ2

s12

)ε
(s23 s31)

ε

Γ(1− ε)
|M |2 ds23

Defining ŝ = s12, I introduce dimensionless parameters x = M2
H/ŝ, x̄ = 1− x,

y = 1
2(1− cosθ ∗), ȳ = 1− y, to get

s12 = ŝ , M2
H = x ŝ ,

s23 = x̄ y ŝ , s31 = x̄ ȳ ŝ ,

σ =
1

16π ŝ
1
S ∑

spin/color

(
4π µ2

ŝ

)ε x̄ 1−2ε

Γ(1− ε)

∫ 1

0
dy y−ε ȳ−ε |M |2 .
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Integration-by-Parts Again

Computing the partonic cross section involves a large number of phase space
integrals. To simplify the problem, I borrow the idea of using IBP identities.
For example,

d
dy

∫ 1

0
dy y−ε ȳ−2ε

2F1 (1,−ε; 1− ε; x̄ y) = 0

= (1−2ε)
∫ 1

0
dyy−ε ȳ−2ε

2F1 (1,−ε; 1− ε; x̄ y)

+2ε

∫ 1

0
dyy−ε ȳ−1−2ε

2F1 (1,−ε; 1− ε; x̄ y)

− ε

∫ 1

0
dyy−ε ȳ−2ε (1− x̄ y)−1

I get non-trivial relations among the phase space integrals allowing me to map
the full calculation onto a small number of master integrals.
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Master Phase Space Integrals

After the application of IBP identities, I find that there are 24 master integrals
at N3LO. Of these, two involve only y and ȳ. Since they do not involve the
external scale, x, I call these scale-free integrals.

M10 =−ε

∫ 1

0
dy y−1−ε ȳ−ε

2F1

(
1,−ε; 1− ε;− y

ȳ

)2

,

M11 =−2ε

∫ 1

0
dy y−1−ε ȳ−ε

2F1

(
1,−ε; 1− ε;− y

ȳ

)
2F1

(
1,−ε; 1− ε;− ȳ

y

)
.

While they cannot be evaluated in closed form, they can be readily evaluated
to arbitrary order in ε .
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Evaluating Scale-Free Integrals

The trick is to expand the hypergeometric functions in terms of HPLs in y.

2F1

(
1,−ε; 1− ε;− y

ȳ

)
= ȳ−ε

2F1 (−ε,−ε; 1− ε; y) ,

2F1

(
1,−ε; 1− ε;− ȳ

y

)
= 1+ y−ε ȳ ε

Γ(1− ε)Γ(1+ ε)− ȳ ε
2F1 (ε, ε; 1+ ε; y) ,

2F1 (ε, ε; 1+ ε; y) = 1+
∞

∑
n=2

(−ε)n
n−1

∑
m=1

(−1)m−1 H
(
~0n−m,~1m;y

)
.

The yε and ȳ ε terms can also be turned into sums of HPLs in y, and then
products of HPLs are combined into sums of higher-weight HPLs using the
shuffle identity. The result is that

M10 =
∫ 1

0
dy y−1

∑A~w H(~w,y) = ∑A~w ζ (0,~w)
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Master integrals at N3LO

The rest of the master integrals depend on the physical scale parameter x.
These integrals, which often involve the products of hypergeometric
functions, generally cannot be evaluated in closed form. Instead I will
evaluate these integrals by performing an extended threshold expansion.

Most terms in the integrands can be expanded using the series representation
of the hypergeometric function

2F1 (1,−ε; 1− ε; z) = 1− ε

∞

∑
n=1

zn

n− ε
,

Other terms can make use of the Taylor expansion,

2F1

(
1,−ε; 1− ε;−x

y
ȳ

)
=

∞

∑
n=0

x̄ n

n!

[
dn

dx̄ n 2F1

(
1,−ε; 1− ε; (x̄ −1)

y
ȳ

)]
x̄=0

.

The result of these expansions is a sum of powers of x̄ multiplying scale-free
master integrals.
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Threshold Expansion

Once the scale-free integrals have been evaluated, one is left with a pure
power series in x̄. For phenomenological purposes, only a few terms are
needed.

But with enough terms, one can do much better.
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Finding a Basis

One expects that the result of the calculation can be expressed in closed form
in terms of Harmonic Polylogarithms, and it is simple to expand the HPLs in
powers of x̄.

H(~w; x̄) =
∞

∑
i=0

x̄ i Zi(~w) .

Therefore, one should be able to create a mapping between the threshold
expansions for the master integrals and a linear combination of HPLs.

This procedure is simplified by demanding that the master integrals should be
functions of uniform transcendentality. At order εn, I know that my series in x̄
maps to a linear combination of HPLs of uniform rank n. This restricts the
size of my basis and therefore limits the complexity of the inversion.
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Series Inversion

Once a basis of functions is chosen, I form a matrix M of coefficients, with
each column corresponding to a different function, and each row to a different
order in x̄, and I invert M. The solution to the integral I(x̄) is then found to be

I(x̄) =~f ·M−1 ·~ı ,

where~f is a row-vector of the basis functions, and~ı is a column-vector
consisting of the threshold expansion coefficients of the integral I(x̄).

The inversion is carried out for each master integral, order-by-order in ε .
Because the expansions correspond to FUTs, I know that the basis needed for
the order εn inversion consists exclusively of rank n HPLs.
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Series Inversion (continued)

All of the expansion coefficients are computed analytically as rational
numbers. When the proper basis is used for M, the solution I(x̄) contains only
simple, rational coefficients. The size of the basis determines the number of
terms needed in the threshold expansion. For the low-rank inversions (higher
poles), the number of terms needed is quite small.

Since the inversion is being performed using a fixed basis, one always gets a
result. A “good” result consists of simple, rational coefficients and usually
does not saturate the basis. A “bad” result usually does saturate the basis and
consists of unwieldy rational numbers (e.g. ratios of > 100 digit integers). A
bad result calls for expanding the basis.

One can verify the inversion by checking expansion coefficients that were not
used in the inversion. If I use 32 coefficients in the inversion and then verify
the 33rd-37th terms, I have a very strong check on the result.
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More Series Inversion

The master integrals for this process fall into two categories; those whose
HPLs have weight vectors containing only 0’s and 1’s, and those whose HPLs
have weight vectors that also contain a −1.

With experience, one can recognize which integrals are likely to need the
larger basis. Operationally, one can start inverting the lower-rank terms with
the smaller basis. If one does not need a weight vector containing a −1 by
rank 3, it is unlikely that the higher ranks will need such a weight.

In this manner, I have obtained the results for all master integrals in terms of
HPLs through rank 6. This allows me to determine the contribution to the
cross section in closed form (in x) to order ε .
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Results
The result is not physical and contains infrared divergences. Here is the “soft”
part of the calculation

σ
3,B,soft
gg→H g =

C2
1 π

64v2 C3
A

(
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4π2 exp(ε γE)

)3(
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)
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9
4
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8
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)
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4
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6
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1
ε
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)
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4
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6
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(

57
4
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4
ζ (3)+

6777
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}
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Summary

The discovery of the Higgs demands that we verify it in every possible
way.

The large theoretical uncertainty in the total cross section calls for an
improved calculation at N3LO.

This is an enormous calculation and I have completed only one
significant part, that due to one-loop single-real-emission amplitudes.

The techniques developed for this calculation can be applied to the
remaining parts of the N3LO calculation.
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