VFN Scheme for Event Shapes and Final State Jets

In collaboration with: Matthias Butenschön, Bahman Dehnadi, Simon Gritschacher Ilaria Jemos, Vicent Mateu, Piotr Pietrulewicz, Iain Stewart

André H. Hoang

University of Vienna

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014

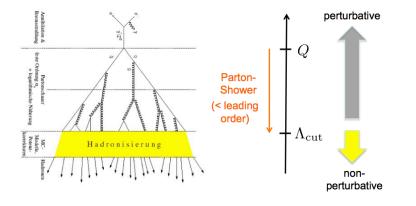
Outline

- Motivation and Aims
- Factorization theorem for massless quarks
- Secondary massive quark effects
- Factorization & renormalization & consistency conditions
- Rapidity logarithms
- Conclusions & Outlook

arXiv:1302.4743 (PRD 88, 034021 (2013)) arXiv:1309.6251 (PRD 89, 014035 (2013)) More papers to come

Why complete mass dependence?

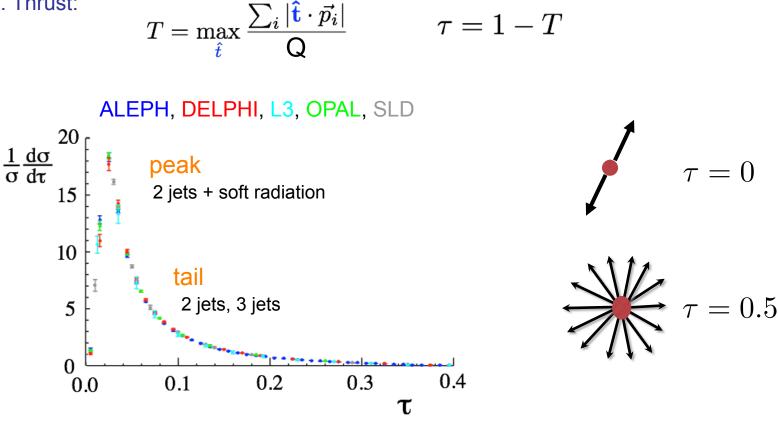
- Measurement of α_s from eventshapes (Q=14,22 GeV)
- Top quark production
- Continuous description:
- Validity range: bHQET vs. SCET (ttbar, bbbar, etc.)
- Different EFT scenarios
- Merge with initial state mass effects (DIS, pp)
- Complete systematics: $Q \leftrightarrow m \leftrightarrow \Lambda$
 - Systematics of masses in MCs
 - Consistent implementation of short-distance masses



Thrust

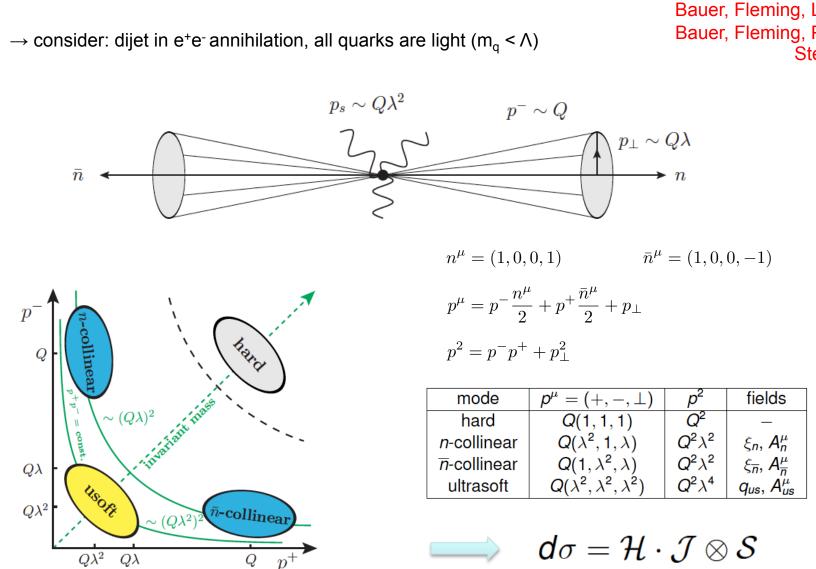
 \rightarrow consider: dijet in e⁺e⁻ annihilation

e.g. Thrust:



- \rightarrow Mass mode treatment of this talk applicable to any SCET-1-type observable
- \rightarrow We use thrust to be definite and as a first important application.

Massless Quark SCET



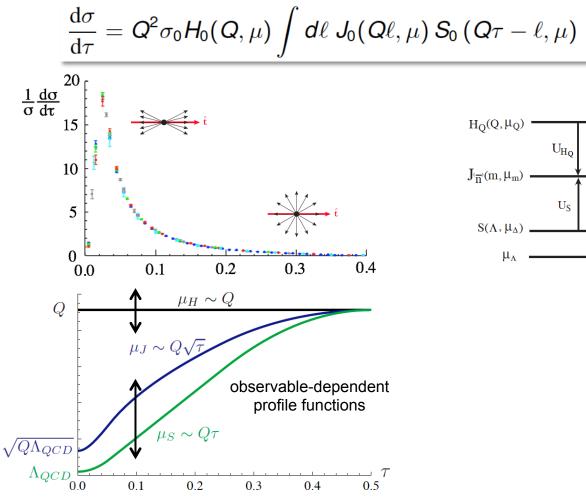
Korchemsky, Sterman

Bauer, Fleming, Luke Bauer, Fleming, Pirjol, Stewart

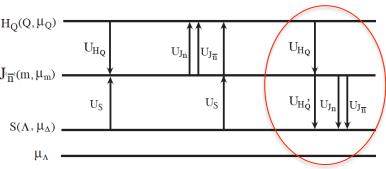
Massless Quark Thrust in FO

$$\frac{1}{\sigma_{\text{tot}}^{\text{Born}}} \frac{d\sigma}{d\tau} = \delta(\tau) + \frac{C_F \alpha_s}{\pi} \left[\left(\frac{\pi^2}{6} - \frac{1}{2} \right) \delta(\tau) + \frac{-3 + 9\tau + 3\tau^2 - 9\tau^3}{2\tau(1-\tau)} - \frac{2 - 3\tau + 3\tau^2}{(1-\tau)} \left(\frac{\ln(\frac{\tau}{1-2\tau})}{\tau} \right)_+ \right]$$
$$= \delta(\tau) + \frac{C_F \alpha_s}{\pi} \left[\left(\frac{\pi^2}{6} - \frac{1}{2} \right) \delta(\tau) - \frac{3}{2} \left(\frac{1}{\tau} \right)_+ - 2 \left(\frac{\ln(\tau)}{\tau} \right)_+ \right] + \left\{ \text{non-sing. terms} \right\} \right]$$

Factorization for Massless Quarks



Schwartz Fleming, AH, Mantry, Stewart Bauer, Fleming, Lee, Sterman



- \rightarrow evolution with n_I light quark flavors
- → consistency conditions w.r. to different evolution choices
- \rightarrow top-down evolution considered in the following

$$\left(\frac{d\sigma}{d\tau}\right)_{\text{part}}^{\text{sing}} \sim \sigma_0 H(Q,\mu_Q) U_H(Q,\mu_Q,\mu_s) \int d\ell d\ell' U_J(Q\tau-\ell-\ell',\mu_Q,\mu_s) J_T(Q\ell',\mu_j) S_T(\ell-\Delta,\mu_s)$$

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \leq m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales

 $\mu_H \sim Q$ Q $\mu_J \sim Q \sqrt{\tau}$ $n_l + 1$ m $\mu_S \sim Q \tau$ n_l $Q\Lambda_{QCD}$ τ Λ_{QCD} 0.1 0.3 0.0 0.2 0.4 05

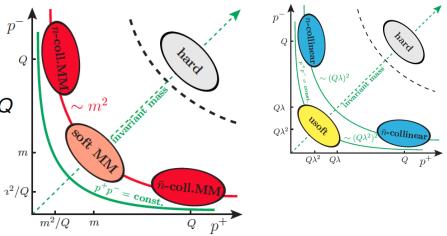
"profile functions"

- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	p ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

- Full mass dependence (little room for any strong hierarchies): decoupling, massless limit
- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences



Gritschacher, AH, Jemos, Pietrulewicz

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014

R-ratio for massless quarks: \rightarrow valid up to term O(m²_{light}/s) $R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \sim \text{Im} \left| -i \int dx \, e^{ix \cdot q} \left\langle 0 \left| T j^{\mu}(x) j_{\mu}(0) \right| 0 \right\rangle \right|$ \rightarrow vector current conserved: not renormalized \rightarrow UV divergences only related to strong coupling + field renorm. \rightarrow MSbar result for any scale μ_0 $= N_c \sum_{n} e_q^2 \left\{ 1 + \frac{\alpha_s(\mu_0)}{\pi} + \frac{\alpha_s^2(\mu_0)}{\pi^2} \left[f_3 - \frac{\beta_0}{4} \ln\left(\frac{s}{\mu_0^2}\right) \right] + \dots \right\}$ m_{heavy} $\frac{d\alpha_s(\mu)}{d\ln\mu^2} = -\beta_0 \frac{\alpha_s^2(\mu)}{(4\pi)} + \dots \longrightarrow \text{no large logarithms for } \mu_0 \sim \sqrt{s}$ $\beta_0 = 11 - \frac{2}{3}n_{\text{light}} \longrightarrow \sqrt{s} \text{ characteristic scale}$ $= N_c \sum e_q^2 \left\{ 1 + \frac{\alpha_s(\sqrt{s})}{\pi} + \frac{\alpha_s^2(\sqrt{s})}{\pi^2} f_3 + \dots \right\}$ √s \rightarrow Same calculation applies also if there is an ultramassive quark with $m_{heavy} \gg \sqrt{s}$ (up to terms O(s/m²_{heavy}) \rightarrow Decoupling of very heavy degrees of freedom m_{light}

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Virtual quarks:

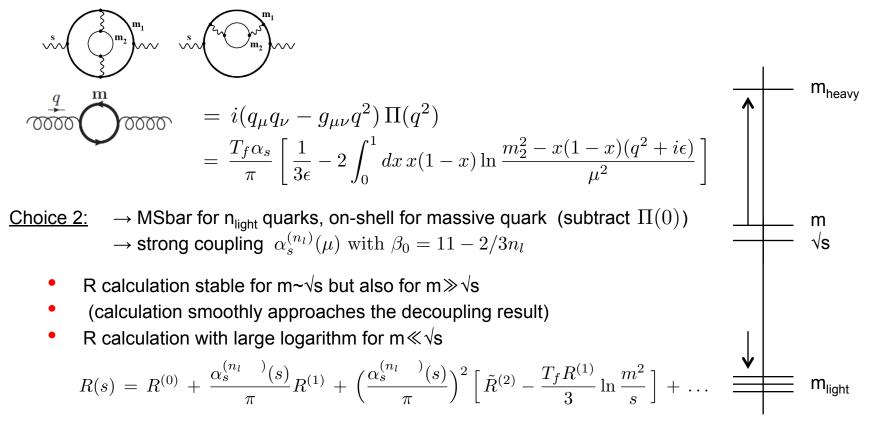
- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

• R calculation with large logarithm for $m \gg \sqrt{s}$

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

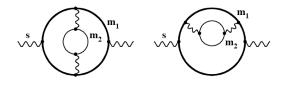
Virtual quarks:



$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- \rightarrow no hierarchy between m and \sqrt{s}
- \rightarrow approximations m $\ll \sqrt{s}$ or m $\gg \sqrt{s}$ not applicable
- \rightarrow full mass-dependent matrix elements and phase space
- \rightarrow renormalization scheme for the massive quark

Virtual quarks:



- \rightarrow Choice 1 and choice 2 are equally good for μ ~ \sqrt{s} ~ m
- \rightarrow Scheme relation for the strong coupling:

$$\alpha_s^{(n_l)}(\mu) = \alpha_s^{(n_l+1)}(\mu) \left(1 + \frac{T_f \alpha_s^{(n_l+1)}(\mu)}{3\pi} \ln \frac{m^2}{\mu^2} + \dots \right)$$

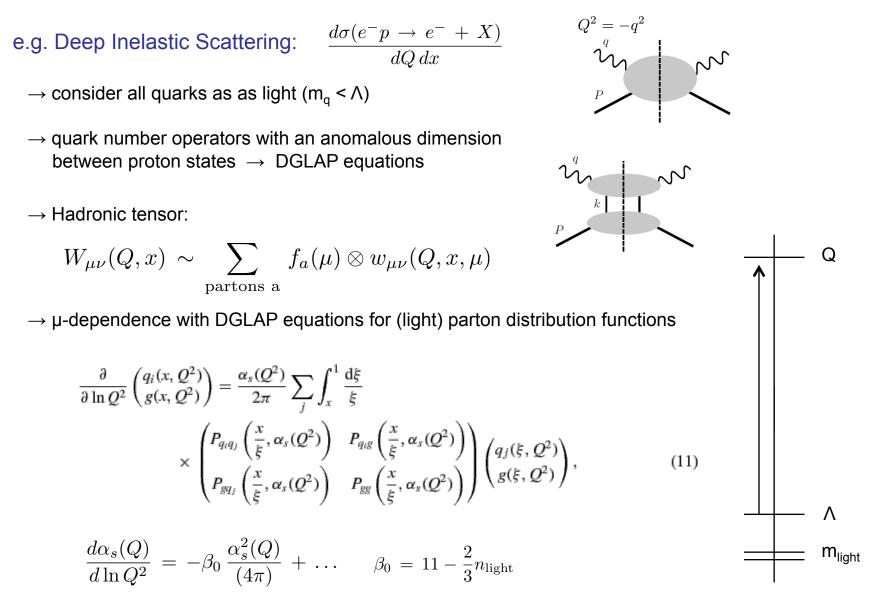
 $→ \underline{Variable \ flavor \ number \ scheme:} \ Choice \ 1 \ for \ \mu \sim \sqrt{s} \ \gtrsim m \\ (VFN) \ Choice \ 2 \ for \ \mu \sim \sqrt{s} \ \lesssim m \\ Swap \ 1↔2 \ at \ \sqrt{s} \sim \mu_m \sim m$

m_{heavy} m_{heavy} m_{√s} m_{light}

Collins - Wilczek - Zee (CWZ) scheme

 \rightarrow comes at the cost of additional $\mu_m\text{-dependence}$

VFNS for Hadron Collisions



VFNS for Hadron Collisions

1

- e.g. Deep Inelastic Scattering: $\frac{d\sigma(e^-p \rightarrow e^- + X)}{dQ \, dx}$
 - → realistic case: massive quarks with Q > m > Λ (charm, bottom [top])
 - \rightarrow Hadronic tensor:

$$W_{\mu\nu}(m,Q,x) \sim \sum_{a=q,g,Q} f_a^{(n_l+1)}(\mu) \otimes w_{\mu\nu}(m,Q,x,\mu) \overset{\gamma}{\underset{P}{\longrightarrow}} k$$

ACOT-VFN scheme:

- DGLAP evolution for n_1 flavors for $\mu \leq m$ (only light quarks)
- DGLAP evolution for n_i +1 flavors for $\mu \ge m$ (light quarks + massive quark)
- Flavor matching for α_s and the pdfs at $\mu_m \sim m$

$$f_{q,g,Q}^{(n_l+1)}(\mu_m) = \sum_{a=q,g} F_{q,g,Q|a}(m,\mu_m) \otimes f_a^{(n_l)}(\mu_m)$$

- \rightarrow hard coefficient $w_{\mu\nu}(m,Q,x)$ approaches massless $w_{\mu\nu}(Q,x)$ for $m{\rightarrow}0$
- \rightarrow calculations of $w_{\mu\nu}(m,Q,x)$ involves subtraction of pdf IR mass singularities
- \rightarrow full dependence on m/Q without any large logarithms

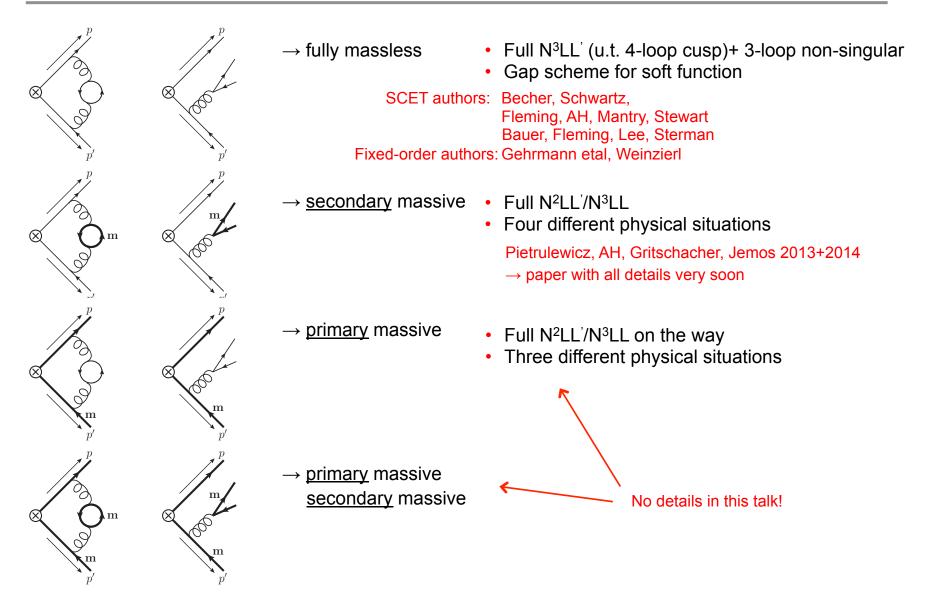
Q

m

Λ

m_{light}

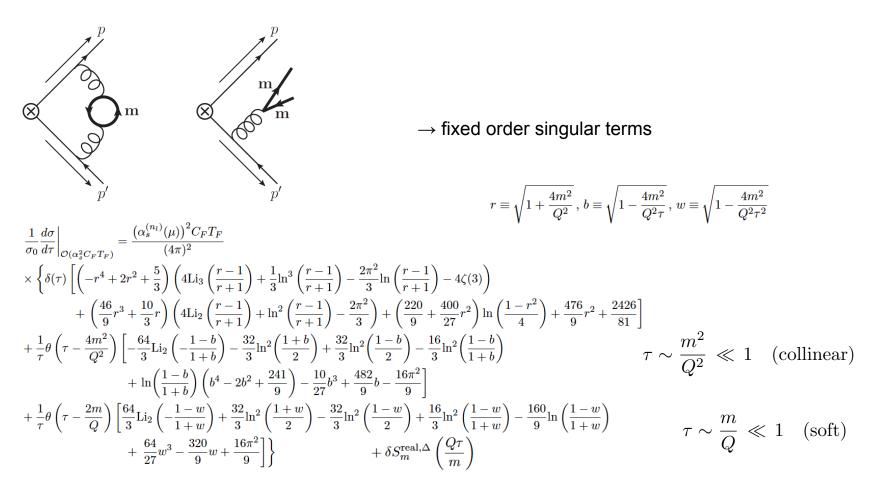
Fully Massive Thrust



FO Result: Secondary Massive Quarks

Simplest non-trivial case to study:

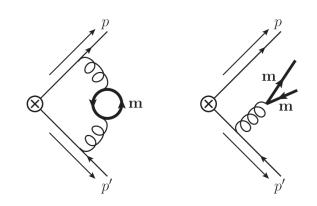
→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production



FO Result: Secondary Massive Quarks

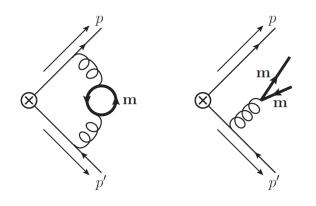
$$\begin{split} \frac{1}{\sigma_0} \frac{d\sigma}{d\tau} \Big|_{\mathcal{O}(\alpha_s^2 C_F T_F)} &= \frac{\left(\alpha_s^{(r_1)}(\mu)\right)^2 C_F T_F}{(4\pi)^2} \\ \times \left\{ \delta(\tau) \left[\left(-r^4 + 2r^2 + \frac{5}{3} \right) \left(4\text{Li}_3 \left(\frac{r-1}{r+1} \right) + \frac{1}{3} \ln^3 \left(\frac{r-1}{r+1} \right) - \frac{2\pi^2}{3} \ln \left(\frac{r-1}{r+1} \right) - 4\zeta(3) \right) \right. \\ &+ \left(\frac{46}{9} r^3 + \frac{10}{3} r \right) \left(4\text{Li}_2 \left(\frac{r-1}{r+1} \right) + \ln^2 \left(\frac{r-1}{r+1} \right) - \frac{2\pi^2}{3} \right) + \left(\frac{220}{9} + \frac{400}{27} r^2 \right) \ln \left(\frac{1-r^2}{4} \right) + \frac{476}{9} r^2 + \frac{2426}{81} \right] \\ &+ \frac{1}{\tau} \theta \left(\tau - \frac{4m^2}{Q^2} \right) \left[-\frac{64}{3} \text{Li}_2 \left(-\frac{1-b}{1+b} \right) - \frac{32}{3} \ln^2 \left(\frac{1+b}{2} \right) + \frac{32}{3} \ln^2 \left(\frac{1-b}{2} \right) - \frac{16}{3} \ln^2 \left(\frac{1-b}{1+b} \right) \right. \\ &+ \ln \left(\frac{1-b}{1+b} \right) \left(b^4 - 2b^2 + \frac{241}{9} \right) - \frac{10}{27} b^3 + \frac{482}{9} b - \frac{16\pi^2}{9} \right] \\ &+ \frac{1}{\tau} \theta \left(\tau - \frac{2m}{Q} \right) \left[\frac{64}{3} \text{Li}_2 \left(-\frac{1-w}{1+w} \right) + \frac{32}{3} \ln^2 \left(\frac{1+w}{2} \right) - \frac{32}{3} \ln^2 \left(\frac{1-w}{2} \right) + \frac{16}{3} \ln^2 \left(\frac{1-w}{1+w} \right) - \frac{160}{9} \ln \left(\frac{1-w}{1+w} \right) \right. \\ &+ \frac{64}{27} w^3 - \frac{320}{9} w + \frac{16\pi^2}{9} \right] \right\} \\ &+ \delta S_m^{\text{real},\Delta} \left(\frac{Q\tau}{m} \right) \\ &\tau \sim \frac{m}{Q} \ll 1 \quad (\text{soft}) \end{split}$$

$$r \equiv \sqrt{1 + \frac{4m^2}{Q^2}}, \ b \equiv \sqrt{1 - \frac{4m^2}{Q^2\tau}}, \ w \equiv \sqrt{1 - \frac{4m^2}{Q^2\tau^2}}$$

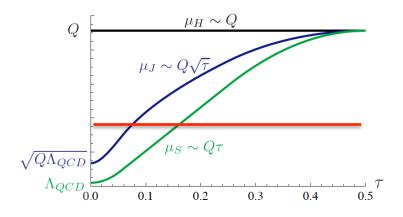


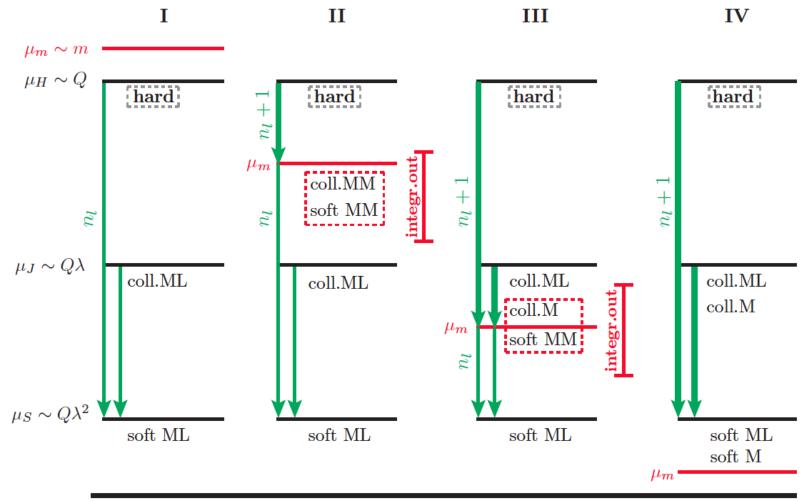
Simplest non-trivial case to study:

→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production



- → does not lead to bHQET-type theory when the jet scale approaches the quark mass
- \rightarrow only SCET-type theories



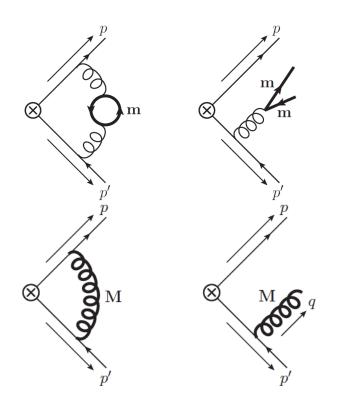


MM = mass-mode, ML = massless, M = massive

 \rightarrow See Piotr's talk.

Simplest non-trivial case to study:

→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production



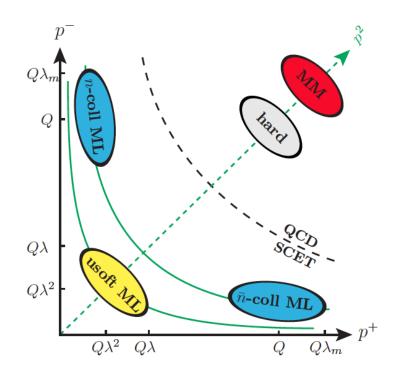
- \rightarrow field theory: close relation to the problem of massive gauge boson radiation
- → dispersion relation: massive quark results can be obtained directly from massive gluon calculations when quark pair treated inclusively (e.g. hard coefficient, jet function)

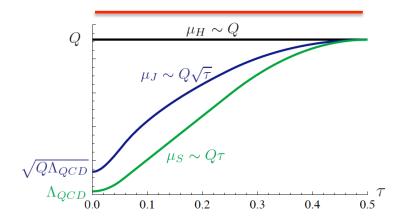
$$\underbrace{\overset{q}{\longrightarrow}}_{\text{cocc}} \bigoplus_{q} \underbrace{\overset{q}{\longrightarrow}}_{4m^2} \underbrace{\overset{q}{\longrightarrow}}_{M^2} \underbrace{\overset{q}{\longrightarrow}}_{M} \xrightarrow{q} \underbrace{\mathrm{Im}}_{q} \underbrace{\overset{q}{\longrightarrow}}_{m} \underbrace{\mathrm{Im}}_{q^2 \to M^2} \underbrace{$$

- \rightarrow separation of conceptual issues to be resolved and calculations issues related to gluon splitting.
- → explicit two-loop calculation needed when quarks are treated exclusively
 - (e.g. soft function \rightarrow hemisphere prescription)

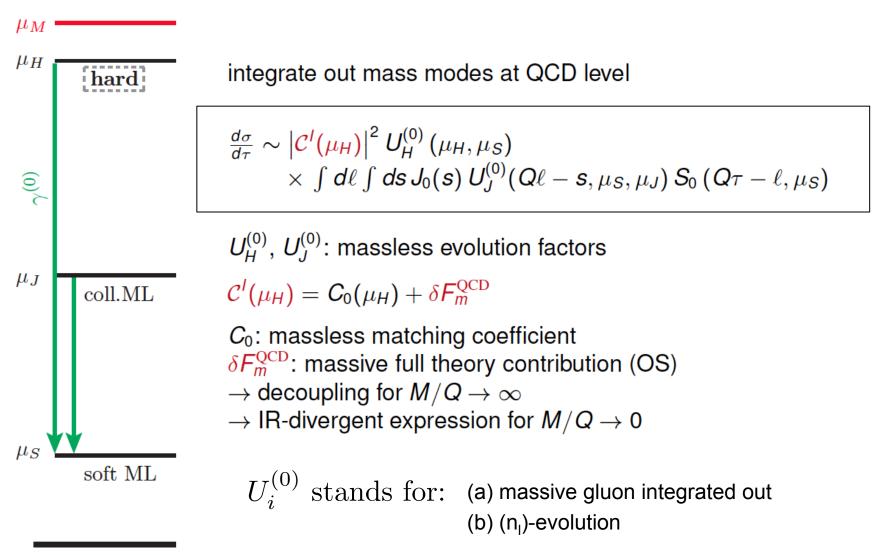
Gritschacher, AH, Jemos, Pietrulewicz 2013

<u>Scenario 1:</u> $\lambda_m > 1 > \lambda > \lambda^2$ (m > Q > J > S)



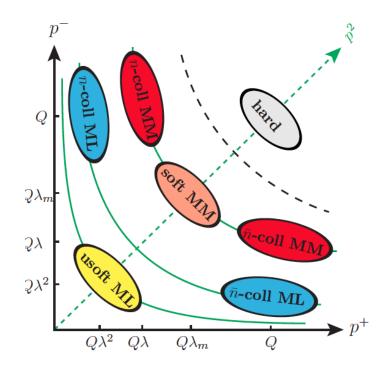


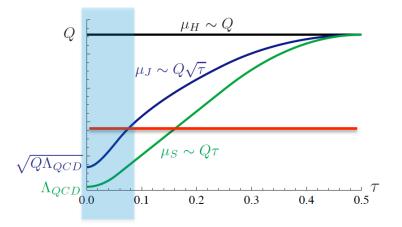
- EFT only contains light quarks
- Massive quark only in current matching coeff.
- Decoupling for $m/Q \rightarrow \infty$



ML = massless

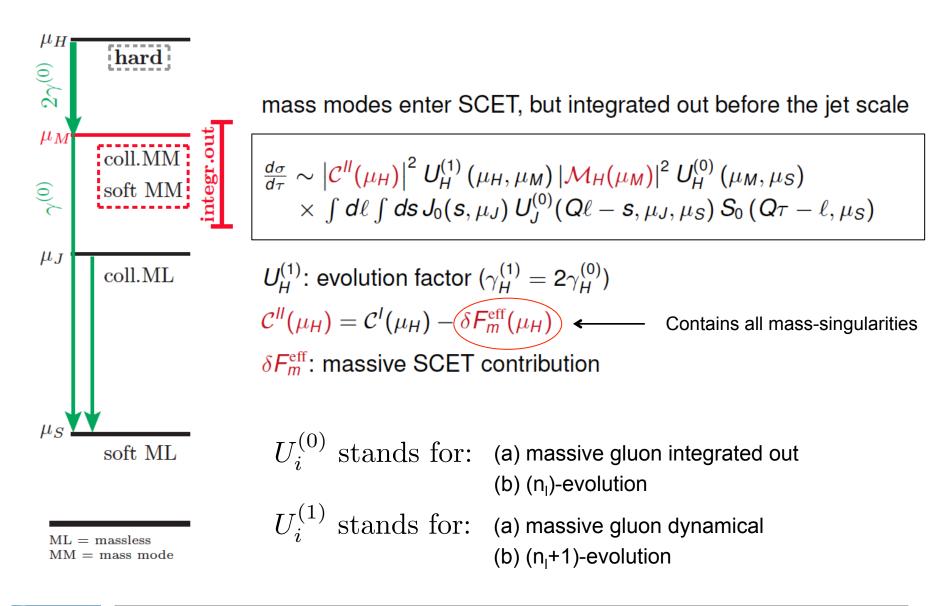
<u>Scenario 2</u>: $1 > \lambda_m > \lambda > \lambda^2$ (Q > m > J > S)



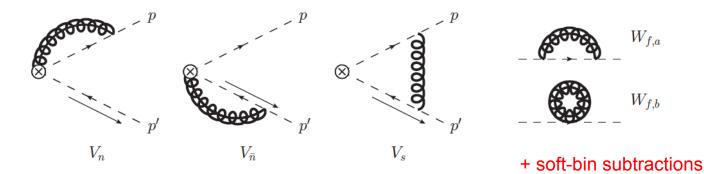


- Massive modes only virtual
- Jet and soft function as in massless case
- Hard coefficient must have massless limit
- Known Sudakov problem for massive gauge boson

Chiu, Golf, Kelley, Manohar Chiu, Führer, Hoang, Kelley



Scenario 2: mass mode SCET calculation



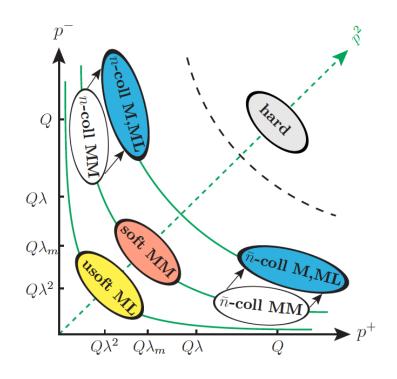
$$\delta F_m^{\text{eff}}(Q, M, \mu) = \frac{\alpha_s C_F}{4\pi} \left\{ \ln\left(\frac{M^2}{\mu^2}\right) \left[2\ln\left(\frac{-Q^2}{\mu^2}\right) - \ln\left(\frac{M^2}{\mu^2}\right) - 3 \right] - \frac{5\pi^2}{6} + \frac{9}{2} \right\}$$

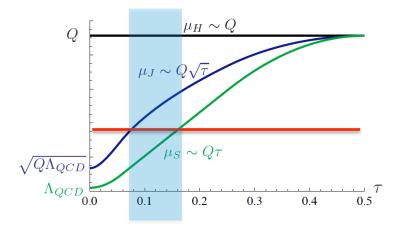
Chiu, Golf, Kelley, Manohar (2008) Chiu, Fuhrer, Hoang, Kelley, Manohar (2009) rapidity logarithms

large logarithm $\ln\left(\frac{M^2}{\mu_H^2}\right)$ cancels between \mathcal{C}^I and δF_m^{eff} correct massless limit for $\mathcal{C}^{II}(\mu_H)$:

$$\mathcal{C}^{\prime\prime}(Q,M,\mu_{H}) = \mathcal{C}^{\prime}(Q,M,\mu_{H}) - \delta \mathcal{F}_{m}^{\mathrm{eff}}(Q,M,\mu_{H}) \stackrel{M \to 0}{\longrightarrow} 2\mathcal{C}_{0}(Q,\mu_{H})$$

Scenario 3: $1 > \lambda > \lambda_m > \lambda^2$ (Q > J > m > S)





- Current evolution unchanged w.r. to Scen. 2
- Hard coefficient must have massless limit
- Jet function has massless limit
- Massive and massless collinear in same sector
- Collinear mass modes integrated out at m

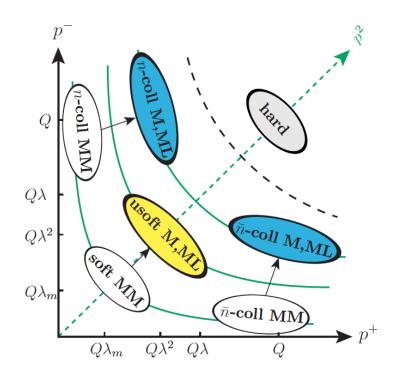
 μ_H hard $2\gamma^{(0)}$ mass modes enter jet sector, but integrated out before the soft scale $\frac{d\sigma}{d\tau} \sim \left| \mathcal{C}^{\prime\prime}(\mu_{H}) \right|^{2} U_{H}^{(1)}(\mu_{H},\mu_{M}) \left| \mathcal{M}_{H}(\mu_{M}) \right|^{2} U_{H}^{(0)}(\mu_{M},\mu_{S})$ $\times \int d\ell \int ds \int ds' \int ds'' J_{0+m}(s,\mu_J) U_J^{(1)}(s'-s,\mu_J,\mu_M)$ $\times \mathcal{M}_J(s''-s',\mu_M) U_J^{(0)}(s''-Q\ell,\mu_M,\mu_S) S_0 (Q\tau-\ell,\mu_S)$ μ_J coll.ML coll.M $J_{0+m}(s,\mu_J) = J_0(s,\mu_J) + \delta J_m^{\text{virt}}(s,\mu_J) + \theta(s-M^2) \,\delta J_m^{\text{real}}(s)$ μ_M soft M δJ_m^{virt} : virtual piece of jet function (distributive structure) Soft-bin subtraction Rapidity singularities cancel UV divergences agree with massless case soft ML δJ_m^{real} : real radiation piece of jet function (function) finite sum of virtual and real: rapidity logs cancel ML = massless

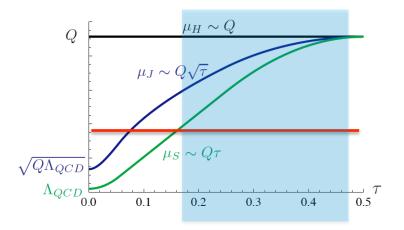
- sum of virtual and real: approaches massless jet function for $m \rightarrow 0$

MM = mass mode

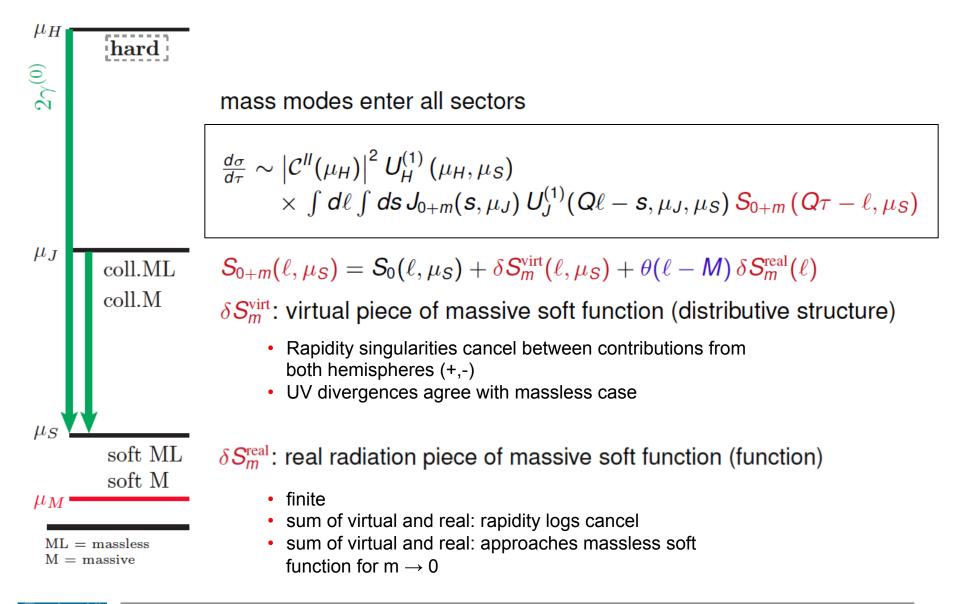
M = massive

Scenario 4: $1 > \lambda > \lambda^2 > \lambda_m (Q > J > S > m)$





- Current evolution unchanged w.r. to Scen. 2
- Jet function and evolution as in Scen. 2
- Massive and massless coll. modes same sector
- Massive and massless soft modes same sector
- Hard coefficient, jet and soft function must have massless limit
- All RG-evolution for (n₁+1) flavors



universität wien

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014

VFN Scheme: MM Threshold Corrections

The calculation of the mass mode matching corrections for current, jet and soft function can be carried out by matching the factorization theorem to a full QCD calculation.

But there is a more efficient method based on the fact that current, jet and soft functions are gauge-invariant quantities that can be renormalized separately.

- Evolution with VFN and matching can be related to the use of different renormalization conditions within a single effective theory.
- Use scenario 4 effective theory where the massive quark is contained in hard, collinear and soft sectors.

Example: Jet function

$$J^{\mathrm{bare}} = Z_J^{OS} \otimes J^{\mathrm{OS}} = Z_J^{\overline{\mathrm{MS}}} \otimes J^{\overline{\mathrm{MS}}}$$

<u>On-shell condition:</u> decoupling for $m \rightarrow \infty$

$$J^{\mathrm{OS}}(\boldsymbol{s},\boldsymbol{m},\mu) = J^{(n_l)}(\boldsymbol{s},\mu) + heta(\boldsymbol{s}-4m^2)\delta J^{\mathrm{real}}_m(\boldsymbol{s},\boldsymbol{m}) \stackrel{m\gg s}{\longrightarrow} J^{(n_l)}(\boldsymbol{s},\mu)$$

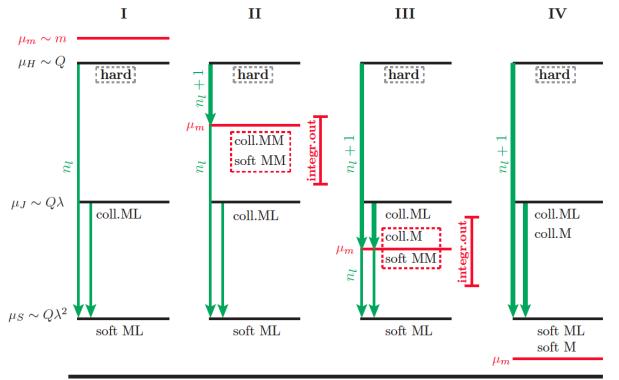
 $\overline{\text{MS}}$ condition: massless limit for m $\rightarrow 0$

$$J^{\overline{\text{MS}}}(\boldsymbol{s},\boldsymbol{m},\mu) = J^{(n_l+1)}(\boldsymbol{s},\mu) + \delta J^{\text{dist}}_{\boldsymbol{m}}(\boldsymbol{s},\boldsymbol{m},\mu) + \theta(\boldsymbol{s}-4\boldsymbol{m}^2)\delta J^{\text{real}}_{\boldsymbol{m}}(\boldsymbol{s},\boldsymbol{m}) \quad \overset{\boldsymbol{m}\ll\boldsymbol{s}}{\longrightarrow} J^{(n_l+1)}(\boldsymbol{s},\mu)$$

 Renormalization approach automatically implies (perturbative) continuity of the evolution through the MM threshold → no scale hierarchies are involved/needed anywhere!

Factorized RG-evolution

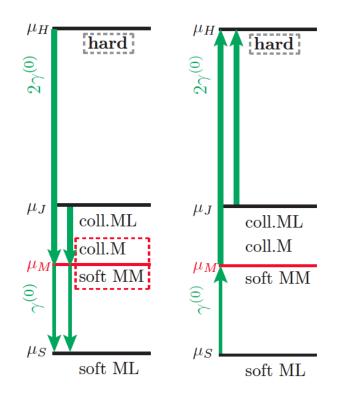
- Hard coefficient, jet and soft function DO NOT CARE about the scenario.
- They care whether they are defined above or below the mass scale and whether they cross the mass threshold during the RG-evolution.
- The scenarios can be patched together from the factorized and evolved hard, jet and soft functions → universality



MM = mass-mode, ML = massless, M = massive

Consistency Conditions: Threshold Corrections

Important role of consistency relation: soft - jet - hard for scenario III



alternative description in bottom-up running ($\mu \sim \mu_H$):

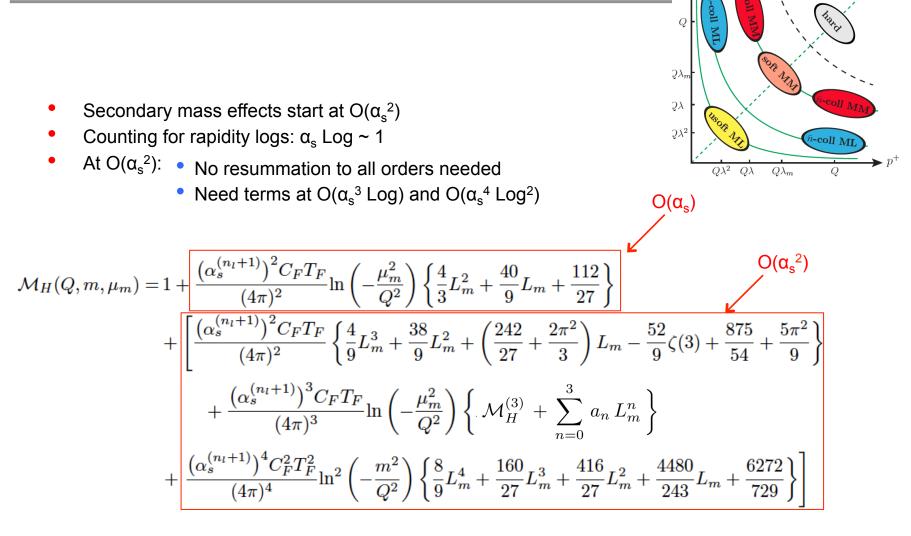
$$\begin{split} \frac{d\sigma}{d\tau} &\sim \left|\mathcal{C}^{\prime\prime}(\mu_{H})\right|^{2} \int d\ell \int d\ell' \int d\ell'' \int ds \int ds' \\ &\times U_{J}^{(1)}(s-s',\mu_{J},\mu_{H}) J_{0}(s',\mu_{J}) U_{S}^{(1)}(\ell''-s/Q,\mu_{M},\mu_{H}) \\ &\times \mathcal{M}_{S}(\ell'-\ell'',\mu_{M}) U_{S}^{(0)}(\ell-\ell',\mu_{S},\mu_{M}) S_{0}\left(Q\tau-\ell,\mu_{S}\right) \end{split}$$

 $\mathcal{M}_{\mathcal{S}}(\ell,\mu_{\mathcal{M}}) = \delta(\ell) + \delta S^{\mathrm{virt}}_{m}(\ell,\mu_{\mathcal{M}})$

consistency relation: $\mathcal{M}_{\mathcal{S}}(\ell, \mu_{\mathcal{M}}) = Q |\mathcal{M}_{\mathcal{H}}(\mu_{\mathcal{M}})|^2 \mathcal{M}_{\mathcal{J}}(Q\ell, \mu_{\mathcal{M}})$

similarly:
$$U_{S}^{(1)}(\ell, \mu_{S}, \mu_{M}) = Q U_{H}^{(1)}(\mu_{M}, \mu_{S}) U_{J}^{(1)}(Q\ell, \mu_{M}, \mu_{S})$$

Rapidity Logarithms

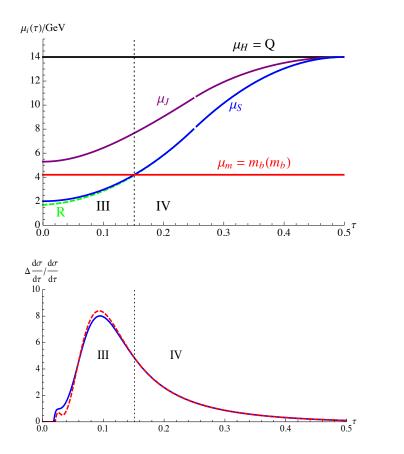


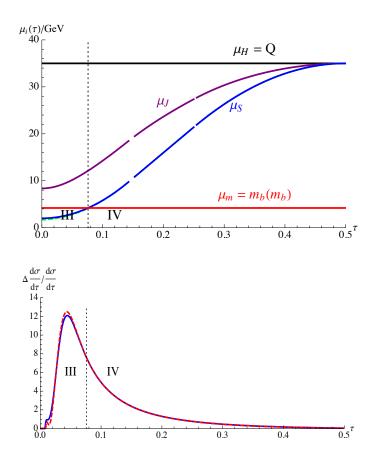
$$L_M = \ln\left(\frac{m^2}{\mu_m^2}\right)$$

Numerical results: secondary bottom effects (Q=14, 35 GeV, m_b(m_b)=4.2 GeV)

 $\rightarrow O(\alpha_s{}^2)$ fixed-order + N³LL summations

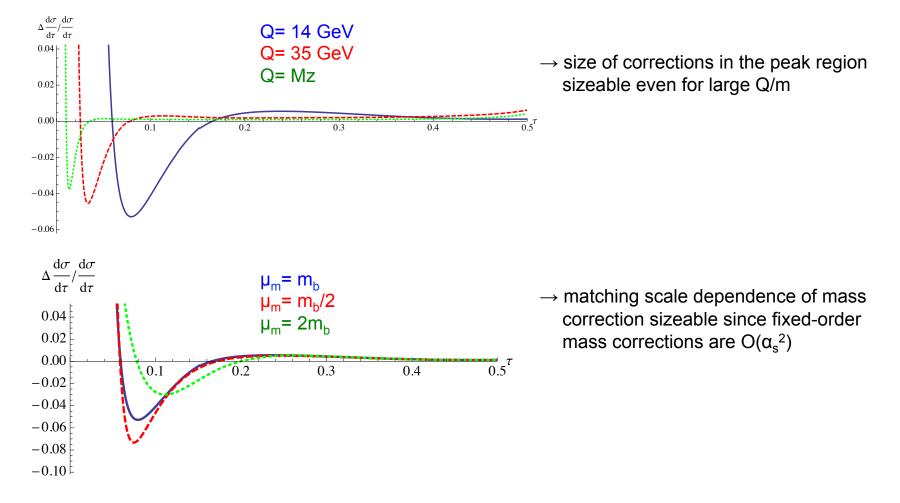
 $\alpha_s^{(5)}(M_Z) = 0.114, \quad \Omega_1^{(5)}(13 \text{ GeV}) = 0.5 \text{ GeV}$





Numerical results: secondary bottom effects (Q=14, 35 GeV)

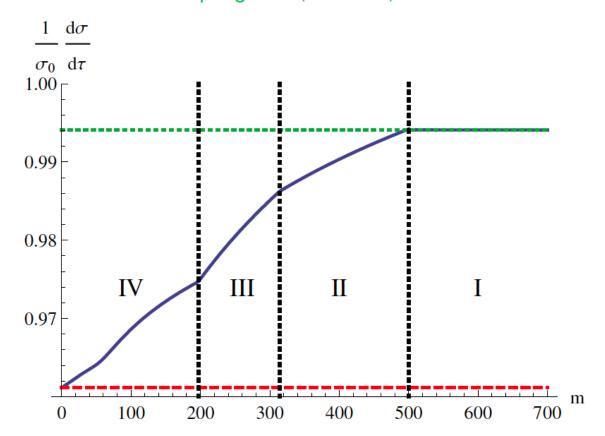
 $\alpha_s^{(5)}(M_Z) = 0.114, \quad \Omega_1^{(5)}(13 \text{ GeV}) = 0.5 \text{ GeV}$



universität wien

Consistency check: continuous transition and correct limiting behaviour

Thrust distribution: Q = 500 GeV, $\tau = 0.15$ fixed, vary mass massless limit (6 flavors): dashed decoupling limit (5 flavors): dotted

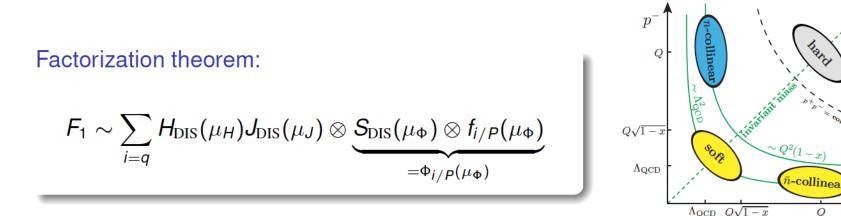


Consistency with VFNS in DIS ($x \rightarrow 1$)

- x → 1: experimentally barely accessible (small pdfs!) but: nontrivial factorization setup → interesting as a showcase for concepts
- quite a lot of SCET literature

```
Manohar (2003), Becher, Neubert, Pecjak (2006),
Chay, Kim (2006, 2010, 2013), Fleming, Zhang (2013), ...
```

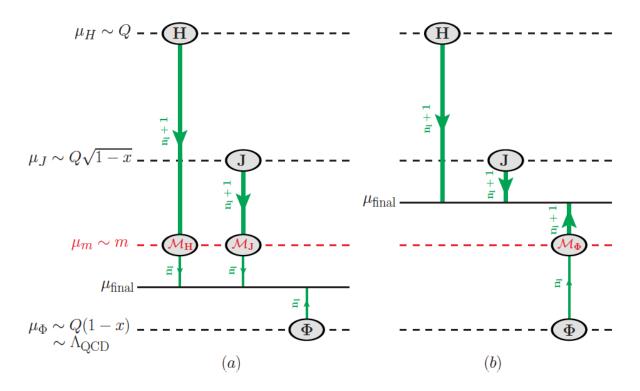
• here: $1 - x \sim \Lambda_{QCD}/Q$, conveniently: Breit frame



Ingredients:

- at $\mu_H \sim Q$: hard function $H_{\text{DIS}}(\mu_H) = |C(\mu_H)|^2$
- at $\mu_J \sim Q\sqrt{1-x}$: final state jet function $J_{\text{DIS}}(\mu_J)$
- at μ_Φ ~ Λ_{QCD}: pdf Φ_{q/P}(μ_Φ)
 ↔ in SCET II: collinear initial state function f_{q/P}(μ_Φ) ⊗ soft function S_{DIS}(μ_Φ)

Consistency with VFNS in DIS ($x \rightarrow 1$)



physical cross section independent of $\mu_{\rm final} \to$ (a) and (b) equivalent \to relation between evolution factors

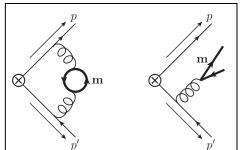
$$U_H^{(n_f)} \times U_J^{(n_f)} = \left(U_{\Phi}^{(n_f)}\right)^{-1}$$
 for $n_f = n_l, n_l + 1$

 \rightarrow relation between matching conditions

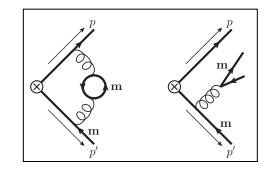
$$\mathcal{M}_H imes \mathcal{M}_J = \mathcal{M}_\Phi$$

Outlook & Conclusion

 \rightarrow VFN Scheme for final state jets with massive quarks







- \rightarrow Sums all large logarithms involving m (if they exist)
- \rightarrow Keeps full mass dependence of singular terms

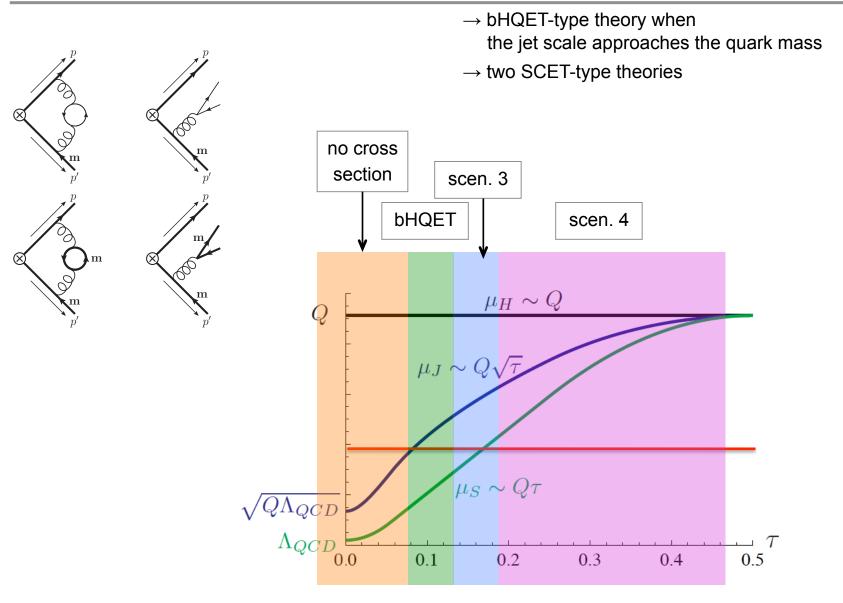
 $\begin{array}{c} \mathsf{Q} \ \gg \mathsf{J} \gg \mathsf{S} \\ \leftarrow \leftarrow \quad \mathsf{m} \quad \rightarrow \rightarrow \end{array}$

- \rightarrow Fully consistent and integrable with VFNS scheme for PDFs, beam fcts, ...
- → Allows ZVNS applications for "minimalistic" quark mass implementation

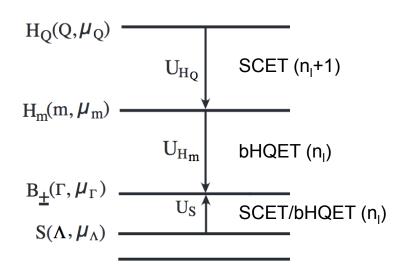
(ONLY in case if large mass logs exist !)

- → Needs non-trivial mass-dependent ME calculations if mass is of order of another scale
- \rightarrow Treatment for pp collisions very soon....

Backup Slides



<u>SCET/bHQET</u>: Q >> J ~ m > Δm > m/Q Δm

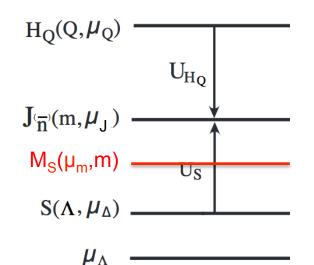


- Small components of massive quark integrated out at μ_m~m
- bHQET current evolution for μ < m
- SCET current evolution for μ > m
- Soft function identical to primary massless case (boosted massive quarks)

All two-loop FO input now known! N²LL'/N³LL

$$\begin{split} \left| \frac{1}{\sigma_0} \frac{\mathrm{d}\hat{\sigma}(\tau)}{\mathrm{d}\tau} \right|^{\mathrm{bHQET}} &= Q \, H_Q^{(n_f)}(Q,\mu_Q) \, U_{H_Q}^{(n_f)}(Q,\mu_Q,\mu_m) \, H_m^{(n_f)}(\overline{m}^{(n_f)},\mu_m) \, U_{H_m}^{(n_l)} \left(\frac{Q}{\overline{m}^{(n_l)}},\mu_m,\mu_B \right) \\ &\int \mathrm{d}s \! \int \! \mathrm{d}s \int \! \mathrm{d}k \, B^{(n_l)} \! \left(\frac{s}{m_J^{(n_l)}},\mu_B,m_J^{(n_l)} \right) \, U_S^{(n_l)} \! \left(k,\mu_B,\mu_S \right) \, S_{\mathrm{part}}^{(n_l)} \! \left(Q \, \tau - Q \, \tau_{\mathrm{MIN}} - \frac{s}{Q} - k,\mu_S \right) \end{split}$$

<u>SCET scen. 3</u>: Q >> J > m > S

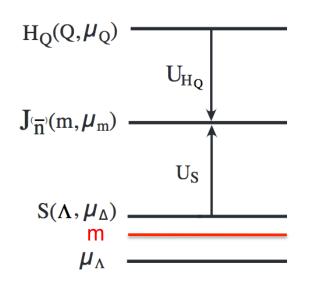


• Same as scenario 3 for primary massless, but with massive jet function

N²LL'/N³LL up to two-loop massive SCET jet function.

$$\begin{aligned} \left| \frac{1}{\sigma_0} \frac{d\hat{\sigma}(\tau)}{d\tau} \right|^{\text{SCET-III}} &= Q H_Q^{(n_f)}(Q, \mu_Q) U_{H_Q}^{(n_f)}\left(Q, \mu_Q, \mu_J\right) \int ds \int dk \, dk' \, dk'' \, J^{(n_f)}(s, \mu_J, \overline{m}^{(n_f)}(\mu_J)) \, U_S^{(n_f)}(k, \mu_J, \mu_m) \\ & \mathcal{M}_S^{(n_f)}(k' - k, \overline{m}^{(n_f)}(\mu_m), \mu_m, \mu_s) U_S^{(n_l)}(k'' - k', \mu_m, \mu_S) \, S_{\text{part}}^{(n_l)}\left(Q\tau - Q\tau_{\min} - \frac{s}{Q} - k'', \mu_S\right) \\ & n_f = n_\ell + 1 \end{aligned}$$

<u>SCET scen. 4</u>: Q >> J > S > m



• Same as scenario 4 for primary massless, but with massive jet function

N²LL'/N³LL up to two-loop massive SCET jet function.

 Consistency relations: Evolution factors and mass mode threshold corrections
 Perturbative continuity

$$\left|\frac{1}{\sigma_{0}}\frac{d\hat{\sigma}(\tau)}{d\tau}\right|^{\text{SCET-IV}} = Q H_{Q}^{(n_{f})}(Q,\mu_{Q}) U_{H_{Q}}^{(n_{f})}(Q,\mu_{Q},\mu_{J}) \int ds \int dk J^{(n_{f})}(s,\mu_{J},\overline{m}^{(n_{f})}(\mu_{J}))$$
$$U_{S}^{(n_{f})}(k,\mu_{J},\mu_{S}) S_{\text{part}}^{(n_{f})}(Q\tau - Q\tau_{\min} - \frac{s}{Q} - k,\mu_{S})$$
$$n_{f} = n_{\ell} + 1$$

Short-Distance Masses

- Mass dependence in all FO components of all factorization theorems
- Most relevant quark mass dependence contains in the jet functions (SCET & bHQET)
- Mass definition must be close with the scale of the respective functions (\rightarrow profile functions)

$\mu \ge m$: MSbar mass (n₁+1)

$$\bar{m}(\mu) = m_{\text{pole}} - \bar{m}(\mu) \sum_{n=1}^{\infty} \sum_{k=0}^{n} a_{nk} \left(\frac{\alpha_s(\mu)}{4\pi}\right)^n \ln^k \frac{\mu}{\bar{m}}$$

 \rightarrow usual MSbar RG-evolution

μ < m: R-scale short-distance mass (n_l)

Jet mass: from bHQET jet function

MSR mass: derived from MSbar mass coefficients

Many others possible

Jain, Scimemi, Stewart 08

Jain, Scimemi, Stewart, AH 08

$$m(R) = m_{\text{pole}} - \delta m(R) \qquad \delta m(R) = R \sum_{n=1}^{\infty} \left(\frac{\alpha_s(R)}{4\pi}\right)^n_{180} \qquad \overline{m(m)} \\ R \frac{d}{dR} m(R) = -\frac{d}{d\ln R} \delta m(R) \qquad = R \sum_{n=0}^{\infty} \gamma_n^R \left[\frac{\alpha_s(R)}{4\pi}\right]^{n+1} \qquad 170 \qquad \overline{m(R)} \\ m(R_1) - m(R_0) = \int_{R_0}^{R_1} \frac{dR}{R} R \gamma^R [\alpha_s(R)] \qquad 160 \qquad \overline{150} \qquad R=m(R) \end{pmatrix}$$

 $\mu_m \sim m$: matching: \rightarrow pert. renormalons-free relation through pole mass

Gap Parameter

- Remove $O(\Lambda)$ renormalon in partonic soft function
- Gap matching in R-evolution at mass scale
- Subtraction for finite mass not strictly needed, but included to have smooth behavior for massless limit
- R-evolution mass dependent at $O(\alpha_s^2)$

 $S(\ell,\mu) = \int d\ell' S_{\text{part}}(\ell - \ell',\mu) S_{\text{model}}(\ell - \Delta)$ $\Delta = \bar{\Delta}(R,\mu) + \delta(R,\alpha_s,\mu)$ renormalon-free

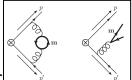
$$S(\ell,\mu) = \int d\ell' S_{
m part}(\ell-\ell'+\delta,\mu) S_{
m model}(\ell-ar{\Delta})$$

$$\delta(R,\mu) = \left. \frac{Re^{\gamma_E}}{2} \frac{d}{d\ln(ix)} \left[\ln \tilde{S}_{\tau,\text{part}}(x,\mu) \right] \right|_{x = (iRe^{\gamma_E})^{-1}}$$
Kluth, AH 10

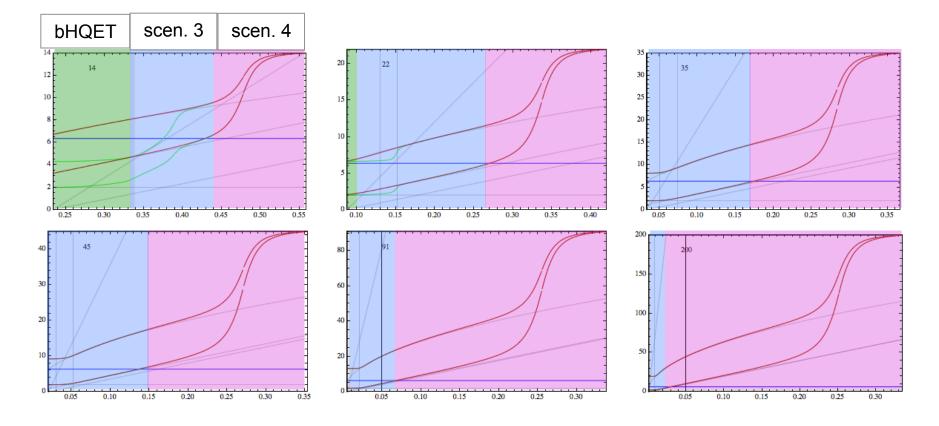
 $\mu_m \sim m$: matching:

Gritschacher, AH, Jemos, Pietrulewicz 2013

$$\bar{\Delta}^{(n_{\ell})}(R,\mu) - \bar{\Delta}^{(n_{\ell}+1)}(R,m,\mu) = e^{\gamma_{E}} R \left[\left(\frac{\alpha_{s}(\mu)}{4\pi} \right)^{2} (\delta_{2,m}(R,m,\mu) + \frac{4}{3} T_{F} \,\delta_{1} \,\ln\frac{\mu^{2}}{m^{2}}) \right]$$



Profile functions: m=4.5, Q= 14, 22, 35, 45, 91, 200 GeV



 \rightarrow Scenario 4 was used in our current thrust analysis based on data Q \geq 35 GeV

First prelim. analysis: m=4.5, Q= 14, 22, 35, 91 GeV (NNLL_{resum} + NLO_{fixed-order})

