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Part I

The numerical method



Z plus jet production at the LHC

Experimental status:

• The LHC experiments have measured Z production in association with up to 7 jets.

Theoretical status:

• NLO corrections to Z +0 jets, Z+1 jet, Z+2 jets known for a long time.

• NLO corrections to Z +3 jets and Z+4 jets calculated by Blackhat collaboration.

Challenge:

• Can one calculate the NLO corrections to Z +5 jets, Z+6 jets and Z+7 jets ?



Scaling behaviour with the number of jets

As the number of jets increases, the scaling behaviour with the number of jets is the

relevant quantity.

• Bad: Factorial or exponential growth.

• Better: Polynomial growth.

Using recurrence relations, we can achieve n3-behaviour at LO.

What about loops ?

• Unitarity methods: n9

• Numerical methods: n3



Recurrence relations

Off-shell currents provide an efficient way to calculate amplitudes:
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No Feynman diagrams are calculated in this approach !
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The one-loop recurrence relations
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Draggiotis et al., ’06; van Hameren, ’09; Becker, Reuschle, S.W., ’10; Cascioli, Maierhöfer, Pozzorini, ’11



Numerical NLO QCD calculations

Proceed through the following steps:

1. Local subtraction terms for soft, collinear and ultraviolet singular part of the

integrand of one-loop amplitudes

2. Contour deformation for the 4-dimensional loop integral.

3. Numerical Monte Carlo integration over phase space and loop momentum.

Not a new idea: Nagy and Soper proposed in ’03 this method, working graph by graph.

(see also: Soper; Krämer, Soper; Catani et al.; Kilian, Kleinschmidt)

What is new: The IR-subtraction terms can be formulated at the level of amplitudes,

no need to work graph by graph.

The IR-subtraction terms are universal and amasingly simple.



Subtraction method for loop integrals

Use subtraction also for the virtual part:

∫

n+1

dσR+
∫
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• In the last term dσV − dσA′ the Monte Carlo integration is over a phase space

integral of n final state particles plus a 4-dimensional loop integral.

• All explicit poles cancel in the combination I+L.

• Divergences of one-loop amplitudes related to IR-divergences (soft and collinear)

and to UV-divergences.

M. Assadsolimani, S. Becker, D. Götz, Ch. Reuschle, Ch. Schwan, S.W.



The infrared subtraction terms for the virtual corrections

Local unintegrated form:
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with Sq = 1, Sg = 1/2. The function gUV
i, j provides damping in the UV-region:
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UV-subtraction terms

In a fixed direction in loop momentum space the amplitude has up to quadratic UV-

divergences.

Only the integration over the angles reduces this to a logarithmic divergence.

For a local subtraction term we have to match the quadratic, linear and logarithmic

divergence.

The subtraction terms have the form of counter-terms for propagators and vertices.

The complete UV-subtraction term can be calculated recursively.



UV-subtraction terms

Example: The quark-gluon vertex.

Local unintegrated form:

= ig3S−1
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We can ensure that the integrated expression is proportional to the Born.



Contour deformation

With the subtraction terms for UV- and IR-singularities one removes

• UV divergences

• Pinch singularities due to soft or collinear partons

Still remains:

• Singularities in the integrand, where a deformation into the complex plane of the

contour is possible.

• Pinch singularities for exceptional configurations of the external momenta

(thresholds, anomalous thresholds ...)



Contour deformation

I =
∫

d4k [ f (k)−g(k)]
︸ ︷︷ ︸

h(k)

h(k) meromorphic function

of four complex variables

k0,k1,k2,k3.

Integration over a surface

of (real) dimension 4 in C4.

I independent of the choice

of the surface, as long as no

poles are crossed.

Re(k0)

Im(k0)

−E

E

What is the best choice for the surface, in order to

minimize Monte Carlo integration errors ?



Direct contour deformation

Deformation of the loop momentum:

kC = kR+ iκ
x

t
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For n cones draw only the origins of the cones:
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Gong, Nagy, Soper, ’08; Becker, Reuschle, S.W., ’12



Efficiency

With the local subtraction terms and the contour deformation we obtain an integral,

where the loop integration can – in principle – be performed with Monte Carlo methods.

However, the integrand is oscillating:

I =

1∫

0

dx [c+Asin(2πx)] , A ≫ c

This leads to large Monte Carlo integration errors.

Solution: Antithetic variates: Evaluate the integrand at x and (1− x).



UV improvement

Ultraviolet behaviour of some example diagrams:

To the right: number of external particles

In the vertical:

leading power of the large |k|-behaviour
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UV-finiteness requires fall off like |k|−5.

|k|−5 contribution is odd under k →−k and integrates to zero.

However, |k|−5 term gives a large contribution to the Monte Carlo error.



UV improvement

• Split the integration holomorphic into two channels:
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First channel: simple pole structure, can be evaluated with a simple contour.

Second channel: Integrand falls off with two additional powers of |k| in the ultraviolet.

• Improvement of the counterterms for the propagators and three-valent vertices from

|k|−5 to |k|−7.

• Use antithetic Monte Carlo integration technique: Evaluate k and (−k) together.



Infrared channels

Non-holomorphic splitting:
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Coordinate system, where a line segment [qi,qi+1] is singled out:

Generalised elliptical coordinates

Use technique of antithetic variates in these coordinates.



Part II

General improvements



Random polarisations

Matrix element with n external particles: Instead of summing over all 2
n spin states,

introduce

εµ(φ) = eiφε+µ + e−iφε−µ .

and replace the summation over the spin states by an integration over the angle φ: P.

Draggiotis, R. Kleiss, C. Papadopoulos, ’98

∑
λ=±

ελ
µ

∗
ελ

ν =
1

2π

2π∫

0

dφ εµ(φ)
∗εν(φ)

Works for Born and virtual part straightforward. For the real part the subtraction terms

are usually spin-summed and thus non-local in φ.

Extension of the dipole formalism to random polarisations:

D. Götz, Ch. Schwan and S.W., ’12



Colour decomposition at one-loop

One-loop amplitudes (and Born amplitudes with multiple quark pairs):

Partial amplitudes can be decomposed further into primitive amplitudes (gauge-

invariant, cyclic ordered, fixed routing of fermions).

Z. Bern, L. Dixon, D. Kosower, ’95

For amplitudes with more than one quark-antiquark pair this decomposition is non-

trivial.

• Use Feynman diagrams and solve a (large) system of linear equations.

Ellis et al., ’11; Ita, Ozeren, ’11 ; Badger et al., ’12

• More elegant: Obtain colour decomposition directly through shuffle relations.

Ch. Reuschle and S.W., ’13



Part III

Numerical results



Jet rates in electron-positron annihilation
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CPU scaling behaviour

Scaling of the CPU time for one

evaluation of the integrand (Born, virtual,

insertion) with the number of external

particles:

CPU time ∼ n4

Born
Insertion

Virtual

CPU time

n

C
P

U
ti

m
e

[m
s]

765432

10

1

0.1

0.01

• n4-behaviour from recurrence relations

• helicity summation replaced by smooth integration over random polarisations

• Real part: Extension of the dipole formalism to random polarisations

D. Götz, Ch. Schwan and S.W., ’12



Extension to massive particles
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Comparison of the results obtained by Monte Carlo integration with the analytical

results in the vicinity of a threshold.

S. Becker and S.W., ’12



Preliminary results on pp → Z +5 jets

Process pp → Z+5 jets → e+e+5 jets at
√

s = 7 TeV with CTEQ6M/CTEQ6L1.

Jets defined by anti-kt-algorithm with R = 0.5.

Cuts:

p⊥
l > 20 GeV, |ηl|< 2.5, 66 GeV< mll̄ < 116 GeV,

p⊥
jet > 25 GeV, |ηjet|< 3.

Scale chosen on a per-event basis:

µR = µF =
1

2
H⊥′

=
1

2

(

E⊥
Z +∑

j

p⊥
j

)

.

Leading-colour approximation:

σLO,lc = 0.138±0.009 pb, σNLO,lc = 0.161±0.113 pb.



Conclusions

• The numerical method for the computation of NLO corrections offers a good scaling

behaviour.

• First results on pp → Z +5 jets.

• Public program available soon.


