Recent new methods and applications of the differential equation approach to master integrals

Chris Wever (N.C.S.R. Demokritos)

C. Papadopoulos [arXiv: I40I. 6057 [hep-ph]]
C. Papadopoulos, D.Tommasini, C.Wever [to appear]

Funded by: API Σ TEIA-1283 HOCTools

Outline

- Introduction and traditional differential equations method to integration
- Simplified differential equations method

Application

- Summary and outlook

Motivation

- Mismatch between theory and experimental result
- Theory prediction up to NLO, full NNLO calculation might resolve the discrepancy
- NLO calculations fully automated thanks to NLO reduction methods to Master integrals (MI): (pentagons), boxes, triangles, bubbles and tadpoles

[CMS 2013]

Motivation

- Mismatch between theory and experimental result
- Theory prediction up to NLO, full NNLO calculation might resolve the discrepancy
- NLO calculations fully automated thanks to NLO reduction methods to Master integrals (MI): (pentagons), boxes, triangles, bubbles and tadpoles

[CMS 2013]

Many numerical NLO tools: Formcalc [Hahn '99], Golem (PV) [Binoth, Cullen et al '08], Rocket [Ellis, Giele et al '09], Njet [Badger, Biederman, Uwer \& Yundin 'I2], Blackhat (see D. Kosower and D. Maitre talks) [Berger, Bern, Dixon et al 'I2], Helac-NLO [Bevilacqua, Czakon et al 'I2], MCFM (see K. Ellis's talk), GoSam (see G. Heinrich's talk), OpenLoops (see P. Maierhofer's talk), Recola (see S. Uccirati's talk), MadGolem, MadLoop, MadFKS, aMC@NLO, ...

Next step in automation: NNLO

Bottleneck: virtual-virtual two-loop corrections

Two-loop overview

- A finite basis of Master Integrals exists as well at two-loops:

- Master integrals may contain loop-dependent numerators as well (tensor integrals)

Coherent framework for reductions for two- and higher-loop amplitudes:

- In N=4 SYM [Bern, Carrasco, Johansson et al. '09-'l2]

Maximal unitarity cuts in general QFT's [Johansson, Kosower, Larsen et al.'I2-'I3]
Integrand reduction with polynomial division in general QFT's (see P. Mastrolia and S. Badger talks) [Ossola \& Mastrolia 'II, Zhang 'I2, Badger, Frellesvig \& Zhang 'I2-'I3, Mastrolia, Mirabella, Ossola \& Peraro 'I2-'I3, Kleis, Malamos, Papadopoulos \& Verheynen 'I2]

Two-loop overview

- A finite basis of Master Integrals exists as well at two-loops:

- Master integrals may contain loop-dependent numerators as well (tensor integrals)

Coherent framework for reductions for two- and higher-loop amplitudes:

- Ih N=4 SYM [Bern, Carrasco, Johansson et al. '09-'l2]

Maximal unitarity cuts in general QFT's [Johansson, Kosower, Larsen et al.'I2-'I3]
Integrand reduction with polynomial division in general QFT's (see P. Mastrolia and S.
Badger talks) [Ossola \& Mastrolia 'II, Zhang 'I2, Badger, Frellesvig \& Zhang 'I2-'I3,
Mastrolia, Mirabella, Ossola \& Peraro 'I2-'I3, Kleis, Malamos, Papadopoulos \& Verheynen 'I2]
By now reduction substantially understood for two- and (multi)-loop integrals

Missing ingredient: library of Master integrals (MI)

Reduction to MI used for specific processes: Integration by parts (IBP) [Tkachov '8I, Chetyrkin \& Tkachov '81]

Methods for calculating MI

Rewriting of integrals in different representations:

- Parametric: Feynman/alpha parameters \longrightarrow Sector decomposition
- Mellin-Barnes and nested sums (see C. Raab and J. Gluza talks) [Bergere \& Lam '74, Ussyukina '75, V. Smirnov '99, Tausk '99,Vermaseren '99, Blumlein et al '99,...]

Using relations and/or (cut) identities:

- Dímensional shifting relations [Tarasov '96, Lee 'IO, Lee, V. Smirnov \& A. Smirnov 'IO]

Loop-tree duality (see G. Rodrigo's talk) [Catani, Gleisberg, Krauss, Rodrigo and Winter '08, Bierenbaum, Catani, Draggiotis, Rodrigo et al 'I0-'14]

Integral reconstruction with cuts and coproducts [Abreu, Britto, Duhr \& Gardi 'I4]

As solutions of differential equations (DE):

(method of current talk)

- Differentiation w.r.t. invariants (see V. Smirnov's talk) [Kotikov '9I, Remiddi '97, Caffo, Cryz \& Remiddi '98, Gehrmann \& Remiddi '00, Henn 'I3, Henn, Smirnov et al 'I3-'I4]
- Differentiation w.r.t. externally introduced parameter [Papadopoulos 'I4]

Many more: Dispersion relations, dualities, ...

DE method for MI

6
[Kotikov '91, Remiddi '97, Caffo, Cryz \& Remiddi '98, Gehrmann \& Remiddi '00, Henn 'I3, Henn, Smirnov et al '13-'14]

- Assume one is interested in a multi-loop Feynman integral:

$$
G_{a_{1} \cdots a_{n}}(\tilde{s}):=\int\left(\prod_{i} \frac{d^{d} k_{i}}{i \pi^{d / 2}}\right) \frac{1}{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}} \quad \begin{gathered}
D_{i}=c_{i j l} k_{j} \cdot k_{l}+c_{i j} k_{j} \cdot p_{j}+m_{i}^{2} \\
\left\{\tilde{s}_{1}, \tilde{s}_{2} \cdots\right\}=\left\{f_{1}\left(p_{i} \cdot p_{j}\right), f_{2}\left(p_{i}, p_{j}\right), \cdots\right\}
\end{gathered}
$$

IBP identities

$$
\xrightarrow{\text { BP identities }} \int\left(\prod_{i} d^{d} k_{i}\right) \frac{\partial}{\partial k_{j}^{\mu}}\left(\frac{v^{\mu}}{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}}\right) \stackrel{D R}{=} 0 \quad \stackrel{\text { solve }}{\longrightarrow} G_{a_{1} \cdots a_{n}}(\tilde{s})=\sum_{a} f_{a}(\tilde{s}, d) G_{a}^{M I}(\tilde{s}, d)
$$

- Differentiate w.r.t. external momenta and reduce by IBP to get DE:

$$
\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon) \stackrel{I B P}{=} \bar{M}_{k}(\tilde{s}, \epsilon) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon)
$$

DE method for MI

- Assume one is interested in a multi-loop Feynman integral:

$$
G_{a_{1} \cdots a_{n}}(\tilde{s}):=\int\left(\prod_{i} \frac{d^{d} k_{i}}{i \pi^{d / 2}}\right) \frac{1}{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}} \quad \begin{gathered}
D_{i}=c_{i j l} k_{j} \cdot k_{l}+c_{i j} k_{j} \cdot p_{j}+m_{i}^{2} \\
\tilde{s}=\left\{\tilde{s}_{1}, \tilde{s}_{2} \cdots\right\}=\left\{f_{1}\left(p_{i} \cdot p_{j}\right), f_{2}\left(p_{i}, p_{j}\right), \cdots\right\}
\end{gathered}
$$

$$
\xrightarrow{\text { IBP identities }} \int\left(\prod_{i} d^{d} k_{i}\right) \frac{\partial}{\partial k_{j}^{\mu}}\left(\frac{v^{\mu}}{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}}\right) \stackrel{D R}{=} 0 \xrightarrow{\text { solve }} G_{a_{1} \cdots a_{n}}(\tilde{s})=\sum_{a} f_{a}(\tilde{s}, d) G_{a}^{M I}(\tilde{s}, d)
$$

- Differentiate w.r.t. external momenta and reduce by IBP to get DE:

$$
\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon) \stackrel{I B P}{=} \bar{M}_{k}(\tilde{s}, \epsilon) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon)
$$

Conjecture: by rotation $\vec{G}^{M I} \rightarrow \overline{\bar{A}} \cdot \vec{G}^{M I}$

$$
\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon)=\epsilon \overline{\bar{M}}_{k}(\tilde{s}) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon)
$$

Comments: [Argeri et al 'l4, Gehrmann et al 'I4, Hehn et al '14]
If set of invariants $\tilde{S}=\left\{f\left(p_{i} . p_{j}\right)\right\}$ correct: $\overline{\bar{M}}_{k}(\tilde{s})=\sum_{\text {poles } \tilde{s}_{k}^{(0)}} \frac{\overline{\bar{M}}_{k}^{\tilde{s}_{k}^{(0)}}}{\left(\tilde{s}_{k}-\tilde{s}_{k}^{(0)}\right)}$
Uniform
Goncharov $\frac{\text { Polylogarithm }}{\text { (GP) solution }}$

Boundary condition $\vec{G}^{M I}\left(\tilde{s}_{k}=\tilde{s}_{k, 0}\right)$ found (among other ways) by solving DE's in other invariants

- Introduction and traditional differential equations method to integration
- Simplified differential equations method

x-Parametrization

- Introduce extra parameter x in the denominators of loop integral
- x-parameter describes off-shellness of (some) external legs:

x-Parametrization

- Introduce extra parameter x in the denominators of loop integral
- x-parameter describes off-shellness of (some) external legs:

Massless external legs: $p_{2} \longrightarrow$

x-Parametrization

- Introduce extra parameter x in the denominators of loop integral
- x-parameter describes off-shellness of (some) external legs:

Massive external legs: $p_{1} \longrightarrow$

Massless external legs: $p_{2} \longrightarrow$

$p_{1}+(1-x) q$ $p_{2} \quad$ or $\quad x p_{2}$

x-parametrize

$\longrightarrow G_{a_{1} \cdots a_{n}}(x, s, \epsilon)=\int\left(\prod_{i} d^{d} k_{i}\right) \frac{1}{D_{1}^{2 a_{1}}(k, p(x)) \cdots D_{n}^{2 a_{n}}(k, p(x))}$

$$
D_{i}(k, p)=c_{i j} k_{j}+d_{i j} p_{j}, \quad s=\left.\left\{p_{i} \cdot p_{j}\right\}\right|_{i, j}
$$

- Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants and reduce r.h.s. by IBP identities:

$$
\frac{\partial}{\partial x} \vec{G}^{M I}(x, s, \epsilon) \stackrel{I \stackrel{B P}{=} \overline{\bar{M}}(x, s, \epsilon) \cdot \vec{G}^{M I}(x, s, \epsilon), \quad s=\left.\left\{p_{i} \cdot p_{j}\right\}\right|_{i, j}, ~}{ }
$$

Example: one-loop triangle

$G_{111}\left(m_{1}, m_{2}\right)=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{k^{2}\left(k+p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}}$

$$
p_{1}^{2} \neq m_{1}, p_{2}^{2}=m_{2},\left(p_{1}+p_{2}\right)^{2}=0
$$

Example: one-loop triangle

$$
\begin{aligned}
& \frac{\text { Parametrize } p_{2} \text { off- }}{\text { shellness with } x} \\
& G_{111}\left(m_{1}, x\right)=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{k^{2}\left(k+x p_{1}\right)^{2}\left(k+p_{1}+p_{2}\right)^{2}} \\
& p_{1}^{2}=m_{1}, p_{2}^{2}=0,\left(p_{1}+p_{2}-x p_{1}\right)^{2} \neq 0,\left(p_{1}+p_{2}\right)^{2}=0
\end{aligned}
$$

- Differentiate to x and use IBP to reduce:
$\frac{\partial}{\partial x} G_{111}(x)=\frac{-x^{-2-\epsilon}}{\epsilon^{2} m_{1}}\left(\left(-m_{1}-i .0\right)^{-\epsilon}(1+2 \epsilon) x^{-\epsilon}-\left(m_{1}-i .0\right)^{-\epsilon}(1-x)^{-1-\epsilon}(1+\epsilon-x(1+2 \epsilon))\right)$

Subtracting the singularities and expanding the finite part leads to:

$$
\begin{aligned}
G_{111}(x) & =G_{111}(0)+\int_{0}^{x} d x^{\prime} \frac{-x^{\prime-2-\epsilon}}{\epsilon^{2} m_{1}}\left(\left(-m_{1}-i .0\right)^{-\epsilon}(1+2 \epsilon) x^{\prime-\epsilon}-\left(m_{1}-i .0\right)^{-\epsilon}\left(1-x^{\prime}\right)^{-1-\epsilon}\left(1+\epsilon-x^{\prime}(1+2 \epsilon)\right)\right) \\
& =\underbrace{G_{111}(0)}_{=0}+\frac{-\left(m_{1}-i .0\right)^{-\epsilon} x^{-\epsilon}+\left(-m_{1}-i .0\right)^{-\epsilon} x^{-2 \epsilon}}{m_{1} x \epsilon^{2}}+\frac{\left(m_{1}-i .0\right)^{-\epsilon}\left(-x^{-\epsilon}+(x+G P(1 ; x))\right)}{m_{1} x \epsilon}+\mathcal{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

Agrees with expansion of exact solution: $G_{111}\left(m_{1} * x^{2}, m_{2}=\left(-m_{1}\right) x(1-x)\right)=\frac{c_{\Gamma}(\epsilon)}{\epsilon^{2}} \frac{\left(-m_{1} x^{2}\right)^{-\epsilon}-\left(-\left(-m_{1}\right) x(1-x)\right)^{-\epsilon}}{m_{1} x^{2}-\left(-m_{1}\right) x(1-x)}$

Bottom-up approach

- Notation: upper index " (m) " in integrals $G_{\left\{a_{1} \ldots a_{n}\right\}}^{(m)}$ denotes amount of positive indices, i.e. amount of denominators/propagators

$$
G_{a_{1} \cdots a_{n}}^{(m)}=\int\left(\prod_{i} d^{d} k_{i}\right) \underbrace{\frac{1}{D_{1}^{2 a_{1}}(k, p) \cdots D_{n}^{2 a_{n}}(k, p)}}_{m \text { propagators, (positive indices) } a_{i}}
$$

- In practice individual DE's of MI are of the form:

$$
\begin{aligned}
& \quad \frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)=\sum_{m^{\prime}=m_{0}}^{m} \sum_{b_{1}, \cdots b_{n}} \operatorname{Rational}_{a_{1} \cdots a_{n}}^{b_{1}, \cdots b_{n}}(x, s, \epsilon) G_{b_{1} \cdots b_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon) \\
& \text { Bottom-up: }
\end{aligned}
$$

- Solve first for all MI with least amount of denominators m_{0} (these are often already known to all orders in ϵ or often calculable with other methods)
- After solving all MI with m denominators $\left(m \geq m_{0}\right)$, solve all MI with $m+1$ denominators
- Often:

$$
G_{a_{1} \cdots a_{n}}^{\left(m_{0}\right)}(x, s, \epsilon)=\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right)
$$

Choice of x-parametrization and boundary term

main criteria for choice of x-parametrization: constant term $(\epsilon=0)$ of residues of homogeneous term for every DE needs to be an integer:
$\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)=\sum_{\text {poles } x^{(0)}} \frac{r_{x^{(0)}}+\epsilon c_{x^{(0)}}(\epsilon)}{\left(x-x^{(0)}\right)} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right) \longrightarrow$
$\frac{\partial}{\partial x}\left(M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)\right)=M(x, \epsilon) \sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad M(x, \epsilon)=\prod_{\text {poles } x^{(0)}}\left(x-x^{(0)}-r_{x(0)}^{-\epsilon c_{x}(0)(\epsilon)}\right.$
For all MI that we have calculated, the criteria could be easily met. Often it was enough to choose the external legs such that the corresponding massive MI triangles (found by pinching external legs) are as follows:

Choice of x-parametrization and boundary term

main criteria for choice of x-parametrization: constant term $(\epsilon=0)$ of residues of homogeneous term for every DE needs to be an integer:

$$
\begin{aligned}
& \frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)=\sum_{\text {poles } x^{(0)}} \frac{r_{x^{(0)}}+\epsilon c_{x^{(0)}}(\epsilon)}{\left(x-x^{(0)}\right)} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right) \longrightarrow \\
& \frac{\partial}{\partial x}\left(M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)\right)=M(x, \epsilon) \sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), M(x, \epsilon)=\prod_{\text {poles } x^{(0)}}\left(x-x^{(0)}-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)\right.
\end{aligned} \quad \begin{aligned}
& \text { For all/MI that we have calculated, the criteria could be easily met. Often } \\
& \text { it was enough to choose the external legs such that the corresponding } \\
& \text { massive MI triangles (found by pinching external legs) are as follows: } \\
& \text { Boundary condition: }
\end{aligned}
$$

Boundary condition almost always captured by singular subtraction in bottom-up approach

- Except in three cases, all loop integrals we have come across: $\quad\left(M * G_{a_{1} \cdots a_{n}}^{(m)}\right)_{x \rightarrow 0}=0$
\longrightarrow Not well understood yet why this is so!
- If not zero, boundary condition $\left(M * G_{a_{1} \cdots a_{n}}^{(m)}\right)_{x \rightarrow 0}$ may be found (in principle) by plugging in special values for x, via analytical/regularity constraints, asymptotic expansion in $x \rightarrow 0$ or some modular transformation like $x \rightarrow 1 / x$

Outline

- Introduction and traditional differential equations method to integration
- Simplified differential equations method Application

Two-loop planar double-box

Example of planar diagrams:

Require 4-point two-loop MI with 2 off-shell legs and massless internal legs (at LHC lightflavor quarks are massless to good degree): diboson production
On-shell legs: $q_{1}^{2}=\cdots=q_{4}^{2}=0 \quad$ [planar: V . Smirnov ' $99, \mathrm{~V}$. Smirnov \& Veretin '99, non-planar: Tausk '99, Anastasiou, Gehrmann, Oleari, Remiddi \& Tausk '00]

One off-shell leg (pl.+non-pl.): $q_{1}^{2}=q^{2}, q_{2}^{2}=q_{3}^{2}=q_{4}^{2}=0 \quad$ [Gehrmann \& Remiddi '00-'0I]
Two off-shell legs with same masses: $q_{1}^{2}=q_{2}^{2}=q^{2}, q_{3}^{2}=q_{4}^{2}=0$ (see A. von Manteuffel's talk) [planar: Gehrmann, Tancredi \& Weihs '।3, non-planar: Gehrman, Manteuffel, Tancredi \& Weihs '।4]

Two off-shell legs with different masses: $q_{1}^{2} \neq 0, q_{2}^{2} \neq 0, q_{3}^{2}=q_{4}^{2}=0 \quad$ (see V. Smirnov's talk) [planar: Henn, Melnikov \& Smirnov 'I4, non-planar: Caola, Henn, Melnikov \& Smirnov 'I4]

Double planar box: topologies

condition for x-parametrization:

Double planar box: Parametrization

$$
\begin{aligned}
G_{a_{1} \cdots a_{9}}^{(1)}(x) & :=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{d^{d} k_{2}}{i \pi^{d / 2}} \frac{1}{k_{1}^{2 a_{1}}\left(k_{1}+x p_{1}\right)^{2 a_{2}}\left(k_{1}+x p_{12}\right)^{2 a_{3}}\left(k_{1}+p_{123}\right)^{2 a_{4}}} \\
& \times \frac{1}{k_{2}^{2 a_{5}}\left(k_{2}-x p_{1}\right)^{2 a_{6}}\left(k_{2}-x p_{12}\right)^{2 a_{7}}\left(k_{2}-p_{123}\right)^{2 a_{8}}\left(k_{1}+k_{2}\right)^{2 a_{9}}}
\end{aligned}
$$

$$
\begin{aligned}
G_{a_{1} \cdots a_{9}}^{(2)}(x) & :=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{d^{d} k_{2}}{i \pi^{d / 2}} \frac{1}{k_{1}^{2 a_{1}}\left(k_{1}+x p_{1}\right)^{2 a_{2}}\left(k_{1}+x p_{12}\right)^{2 a_{3}}\left(k_{1}+p_{123}\right)^{2 a_{4}}} \\
& \times \frac{1}{k_{2}^{2 a_{5}}\left(k_{2}-x p_{1}\right)^{2 a_{6}}\left(k_{2}-p_{12}\right)^{2 a_{7}}\left(k_{2}-p_{123}\right)^{2 a_{8}}\left(k_{1}+k_{2}\right)^{2 a_{9}}}
\end{aligned}
$$

$$
\begin{aligned}
G_{a_{1} \cdots a_{9}}^{(3)}(x) & :=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{d^{d} k_{2}}{i \pi^{d / 2}} \frac{1}{k_{1}^{2 a_{1}}\left(k_{1}+x p_{1}\right)^{2 a_{2}}\left(k_{1}+p_{123}-x p_{2}\right)^{2 a_{3}}\left(k_{1}+p_{123}\right)^{2 a_{4}}} \\
& \times \frac{1}{k_{2}^{2 a_{5}}\left(k_{2}-p_{1}\right)^{2 a_{6}}\left(k_{2}+x p_{2}-p_{123}\right)^{2 a_{7}}\left(k_{2}-p_{123}\right)^{2 a_{8}}\left(k_{1}+k_{2}\right)^{2 a_{9}}}
\end{aligned}
$$

Solutions in GP

$$
G_{011111011}^{(2)}(x)=
$$

solution of DE

$$
s_{12}=p_{12}^{2}, s_{23}=p_{23}^{2}, m_{4}=p_{123}^{2}
$$

$$
G_{01111011}^{(2)}(x)=\frac{A_{3}(\epsilon)}{x^{2} s_{12}\left(-m_{4}+x\left(m_{4}-s_{23}\right)\right)^{2}}\left(\frac{-1}{2 \epsilon^{4}}+\left(\frac{1}{\epsilon^{3}} \delta-G P\left(\frac{m_{4}}{s_{12}} ; x\right)+2 G P\left(\frac{m_{4}}{m_{4}-s_{23}} ; x\right)+2 G P(0 ; x)-G P(1 ; x)+\log \left(-s_{12}\right)+\frac{9}{4}\right)\right.
$$

$$
+\left(\frac { 1 } { 4 \epsilon ^ { 2 } } \left(18 G P\left(\frac{m_{4}}{s_{12}} ; x\right)-36 G P\left(\frac{m_{4}}{m_{4}-s_{23}} ; x\right)-8 G P\left(0, \frac{m_{4}}{s_{12}} ; x\right)+16 G P\left(0, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)+8 G P\left(\frac{s_{23}}{s_{12}}+1, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)\right.\right.
$$

$$
+8 G P\left(\frac{m_{4}}{s_{12}}, \frac{s_{23}}{s_{12}}+1 ; x\right)-8 G P\left(\frac{m_{4}}{s_{12}}, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)+8 G P\left(\frac{m_{4}}{m_{4}-s_{23}}, 1 ; x\right)+4\left(-2 G P\left(\frac{s_{23}}{s_{12}}+1 ; x\right) G P\left(\frac{m_{4}}{s_{12}} ; x\right)\right.
$$

$$
+2 G P\left(\frac{m_{4}}{m_{4}-s_{23}} ; x\right)\left(2 G P\left(\frac{m_{4}}{s_{12}} ; x\right)-2 G P\left(\frac{m_{4}}{m_{4}-s_{23}} ; x\right)+G P(1 ; x)\right)+G P(0 ; x)\left(4 G P\left(\frac{m_{4}}{s_{12}} ; x\right)-8 G P\left(\frac{m_{4}}{m_{4}-s_{23}} ; x\right)\right.
$$

$$
\left.\left.4 G P(1 ; x)-4 \log \left(-s_{12}\right)-9\right)+2 \log \left(-s_{12}\right)\left(G P\left(\frac{m_{4}}{s_{12}} ; x\right)-2 G P\left(\frac{m_{4}}{m_{4}-s_{23}} ; x\right)+G P(1 ; x)\right)-4 G P(0 ; x)^{2}-\log ^{2}\left(-s_{12}\right)\right)
$$

$$
\left.-8 G P\left(\frac{s_{23}}{s_{12}}+1,1 ; x\right)+18 G P(1 ; x)-8 G P(0,1 ; x)-18 \log \left(-s_{12}\right)-9\right)+\left(\frac{1}{\epsilon}(\cdots)\right.
$$

$$
+\left(-3 G P\left(0, \frac{m_{4}}{s_{12}} ; x\right)^{2}-18 G P\left(0, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)^{2}-G P\left(\frac{s_{23}}{s_{12}}+1, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)^{2}-G P\left(\frac{m_{4}}{s_{12}}, \frac{s_{23}}{s_{12}}+1 ; x\right)^{2}+G P\left(\frac{m_{4}}{s_{12}}, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)^{2}\right.
$$

$$
+G P\left(\frac{m_{4}}{m_{4}-s_{23}}, 1 ; x\right)^{2}-2\left(4 G P\left(0,0,0, \frac{m_{4}}{s_{12}} ; x\right)-8 G P\left(0,0,0, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)-G P\left(0,0,1, \frac{m_{4}}{s_{12}} ; x\right)+7 G P\left(0,0,1, \frac{m_{4}}{m_{4}-s_{23}} ; x\right)\right.
$$

$$
+6\left(G P\left(0,0,1, \frac{m_{4} s_{12}-\sqrt{m_{4} s_{12} s_{23}\left(-m_{4}+s_{12}+s_{23}\right)}}{s_{12}\left(m_{4}-s_{23}\right)} ; x\right)+G P\left(0,0,1, \frac{m_{4} s_{12}+\sqrt{m_{4} s_{12} s_{23}\left(-m_{4}+s_{12}+s_{23}\right)}}{s_{12}\left(m_{4}-s_{23}\right)} ; x\right)\right)
$$

$$
\left.\left.\left.-10 G P\left(0,0,1, \frac{s_{23}}{s_{12}}+1 ; x\right)+4 G P(0,0,0,1 ; x)-G P(0,0,1,1 ; x)\right)-G P\left(\frac{s_{23}}{s_{12}}+1,1 ; x\right)^{2}-3 G P(0,1 ; x)^{2}+\cdots\right)\right)
$$

- Numerical agreement in Euclidean region found with Secdec [Borowka, Carter \& Heinrich]:
$G_{011111011}^{(2)}\left(x=1 / 3, s_{12}=-2, s_{23}=-5, m_{4}=-9\right)=-\frac{0.0191399}{\epsilon^{4}}-\frac{0.0292887}{\epsilon^{3}}+\frac{0.0239971}{\epsilon^{2}}+\frac{0.340233}{\epsilon}+0.870356+\mathcal{O}(\epsilon)$

Summary

- In LHC era multi-loop calculations are compulsory
- Two-loop automation is the next step: reduction substantially understood, library of MI mandatory but still missing
- Functional basis for large class of MI: Goncharov polylogarithms
- DE method is very fruitful for deriving MI in terms of GP
- Simplified DE method [Papadopoulos 'I4] (often) captures GP solution naturally, boundary constraints taken into account, very algorithmic

Recent application: planar double box

Outlook

- Application to non-planar graphs
- Application/extension to (some) diagrams with massive propagators

Summary

- In LHC era multi-loop calculations are compulsory
- Two-loop automation is the next step: reduction substantially understood, library of MI mandatory but still missing
- Functional basis for large class of MI: Goncharov polylogarithms
- DE method is very fruitful for deriving MI in terms of GP
- Simplified DE method [Papadopoulos 'I4] (often) captures GP solution naturally, boundary constraints taken into account, very algorithmic

Recent application: planar double box

Outlook

- Application to non-planar graphs
- Application/extension to (some) diagrams with massive propagators

Backup slides

Functional basis for (class of) MI

19
ϵ expansion:

$$
\begin{aligned}
\int d x_{1} \cdots d x_{n} G[\vec{x}, s, \epsilon] & =\int d x_{1} \cdots d x_{n} G_{\text {sing }}[\vec{x}, s, \epsilon]+\int d x_{1} \cdots d x_{n}\left(G[\vec{x}, s, \epsilon]-G_{\text {sing }}[\vec{x}, s, \epsilon]\right) \\
& =\sum_{k} \epsilon^{k}\left(\tilde{G}_{\text {sing }}^{(k)}[s]+\int d x_{1} \cdots d x_{n} G_{\text {finite }}^{(k)}[\vec{x}, s]\right)
\end{aligned}
$$

- The expansion in epsilon often leads to log's $(\cdots)^{a \epsilon}=1+a \epsilon \log (\cdots)+\frac{a^{2}}{2} \epsilon^{2} \log ^{2}(\cdots)+\cdots$
- (Some) integrals if parametrized correctly: $\sum \int$ (Rational function) $* \log ^{n}(\ldots)$

The above integrals (often) naturally lead to Goncharov Polylogarithms (GP) [Goncharov '98, '01, Remiddi \& Vermaseren '00]:

$$
G P(\underbrace{a_{1}, \cdots, a_{n}}_{\text {weight n }} ; x):=\int_{0}^{x} d x^{\prime} \frac{G P\left(a_{2}, \cdots, a_{n} ; x^{\prime}\right)}{x^{\prime}-a_{1}}, G P(; x)=1, G P(\underbrace{0, \cdots, 0}_{\mathrm{n} \text { times }} ; x)=\frac{1}{n!} \log ^{n}(x)
$$

$$
G P(\vec{a} ; x) G P(\vec{b} ; x)=\sum_{\vec{c}=\text { shuffle }\{\vec{a}, \vec{b}\}} G P(\vec{c} ; x), \quad \int_{0}^{x} d x^{\prime} \operatorname{Rational}\left(x^{\prime}\right) G P\left(a_{1}, \cdots, a_{n} ; x^{\prime}\right) \stackrel{*}{=} \sum_{i=0}^{n+1} \sum_{b_{0} \cdots b_{i}} \text { Rational }^{b_{0} \cdots b_{i}}(x) G P\left(b_{1}, \cdots, b_{i} ; x\right)
$$

Comparison of DE methods

Traditional DE method:

- Choose $\tilde{s}=\left\{f\left(p_{i} \cdot p_{j}\right)\right\}$ and use chain rule to relate differentials of (independent) momenta and invariants:

$$
p_{i} \cdot \frac{\partial}{\partial p_{j}} \mathrm{~F}(\tilde{s})=\sum_{k} p_{i} \cdot \frac{\partial \tilde{s}_{k}}{\partial p_{j}} \frac{\partial}{\partial \tilde{s}_{k}} \mathrm{~F}(\tilde{s})
$$

- Solve above linear equations:

$$
\frac{\partial}{\partial \tilde{s}_{k}}=g_{k}\left(\left\{p_{i} \cdot \frac{\partial}{\partial p_{j}}\right\}\right)
$$

Differentiate w.r.t. invariant(s) \tilde{s}_{k} :

$$
\begin{aligned}
\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon) & =g_{k}\left(\left\{p_{i} \cdot \frac{\partial}{\partial p_{j}}\right) \vec{G}^{M I}(\tilde{s}, \epsilon)\right. \\
& \stackrel{I B P}{=} \overline{\bar{M}}_{k}(\tilde{s}, \epsilon) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon)
\end{aligned}
$$

- Make rotation $\vec{G}^{M I} \rightarrow \overline{\bar{A}} \cdot \vec{G}^{M I}$ such that: $\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon)=\epsilon \overline{\bar{M}}_{k}(\tilde{s}) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon)$ [Henn ${ }^{\prime}$ I3]
- Solve perturbatively in ϵ to get GP's if $\tilde{s}=\left\{f\left(p_{i} \cdot p_{j}\right)\right\}$ chosen properly
- Solve DE of different \tilde{s}_{k}, to capture boundary condition

Simplified DE method:

- Introduce external parameter x to capture off-shellness of external momenta:
$G_{a_{1} \cdots a_{n}}(s, \epsilon)=\int\left(\prod_{i} d^{d} k_{i}\right) \frac{1}{D_{1}^{2 a_{1}}(k, p(x)) \cdots D_{n}^{2 a_{n}}(k, p(x))}$

$$
p_{i}(x)=p_{i}+(1-x) q_{i}, \quad \sum_{i} q_{i}=0, s=\left.\left\{p_{i} \cdot p_{j}\right\}\right|_{i, j}
$$

- Parametrization: pinched massive triangles should have legs (not fully constraining):

$$
q_{1}(x)=x p^{\prime}, q_{2}(x)=p^{\prime \prime}-x p^{\prime}, p^{\prime 2}=m_{1}, p^{\prime \prime 2}=m_{3}
$$

- Differentiate w.r.t. parameter x :

$$
\frac{\partial}{\partial x} \vec{G}^{M I}(x, s, \epsilon) \stackrel{I B P}{=} \overline{\bar{M}}(x, s, \epsilon) \cdot \vec{G}^{M I}(x, s, \epsilon)
$$

- Check if constant term $(\epsilon=0)$ of residues of homogeneous term for every $D E$ is an integer: I) if yes, solve DE by "bottom-up" approach to express in GP's; 2) if no, change parametrization and check DE again
- Boundary term almost always captured, if not: try $x \rightarrow 1 / x$ or asymptotic expnansion

Reduction by IBP

- Fundamental theorem of calculus: given integral, by IBP get linear system of equations

$$
\begin{aligned}
& G=\int\left(\prod_{i} d^{d} k_{i}\right) I \xrightarrow{\text { IBP identities: }} \int\left(\prod_{i} d^{d} k_{i}\right) \frac{\partial}{\partial k_{j}^{\mu}}\left(v^{\mu} I\right)=\text { Boundary term } \stackrel{D R}{=} 0 \\
& I=\frac{\operatorname{Num}(k, p)}{\overline{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}}} \quad D_{i}=c_{i j} k_{j} \cdot k_{l}+c_{i j} k_{j} \cdot p_{j}+m_{i}^{2}, \quad v \in\left\{k_{1}, \cdots, k_{n}, \text { external momenta }\right\}
\end{aligned}
$$

Reduction by IBP

- Fundamental theorem of calculus: given integral, by IBP get linear system of equations

$$
\begin{aligned}
& G=\int\left(\prod_{i} d^{d} k_{i}\right) I \xrightarrow{\text { IBP identities: }} \int\left(\prod_{i} d^{d} k_{i}\right) \frac{\partial}{\partial k_{j}^{\mu}}\left(v^{\mu} I\right)=\text { Boundary term } \stackrel{D R}{=} 0 \\
& I=\frac{\operatorname{Num}(k, p)}{D_{1}^{a_{1} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}}} \quad D_{i}=c_{i j} k_{j} \cdot k_{l}+c_{i j} k_{j} \cdot p_{j}+m_{i}^{2}, \quad v \in\left\{k_{1}, \cdots, k_{n}, \text { external momenta }\right\}
\end{aligned}
$$

In practice, generate numerator with negative indices such that w.l.o.g.:

$$
G_{a_{1} \cdots a_{n}}(s):=\int\left(\prod_{i} \frac{d^{d} k_{i}}{i \pi^{d / 2}}\right) \frac{1}{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{n}^{a_{n}}}, s=\left\{p_{i} \cdot p_{j}\right\}_{i, j}
$$

$\xrightarrow{\text { IBP identities: }} \sum_{a_{1}, \cdots a_{n}}$ Rational $^{a_{1} \cdots a_{n}}(s, d) G_{a_{1} \cdots a_{n}}(s)=0$
$\xrightarrow{\text { Solve: }} \quad G_{a_{1} \cdots a_{n}}(s)=\quad \sum \quad$ Rational $a_{a_{1} \ldots a_{n}}^{b_{1} \ldots b_{n}}(s, d) G_{b_{1} \cdots b_{n}}(s)$

$$
\left(b_{1} \cdots b_{n}\right) \in \text { Master Integrals }
$$

- Systematic algorithm: [Laporta '00]. Public implementations:AIR [Anastasiou \& Lazopoulos '04], FIRE [A. Smirnov '08] Reduze [Studerus '09, A. von Manteuffel \& Studerus 'I2-I3], LiteRed [Lee 'I2], ...
- Revealing independent IBP's: ICE [P. Kant 'I3]

Uniform weight solution of DE

- In general matrix in DE is dependent on ϵ :

$$
\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon)=\overline{\bar{M}}_{k}(\tilde{s}, \epsilon) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon)
$$

- Conjecture: possible to make a rotation $\vec{G}^{M I} \rightarrow \overline{\bar{A}} \cdot \vec{G}^{M I}$ such that:

$$
\begin{equation*}
\frac{\partial}{\partial \tilde{s}_{k}} \vec{G}^{M I}(\tilde{s}, \epsilon)=\epsilon \overline{\bar{M}}_{k}(\tilde{s}) \cdot \vec{G}^{M I}(\tilde{s}, \epsilon) \tag{Henn'I3}
\end{equation*}
$$

Explicitly shown to be true for many examples [Henn 'I3, Henn, Smirnov et al '|3-'I4]
If set of invariants $\tilde{s}=\left\{f\left(p_{i} \cdot p_{j}\right)\right\}$ chosen correctly: $\overline{\bar{M}}_{k}(\tilde{s})=\sum_{\text {poles } \tilde{s}_{k}^{(0)}} \frac{\overline{\bar{M}}_{k}^{\tilde{s}_{k}^{(0)}}}{\left(\tilde{s}_{k}-\tilde{s}_{k}^{(0)}\right)}$
Solution is uniform in weight of GP's:

$$
\begin{aligned}
& \vec{G}^{M I}(\tilde{s}, \epsilon)=P e^{\epsilon \int_{C\left[0, s_{s}\right]} \overline{\bar{M}}_{k}\left(\tilde{s}_{k}^{\prime}\right)} \vec{G}^{M I}(0, \epsilon)=\left(\mathbf{1}+\epsilon \int_{0}^{\tilde{s}_{k}} \overline{\bar{M}}_{k}\left(\tilde{s}_{k}^{\prime}\right)+\cdots\right) \underbrace{\vec{G}^{M I}(0, \epsilon)}_{\vec{G}_{0}^{M I}+\epsilon \vec{G}_{1}^{M I}+\cdots} \\
& =\underbrace{\vec{G}_{0}^{M I}}_{\text {weight i }}+\epsilon(\underbrace{\vec{G}_{1}^{M I}}_{\text {weight i+1 }}+\sum_{\text {poles } \tilde{s}_{k}^{(0)}} \overbrace{\left(\int_{0}^{\tilde{s}_{k}} \frac{d \tilde{s}_{k}^{\prime}}{\left(\tilde{s}_{k}^{\prime}-\tilde{s}_{k}^{(0)}\right)}\right)}^{G P\left(\tilde{s}_{k}^{(0)} ; \tilde{s}_{k}\right)} \overline{\bar{M}}_{k}^{\tilde{s}_{k}^{(0)}} \cdot \underbrace{\vec{G}_{0}^{M I}}_{\text {weight i }})+\cdots
\end{aligned}
$$

Reduction by IBP: one-loop triangle

One-loop triangle example:

$$
\begin{aligned}
& G_{a_{1} a_{2} a_{3}}=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{k^{2 a_{1}}\left(k+p_{1}\right)^{2 a_{2}}\left(k+p_{1}+p_{2}\right)^{2 a_{3}}}, p_{1}^{2}=m_{1}, p_{2}^{2}=m_{2},\left(p_{1}+p_{2}\right)^{2}=0 \\
& \text { IBP identities: } \\
& \int \frac{d^{d} k}{i \pi^{d / 2}} \frac{\partial}{\partial k^{\mu}}\left(v^{\mu} \frac{1}{k^{2 a_{1}}\left(k+p_{1}\right)^{2 a_{2}}\left(k+p_{1}+p_{2}\right)^{2 a_{3}}}\right)=0 \\
& \text { Choose } v=k, p_{1}, p_{2} \text { respectively } \\
& -a_{3} G_{-1+a_{1}, a_{2}, 1+a_{3}}-a_{2} G_{-1+a_{1}, 1+a_{2}, a_{3}}+\left(-2 a_{1}+d-a_{2}-a_{3}\right) G_{a_{1}, a_{2}, a_{3}}+m_{1} a_{2} G_{a_{1}, 1+a_{2}, a_{3}} \\
& a_{2} G_{-1+a_{1}, 1+a_{2}, a_{3}}+\left(a_{1}-a_{2}\right) G_{a_{1}, a_{2}, a_{3}}+a_{3}\left(G_{-1+a_{1}, a_{2}, 1+a_{3}}-G_{a_{1},-1+a_{2}, 1+a_{3}}+m_{2} G_{a_{1}, a_{2}, 1+a_{3}}\right) \\
& -m_{1} a_{2} G_{a_{1}, 1+a_{2}, a_{3}}-a_{1} G_{1+a_{1},-1+a_{2}, a_{3}}+a_{1} m_{1} G_{1+a_{1}, a_{2}, a_{3}} \\
& 0 \stackrel{v=p_{2}}{=} \\
& a_{3} G_{a_{1},-1+a_{2}, 1+a_{3}}+\left(a_{2}-a_{3}\right) G_{a_{1}, a_{2}, a_{3}}-m_{2} a_{3} G_{a_{1}, a_{2}, 1+a_{3}}-a_{2} G_{a_{1}, 1+a_{2},-1+a_{3}}+m_{2} a_{2} G_{a_{1}, 1+a_{2}, a_{3}} \\
& +a_{1}\left(G_{1+a_{1},-1+a_{2}, a_{3}}-G_{1+a_{1}, a_{2},-1+a_{3}}-m_{1} G_{1+a_{1}, a_{2}, a_{3}}\right)
\end{aligned}
$$

Solve:

Master integrals: $\quad\left\{G_{110}, G_{011}\right\}$

Triangle reduction by IBP: $\quad G_{111}=\frac{2(d-3)}{(d-4)\left(m_{1}-m_{2}\right)}\left(G_{011}-G_{110}\right)$

GP-structure of solution

- Assume for $m^{\prime}<m$ denominators:

$$
G_{a_{1} \cdots a_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)=\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad m^{\prime}<m
$$

- For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)=H(x, s, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)+\sum_{m^{\prime}=1}^{m-1} \sum_{b_{1}, \cdots b_{n}} \operatorname{Rational}^{\left(b_{1}, \cdots b_{n}\right)}(x, s, \epsilon) G_{b_{1} \cdots b_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)
$$

GP-structure of solution

Assume for $m^{\prime}<m$ denominators:

$$
G_{a_{1} \cdots a_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)=\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad m^{\prime}<m
$$

- For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)=H(x, s, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)+\sum_{m^{\prime}=1}^{m-1} \sum_{b_{1}, \cdots b_{n}} \operatorname{Rational}^{\left(b_{1}, \cdots b_{n}\right)}(x, s, \epsilon) G_{b_{1} \cdots b_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)
$$

dependence on invariants s
dependence on invarian
suppressed

$$
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)=H(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right)
$$

$$
=\sum_{\text {poles } x^{(0)}} \frac{r_{x^{(0)}}+\epsilon c_{x^{(0)}}(\epsilon)}{\left(x-x^{(0)}\right)} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right) \longrightarrow
$$

$$
\frac{\partial}{\partial x}\left(M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)\right)=M(x, \epsilon) \sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad M(x, \epsilon)=\prod_{\text {poles } x^{(0)}}\left(x-x^{(0)}\right)^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}
$$

GP-structure of solution

24

Assume for $m^{\prime}<m$ denominators:

$$
G_{a_{1} \cdots a_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)=\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad m^{\prime}<m
$$

- For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)=H(x, s, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)+\sum_{m^{\prime}=1}^{m-1} \sum_{b_{1}, \cdots b_{n}} \operatorname{Rational}^{\left(b_{1}, \cdots b_{n}\right)}(x, s, \epsilon) G_{b_{1} \cdots b_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)
$$

dependence on invariants s

$$
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)=H(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right)
$$

$$
=\sum_{\text {poles } x^{(0)}} \frac{r_{x x^{(0)}}+\epsilon c_{x^{(0)}}(\epsilon)}{\left(x-x^{(0)}\right)} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right) \longrightarrow
$$

$$
\frac{\partial}{\partial x}\left(M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)\right)=M(x, \epsilon) \sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad M(x, \epsilon)=\prod_{\text {poles } x^{(0)}}\left(x-x^{(0)}\right)^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}
$$

Formal solution:

$$
\begin{aligned}
M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon) & =\left(M * G_{a_{1} \cdots a_{n}}^{(m)}\right)_{x \rightarrow 0}+\sum_{n, l} \prod_{\text {poles } x^{(0)}} \int_{0}^{x} d x^{\prime}\left(x^{\prime-n+l \epsilon}\left(x^{\prime}-x^{(0)}\right)^{-\epsilon \epsilon_{x}(0)}\right)\left(\sum\left(x^{\prime}-x^{(0)}\right)^{-r_{x}(0)} \operatorname{Rational}\left(x^{\prime}\right) G P\left(\cdots ; x^{\prime}\right)\right) \\
& =\left(M * G_{a_{1} \cdots a_{n}}^{(m)}\right)_{x \rightarrow 0}+\sum_{\tilde{n}, l} \int_{0}^{x} d x^{\prime} x^{\prime-\tilde{n}+l \epsilon} I_{\tilde{n}, l}(\epsilon)+\sum_{k} \epsilon^{k} \prod_{\text {poles } x^{(0)}} \sum \int_{0}^{x} d x^{\prime} \underbrace{\left(x^{\prime}-x^{(0)}\right)^{-r_{x(0)} \operatorname{Rational}_{k}\left(x^{\prime}\right)} G P\left(\cdots ; x^{\prime}\right)}_{\text {Rational }_{k}\left(x^{\prime}\right) \text { if } r_{x^{(0)}} \in \mathbb{Z}}
\end{aligned}
$$

GP-structure of solution

24
Assume for $m^{\prime}<m$ denominators:

$$
G_{a_{1} \cdots a_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)=\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad m^{\prime}<m
$$

- For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)=H(x, s, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)+\sum_{m^{\prime}=1}^{m-1} \sum_{b_{1}, \cdots b_{n}} \operatorname{Rational}^{\left(b_{1}, \cdots b_{n}\right)}(x, s, \epsilon) G_{b_{1} \cdots b_{n}}^{\left(m^{\prime}\right)}(x, s, \epsilon)
$$

dependence on invariants s
suppressed

$$
\begin{aligned}
\frac{\partial}{\partial x} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon) & =H(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right) \\
& =\sum_{\text {poles } x^{(0)}} \frac{r_{x^{(0)}}+\epsilon c_{x^{(0)}}(\epsilon)}{\left(x-x^{(0)}\right)} G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)+\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right) \longrightarrow \\
\frac{\partial}{\partial x}\left(M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, \epsilon)\right) & =M(x, \epsilon) \sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right), \quad M(x, \epsilon)=\prod_{\text {poles } x^{(0)}}\left(x-x^{(0)}\right)^{-r_{x}(0)-\epsilon c_{x}(0)}(\epsilon)
\end{aligned}
$$

Formal solution:

$$
\begin{aligned}
M(x, \epsilon) G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon) & =\left(M * G_{a_{1} \cdots a_{n}}^{(m)}\right)_{x \rightarrow 0}+\sum_{n, l} \prod_{\text {poles } x^{(0)}} \int_{0}^{x} d x^{\prime}\left(x^{\prime-n+l \epsilon}\left(x^{\prime}-x^{(0)}\right)^{-\epsilon c_{x}(0)}\right)(\underbrace{\left.\sum\left(x^{\prime}-x^{(0)}\right)^{-r_{x}(0)} \operatorname{Rational}\left(x^{\prime}\right) G P\left(\cdots ; x^{\prime}\right)\right)}_{\text {boundary condition }} \\
& =\underbrace{\left(M * G_{a_{1} \cdots a_{n}}^{(m)}\right)_{x \rightarrow 0}}_{\tilde{n}, l}+\underbrace{\int_{0}^{x} d x^{\prime} x^{\prime-\tilde{n}+l \epsilon} I_{\tilde{n}, l}(\epsilon)}_{x^{-\tilde{n}+l \epsilon+1} \tilde{I}_{\tilde{n}, l}(\epsilon)}+\sum_{k} \epsilon^{k} \prod_{\text {poles }} \sum_{x^{(0)}} \underbrace{\int_{0}^{x} d x^{\prime} \underbrace{\left(x^{\prime}-x^{(0)}\right)^{-r_{x}(0)} \operatorname{Rational}_{k}\left(x^{\prime}\right)}_{\operatorname{Rational}_{k}\left(x^{\prime}\right) \text { if } r_{x(0)} \in \mathbb{Z}} G P\left(\cdots ; x^{\prime}\right)}_{\sum \operatorname{Rational}_{k}(x) G P(\cdots ; x) \text { if } r_{x}(0) \in \mathbb{Z}}
\end{aligned}
$$

MI expressible in GP's:

$$
G_{a_{1} \cdots a_{n}}^{(m)}(x, s, \epsilon)=\sum_{n, l} x^{-n+l \epsilon}\left(\sum \operatorname{Rational}(x) G P(\cdots ; x)\right)
$$

Fine print for coupled DE's: if the non-diagonal piece of $\epsilon=0$ term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of matrices $r_{x^{(0)}}$ are integers, then above "GP-argument" is still valid

Example of tradition DE method: one-loop triangle (1/2)

- Consider again one-loop triangles with 2 massive legs and massless propagators:

$$
G_{a_{1} a_{2} a_{3}}(\tilde{s})=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{k^{2 a_{1}}\left(k+p_{1}\right)^{2 a_{2}}\left(k+p_{1}+p_{2}\right)^{2 a_{3}}}, \quad p_{1}^{2}=m_{1}, p_{2}^{2}=m_{2},\left(p_{1}+p_{2}\right)^{2}=m_{3}=0
$$

$G_{111}=$

$$
\begin{gathered}
p_{i} \cdot \frac{\partial}{\partial p_{j}} \mathrm{~F}\left(m_{1}, m_{2}, m_{3}\right)=\sum_{k=1}^{3} p_{i} \cdot \frac{\partial \tilde{s}_{k}}{\partial p_{j}} \frac{\partial}{\partial \tilde{s}_{k}} \mathrm{~F}\left(m_{1}, m_{2}, m_{3}\right), \quad i, j \in\{1,2\} \\
\tilde{s}_{1}=p_{1}^{2}=m_{1}, \tilde{s}_{2}=p_{2}^{2}=m_{2}, \tilde{s}_{3}=\left(p_{1}+p_{2}\right)^{2}=m_{3}
\end{gathered}
$$

Four linear equations, of which three independent because of invariance under Lorentz transformation [Remiddi \& Gehrmann '00], in three unknowns: $\left\{\frac{\partial}{\partial m_{1}}, \frac{\partial}{\partial m_{2}}, \frac{\partial}{\partial m_{3}}\right\}$

- Solve linear equations: $\quad \frac{\partial}{\partial m_{k}}=g_{k}\left(p_{1} \cdot \frac{\partial}{\partial p_{1}}, p_{2} \cdot \frac{\partial}{\partial p_{2}}, p_{2} \cdot \frac{\partial}{\partial p_{1}}\right), \quad k=1,2,3$

$$
\frac{\partial}{\partial m_{1}} G_{111}=\frac{1-2 \epsilon}{\epsilon\left(m_{1}-m_{2}\right)^{2}}\left(G_{011}-\left(1+\epsilon\left(1-\frac{m_{2}}{m_{1}}\right)\right) G_{110}\right), \frac{\partial}{\partial m_{2}} G_{111}=\frac{\partial}{\partial m_{1}} G_{111}\left(m_{1} \leftrightarrow m_{2}, G_{011} \leftrightarrow G_{110}\right)
$$

Example of tradition DE method: one-loop triangle (2/2)

$$
\frac{\partial}{\partial m_{1}} G_{111}=\frac{1}{\epsilon^{2}\left(m_{1}-m_{2}\right)^{2}}\left(\left(-m_{2}\right)^{-\epsilon}+\left(-m_{1}\right)^{-\epsilon}(1+\epsilon)-\epsilon m_{2}\left(-m_{1}\right)^{-1-\epsilon}\right)=: F\left[m_{1}, m_{2}\right], \frac{\partial}{\partial m_{2}} G_{111}=F\left[m_{2}, m_{1}\right]
$$

$$
\begin{aligned}
& \text { Solve by usual subtraction procedure: } \quad F_{\text {sing }}\left[m_{1}, m_{2}\right]=\frac{-1}{\epsilon m_{2}}\left(-m_{1}\right)^{-1-\epsilon} \\
& G_{111}\left(m_{1}, m_{2}\right)=G_{111}\left(0, m_{2}\right)+\int_{0}^{m_{1}} F_{\text {sing }}\left[m_{1}^{\prime}, m_{2}\right]+\int_{0}^{m_{1}}\left(F\left[m_{1}^{\prime}, m_{2}\right]-F_{\text {sing }}\left[m_{1}^{\prime}, m_{2}\right]\right) \\
& \\
& =G_{111}\left(0, m_{2}\right)-\frac{\left(-m_{1}\right)^{-\epsilon}}{\epsilon^{2} m_{2}}+\int_{0}^{m_{1}}\left(\frac{\left(1-\left(-m_{2}\right)^{-\epsilon}\right) G P\left(;-m_{1}^{\prime}\right)}{\epsilon^{2}\left(m_{2}-m_{1}^{\prime}\right)^{2}}-\frac{\left(m_{2}-m_{1}^{\prime}\right) G P\left(;-m_{1}^{\prime}\right)+m_{2} G P\left(0 ;-m_{1}^{\prime}\right)}{\epsilon m_{2}\left(m_{2}-m_{1}^{\prime}\right)^{2}}+\mathcal{O}\left(\epsilon^{0}\right)\right) \\
& G_{111}\left(0, m_{2}\right)-\frac{\left(-m_{1}\right)^{-\epsilon}}{\epsilon^{2} m_{2}}+\left(\frac{m_{1}\left(1-\left(-m_{2}\right)^{-\epsilon}\right)}{\epsilon^{2} m_{2}\left(m_{1}-m_{2}\right)}+\frac{m_{1} G P\left(0 ;-m_{1}\right)}{\epsilon m_{2}\left(m_{2}-m_{1}\right)}\right)+\mathcal{O}\left(\epsilon^{0}\right) \\
& \text { Boundary condition follows by plugging in above solution in } \frac{\partial}{\partial m_{2}} G_{111}=F\left[m_{2}, m_{1}\right] \\
& \frac{\partial}{\partial m_{2}} G_{111}\left(0, m_{2}\right)=\frac{(1+\epsilon)}{\epsilon^{2}}\left(-m_{2}\right)^{-2-\epsilon} \rightarrow G_{111}\left(0, m_{2}\right)=\frac{-\left(-m_{2}\right)^{-1-\epsilon}}{\epsilon^{2}}+\underbrace{G_{111}(0,0)}_{\text {scaleless=0 }}=\frac{-\left(-m_{2}\right)^{-1-\epsilon}}{\epsilon^{2}}
\end{aligned}
$$

- Agrees with exact solution:

$$
G_{111}=\frac{c_{\Gamma}(\epsilon)}{\epsilon^{2}} \frac{\left(-m_{1}\right)^{-\epsilon}-\left(-m_{2}\right)^{-\epsilon}}{m_{1}-m_{2}}=\frac{c_{\Gamma}(\epsilon)}{m_{1}-m_{2}}\left(-\frac{1}{\epsilon} \log \left(\frac{-m_{1}}{-m_{2}}\right)+\mathcal{O}\left(\epsilon^{0}\right)\right)
$$

Open questions

- Is there a way to pre-empt the choice of x-parametrization without having to calculate the DE?
- Why are the boundary conditions (almost always) naturally taken into account?
How do the DE in the x-parametrization method relate exactly to those in the traditional DE method?
How to easily extend parameter x to whole real axis and extend the invariants to the physical region?

