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 Theory prediction up to NLO, full 

NNLO calculation might resolve the 

discrepancy

[CMS 2013]

 Mismatch between theory and 

experimental result

 NLO calculations fully automated 

thanks to NLO reduction methods to 

Master integrals (MI): (pentagons), 

boxes, triangles, bubbles and tadpoles



Motivation
3

 Theory prediction up to NLO, full 

NNLO calculation might resolve the 

discrepancy

[CMS 2013]

 Mismatch between theory and 

experimental result

Many numerical NLO tools: Formcalc [Hahn ’99], Golem (PV) [Binoth, Cullen et al ’08], Rocket 

[Ellis, Giele et al ’09], NJet [Badger, Biederman, Uwer & Yundin ’12], Blackhat (see D. Kosower

and D. Maitre talks) [Berger, Bern, Dixon et al ’12], Helac-NLO [Bevilacqua, Czakon et al ’12], 

MCFM (see K. Ellis’s talk), GoSam (see G. Heinrich’s talk), OpenLoops (see P. Maierhofer’s

talk), Recola (see S. Uccirati’s talk), MadGolem, MadLoop, MadFKS, aMC@NLO, …

Next step in automation: NNLO

Bottleneck: virtual-virtual two-loop corrections

 NLO calculations fully automated 

thanks to NLO reduction methods to 

Master integrals (MI): (pentagons), 

boxes, triangles, bubbles and tadpoles



Two-loop overview
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Introduction

 A finite basis of Master Integrals exists as well at two-loops:

 Master integrals may contain loop-dependent numerators as well (tensor integrals)

Coherent framework for reductions for two- and higher-loop amplitudes:

 In N=4 SYM [Bern, Carrasco, Johansson et al. ’09-’12]

 Maximal unitarity cuts in general QFT’s [Johansson, Kosower, Larsen et al. ’12-’13]

 Integrand reduction with polynomial division in general QFT’s (see P. Mastrolia and S. 

Badger talks) [Ossola & Mastrolia ’11, Zhang ’12, Badger, Frellesvig & Zhang ’12-’13, 

Mastrolia, Mirabella, Ossola & Peraro ’12-’13, Kleis, Malamos, Papadopoulos & Verheynen ’12]
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Introduction

Coherent framework for reductions for two- and higher-loop amplitudes:

 In N=4 SYM [Bern, Carrasco, Johansson et al. ’09-’12]

 Maximal unitarity cuts in general QFT’s [Johansson, Kosower, Larsen et al. ’12-’13]

 Integrand reduction with polynomial division in general QFT’s (see P. Mastrolia and S. 

Badger talks) [Ossola & Mastrolia ’11, Zhang ’12, Badger, Frellesvig & Zhang ’12-’13, 

Mastrolia, Mirabella, Ossola & Peraro ’12-’13, Kleis, Malamos, Papadopoulos & Verheynen ’12]

 By now reduction substantially understood for two- and (multi)-loop integrals

 Missing ingredient: library of Master integrals (MI) 

 Reduction to MI used for specific processes: Integration by parts (IBP) [Tkachov ’81, Chetyrkin

& Tkachov ’81]

 A finite basis of Master Integrals exists as well at two-loops:

 Master integrals may contain loop-dependent numerators as well (tensor integrals)



As solutions of differential equations (DE):

 Differentiation w.r.t. invariants (see V. Smirnov’s talk) [Kotikov ’91, Remiddi ’97, Caffo, 

Cryz & Remiddi ’98, Gehrmann & Remiddi ’00, Henn ’13, Henn, Smirnov et al ’13-’14]

 Differentiation w.r.t. externally introduced parameter [Papadopoulos ’14]

Many more: Dispersion relations, dualities, …

Methods for calculating MI 
5

Introduction

(method of current talk)

Using relations and/or (cut) identities:

 Dimensional shifting relations [Tarasov ’96, Lee ’10, Lee, V. Smirnov & A. Smirnov ’10]

 Loop-tree duality (see G. Rodrigo’s talk) [Catani, Gleisberg, Krauss, Rodrigo and Winter 

’08, Bierenbaum, Catani, Draggiotis, Rodrigo et al ’10-’14]

 Integral reconstruction with cuts and coproducts [Abreu, Britto, Duhr & Gardi ’14]

Rewriting of integrals in different representations:

 Parametric: Feynman/alpha parameters            Sector decomposition

 Mellin-Barnes and nested sums (see C. Raab and J. Gluza talks) [Bergere & Lam ’74, 

Ussyukina ’75, V. Smirnov ’99, Tausk ’99, Vermaseren ’99, Blumlein et al ’99,…]



DE method for MI
 Assume one is interested in a multi-loop Feynman integral:
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DE method [Kotikov ’91, Remiddi ’97, 

Caffo, Cryz & Remiddi ’98, 

Gehrmann & Remiddi ’00 , 

Henn ’13, Henn, Smirnov 

et al ’13-’14]

 Differentiate w.r.t. external momenta and reduce by IBP to get DE:

IBP identities solve



DE method for MI
 Assume one is interested in a multi-loop Feynman integral:

6

DE method [Kotikov ’91, Remiddi ’97, 

Caffo, Cryz & Remiddi ’98, 

Gehrmann & Remiddi ’00 , 

Henn ’13, Henn, Smirnov 

et al ’13-’14]

 Differentiate w.r.t. external momenta and reduce by IBP to get DE:

 Boundary condition found (among other ways) by solving DE’s in other invariants

 If set of invariants  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } correct:

Uniform 

Goncharov

Polylogarithm

(GP) solution

[Henn ’13] Conjecture: by rotation

Comments: [Argeri et al ’14, Gehrmann et al ’14, Hehn et al ’14]

IBP identities solve
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x-Parametrization
 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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Simplified 

DE method
[Papadopoulos ’14]

Massless external legs:

Massive external legs:
x-parametrize

or

x=1
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Simplified 

DE method
[Papadopoulos ’14]

x-parametrize

x=1

x-parametrize

or

General:

Massless external legs:

Massive external legs:

x=1



x-Parametrization
 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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Simplified 

DE method
[Papadopoulos ’14]

 Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants 

and reduce r.h.s. by IBP identities:

x-parametrize

x=1

x-parametrize

or

General:

Massless external legs:

Massive external legs:

x=1



Example: one-loop triangle
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Simplified 

DE method

Parametrize 𝑝2 off-

shellness with x



Example: one-loop triangle

 Differentiate to x and use IBP to reduce:

9

Simplified 

DE method

Parametrize 𝑝2 off-

shellness with x

 Agrees with expansion of exact solution:

 Subtracting the singularities and expanding the finite part leads to:



Bottom-up approach

 In practice individual DE’s of MI are of the form:
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Simplified 

DE method

Bottom-up: 

 Solve first for all MI with least amount of denominators 𝑚0 (these are often 

already known to all orders in 𝜖 or often calculable with other methods)

 After solving all MI with 𝑚 denominators (𝑚 ≥ 𝑚0), solve all MI with 𝑚+ 1
denominators

 Notation: upper index “(𝑚)” in integrals 𝐺{𝑎1…𝑎𝑛}
(𝑚)

denotes amount of 

positive indices, i.e. amount of denominators/propagators

 Often:
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Simplified 

DE method

main criteria for choice of x-parametrization: constant term (𝜖 = 0)
of residues of homogeneous term for every DE needs to be an integer:

For all MI that we have calculated, the criteria could be easily met. Often 

it was enough to choose the external legs such that the corresponding 

massive MI triangles (found by pinching external legs) are as follows: 

Choice of x-parametrization and boundary term
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Simplified 

DE method

main criteria for choice of x-parametrization: constant term (𝜖 = 0)
of residues of homogeneous term for every DE needs to be an integer:

For all MI that we have calculated, the criteria could be easily met. Often 

it was enough to choose the external legs such that the corresponding 

massive MI triangles (found by pinching external legs) are as follows: 

 Boundary condition almost always captured by singular subtraction in bottom-up approach

 Except in three cases, all loop integrals we have come across:

Not well understood yet why this is so!

 If not zero, boundary condition                     may be found (in principle) by plugging in 

special values for x, via analytical/regularity constraints, asymptotic expansion in 𝑥 → 0 or 

some modular transformation like 𝑥 → 1/𝑥

Boundary condition:

Choice of x-parametrization and boundary term



Outline

 Introduction and traditional differential 

equations method to integration

Simplified differential equations method

Application



12



Two-loop planar double-box

 On-shell legs:                                   [planar: V. Smirnov ’99, V. Smirnov & Veretin ’99, non-planar:

Tausk ’99,  Anastasiou, Gehrmann, Oleari, Remiddi & Tausk ’00]

 One off-shell leg (pl.+non-pl.):                                         [Gehrmann & Remiddi ’00-’01]

 Two off-shell legs with same masses:                                        (see A. von Manteuffel’s talk) 

[planar: Gehrmann, Tancredi & Weihs ’13, non-planar: Gehrman, Manteuffel, Tancredi & Weihs ’14]

 Two off-shell legs with different masses:                                         (see V. Smirnov’s talk) 

[planar: Henn, Melnikov & Smirnov ’14, non-planar: Caola, Henn, Melnikov & Smirnov ’14]

13

Application

Require 4-point two-loop MI with 2 off-shell legs and massless internal legs (at LHC light-

flavor quarks are massless to good degree): diboson production

Example of planar diagrams:



Double planar box: topologies
14

Application

Opposite mass topology              28 MI

1st Adjacent mass topology           31 MI

2nd Adjacent mass topology           29 MI

pinched massive 

triangle

condition for x-parametrization:



Double planar box: Parametrization
15

Application

Opposite mass topology              28 MI

1st Adjacent mass topology           31 MI

2nd Adjacent mass topology           29 MI



Solutions in GP
16

Application

 Numerical agreement in Euclidean region found with Secdec [Borowka, Carter & Heinrich]: 

solution of DE
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Summary

Summary 

and 

Outlook

Outlook

 In LHC era multi-loop calculations are compulsory

 Two-loop automation is the next step: reduction substantially 

understood, library of MI mandatory but still missing

 Functional basis for large class of MI: Goncharov polylogarithms

 DE method is very fruitful for deriving MI in terms of GP

 Simplified DE method [Papadopoulos ’14] (often) captures GP solution 

naturally, boundary constraints taken into account, very algorithmic

 Recent application: planar double box

 Application to non-planar graphs

 Application/extension to (some) diagrams with massive propagators
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Functional basis for (class of) MI
19

Introduction

*

GP’s are fundamental building blocks for many MI

DE method takes advantage of this fact

*Assuming convergence of integral, 

i.e. after subtracting singularities

 𝜖 expansion:

 The expansion in epsilon often leads to log’s

 (Some) integrals if parametrized correctly: 

 The above integrals (often) naturally lead to Goncharov Polylogarithms (GP) [Goncharov

’98, ’01, Remiddi & Vermaseren ’00]:



Comparison of DE methods
20

Simplified 

DE method

Simplified DE method:

 Introduce external parameter x to capture 

off-shellness of external momenta:

 Differentiate w.r.t. parameter x:

 Parametrization: pinched massive triangles 

should have legs (not fully constraining):

 Check if constant term (𝜖 = 0) of residues of 

homogeneous term for every DE is an integer:

1) if yes, solve DE by “bottom-up” 

approach to express in GP’s; 2) if no, 

change parametrization and check DE again

 Boundary term almost always captured, if 

not: try 𝑥 → 1/𝑥 or asymptotic expnansion

Traditional DE method:

 Solve perturbatively in 𝜖 to get GP’s if 

 𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen properly

 Choose  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } and use chain rule 

to relate differentials of (independent) 

momenta and invariants: 

 Differentiate w.r.t. invariant(s)  𝑠𝑘:

 Solve above linear equations: 

 Make rotation                          such that: 

[Henn ’13]

 Solve DE of different  𝑠𝑘′ to capture 

boundary condition



Reduction by IBP
 Fundamental theorem of calculus: given integral, by IBP get linear system of equations

21

Introduction
[Tkachov ’81, 

Chetyrkin & 

Tkachov ’81]

IBP identities:



Reduction by IBP
 Fundamental theorem of calculus: given integral, by IBP get linear system of equations
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Introduction

 Systematic algorithm: [Laporta ’00]. Public implementations: AIR [Anastasiou & Lazopoulos ’04 ],  FIRE 

[A. Smirnov ’08] Reduze [Studerus ’09,  A. von Manteuffel & Studerus ’12-13], LiteRed [Lee ’12], …

 Revealing independent IBP’s:  ICE [P. Kant ’13]

In practice, generate numerator with negative indices such that w.l.o.g.:

[Tkachov ’81, 

Chetyrkin & 

Tkachov ’81]

IBP identities:

Solve:

IBP identities:



Uniform weight solution of DE
 In general matrix in DE is dependent on ϵ:

22

DE method

 Conjecture: possible to make a rotation                         such that:

 Explicitly shown to be true for many examples [Henn ’13, Henn, Smirnov et al ’13-’14]

 If set of invariants  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen correctly:

 Solution is uniform in weight of GP’s:

[Henn ’13]



Reduction by IBP: one-loop triangle

One-loop triangle example:

23

Introduction

IBP identities:

Choose 𝑣 = 𝑘, 𝑝1, 𝑝2 respectively

Solve:

Master integrals:

Triangle reduction by IBP:
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Simplified 

DE method

GP-structure of solution
 Assume for 𝑚′ < 𝑚 denominators:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:



24

Simplified 

DE method

GP-structure of solution

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:



24

Simplified 

DE method

GP-structure of solution

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

 Formal solution:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:



GP-structure of solution

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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Simplified 

DE method

 Formal solution:

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

MI expressible in GP’s:

Fine print for coupled DE’s: if the non-diagonal piece of 𝜖 = 0 term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of 

matrices 𝑟𝑥(0) are integers, then above “GP-argument” is still valid



Example of tradition DE method: one-loop 
triangle (1/2)

 Consider again one-loop triangles with 2 massive legs and massless propagators: 

25

DE method

 General function:

 Four linear equations, of which three independent because of invariance under 

Lorentz transformation [Remiddi & Gehrmann ’00], in three unknowns: 

 Solve linear equations: 
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DE method

 Agrees with exact solution:

 Solve by usual subtraction procedure:

 Boundary condition follows by plugging in above solution in

Example of tradition DE method: one-loop 
triangle (2/2)
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Open questions

 Is there a way to pre-empt the choice of x-parametrization without 

having to calculate the DE?

 Why are the boundary conditions (almost always) naturally taken 

into account?

 How do the DE in the x-parametrization method relate exactly to 

those in the traditional DE method?

 How to easily extend parameter x to whole real axis and extend 

the invariants to the physical region?

Summary 

and 

Outlook


