### **On Future ATLAS Silicon Strip Sensors**



Eda Yildirim, DESY Student Seminar June 20, 2013









# **The ATLAS Detector**



- ATLAS is one of the two general purpose detectors at the Larger Hadron Collider (LHC)
- Inner detector
  - used to track charged particles and find their momentum
  - consists of silicon (pixel and strip) detectors and drift-tube tracker (with transition radiation)
  - closest to the collision region
  - experience the highest radiation levels



# **High Luminosity LHC**

- In ~10 years from now, it is planned to upgrade LHC to High Luminosity LHC [1]
  - Inner detector will be replaced with silicon pixel and silicon microstrip system
  - LHC luminosity will be increased to 5x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> which will lead to increased radiation damage in the inner detector









## **Silicon Microstrip Sensors**



V<sub>d</sub> : depletion voltage E : Electric field t : thickness

#### ATLAS12 miniature test sensors



| Туре               | n in p    |
|--------------------|-----------|
| Collects           | electrons |
| Thickness          | 320 um    |
| Depletion Voltage  | -170 V    |
| Bias Voltage       | -500 V    |
| Outer dimension    | 10x10 mm  |
| Active area        | ~ 8x8 mm  |
| Number of channels | 104       |
| Pitch size         | 74.5 um   |



## **Silicon Microstrip Sensors**



ATLAS12 miniature test sensors



| Туре               | n in p    |
|--------------------|-----------|
| Collects           | electrons |
| Thickness          | 320 um    |
| Depletion Voltage  | -170 V    |
| Bias Voltage       | -500 V    |
| Outer dimension    | 10x10 mm  |
| Active area        | ~ 8x8 mm  |
| Number of channels | 104       |
| Pitch size         | 74.5 um   |

Eda Yildirim | Student Seminar | June 20, 2013 | Page 5



## **Lorentz Angle**



where  $v_s$  is drift velocity, E is electric field and T is the absolute temperature.

Lorentz Angle needs to be taken into account in order to reconstruct track information correctly

Lorentz angle estimated for ATLAS12 silicon microstrip sensor (B= 1T, T= -25°C)

•  $\theta_L \sim 3.80$  degrees



### **Lorentz Angle in Irradiated Silicon Sensor**



where  $v_s$  is drift velocity, E is electric field and T is the absolute temperature.

Drift velocity and depletion voltage will change with irradiation

aluminum

The effect of radiation damage on Lorentz angle is not well understood







Eda Yildirim | Student Seminar | June 20, 2013 | Page 8





Eda Yildirim | Student Seminar | June 20, 2013 | Page 9













# Setup: Device Under Test (DUT)



# **Setup: Device Under Test (DUT)**

#### > Cooling:

- We will use irradiated sensors
- To avoid leakage current
- To prevent annealing
- Cooling down to 25 degrees using silicone oil
- Strip sensor holder
  - Needs good thermal conductivity

![](_page_14_Figure_8.jpeg)

![](_page_14_Figure_9.jpeg)

![](_page_14_Picture_11.jpeg)

Cooling Plate

Strip sensor holder

# **Setup: Device Under Test (DUT)**

#### > Box:

- To avoid humidity
- Flush inside with N<sub>2</sub>
- Cover with styrofoam

Should be rotatable

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

# **Setup: EUDET Beam Telescope**

## > EUDET Telescope:

- Consists of 6 pixel sensors
- Pointing resolution ~2 um without any DUT
- In our case without DUT

intrinsic resolution ~4um

![](_page_16_Picture_6.jpeg)

![](_page_16_Figure_7.jpeg)

Eda Yildirim | Student Seminar | June 20, 2013 | Page 17

![](_page_16_Picture_9.jpeg)

# **Setup: The Magnet**

#### > PCMAG:

- B field up to 1Tesla
- Measurement will be done in various magnetic fields
  - 0.25T, 0.50T, 0.75T, 1.00T
- Extrapolate results to 2T

Magnetic field in ATLAS Inner detector

![](_page_17_Figure_7.jpeg)

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

Eda Yildirim | Student Seminar | June 20, 2013 | Page 18

![](_page_17_Picture_11.jpeg)

# Setup

- > Beam
- Magnetic field
- > Track of particle
- Device Under Test (DUT)

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_8.jpeg)

### **Measurements**

- > DUT will be read by Alibava
- Telescope planes will be read by Telescope DAQ
- One needs to check synchronization between Alibava data and telescope data

![](_page_19_Figure_4.jpeg)

# **Synchronization Check**

- Synchronization was checked in May 2012
- Setup of Charles University (Prague) was used with Alibava readout system.

![](_page_20_Picture_3.jpeg)

#### > First test beam setup

![](_page_20_Picture_5.jpeg)

Eda Yildirim | Student Seminar | June 20, 2013 | Page 21

> No B field!

Prague Sensor:

| Туре                | ninp   |
|---------------------|--------|
| Thickness           | 300 µm |
| Depletion Voltage   | 80 V   |
| <b>Bias Voltage</b> | 100 V  |
| Number of channels  | 131    |
| Pitch size          | 80 µm  |

# **Synchronization Check**

- > Hits on DUT
- Average cluster size = 1.16

![](_page_21_Figure_3.jpeg)

Tracks on DUT found by using only two telescope sensors (will be improved)

![](_page_21_Figure_5.jpeg)

![](_page_21_Figure_6.jpeg)

# **Telescope in Magnetic Field**

![](_page_22_Figure_1.jpeg)

### **Telescope in Magnetic Field: Hit Maps**

#### E= 4GeV, B=0

#### E= 4GeV, B=1T

![](_page_23_Figure_3.jpeg)

### **Telescope in Magnetic Field: Correlation Plots**

#### E= 4GeV, B=0

#### E= 4GeV, B=1T

![](_page_24_Figure_3.jpeg)

## **Telescope in PCMAG**

- Because of the cooling pumps, the magnet vibrates. One needs to check if this vibration affects resolution of the telescope
- We took data with/without vibration and compared the alignment and resolutions on each sensor.

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

## **Telescope in PCMAG**

- Because of the cooling pumps, the magnet vibrates. One needs to check if this vibration affects resolution of the telescope
- We took data with/without vibration and compared the alignment and resolutions on each sensor.

|       |      | run357 (vibration on) |             | run360 (vibration off) |             |
|-------|------|-----------------------|-------------|------------------------|-------------|
| Plane | Axis | Resolution (um)       | ResErr (um) | Resolution (um)        | ResErr (um) |
| 0     | X    | 3.49                  | 0.02        | 3.55                   | 0.02        |
| 0     | Y    | 3.50                  | 0.02        | 3.54                   | 0.02        |
| 1     | X    | 2.91                  | 0.01        | 2.92                   | 0.01        |
| 1     | Y    | 2.97                  | 0.01        | 2.93                   | 0.01        |
| 2     | X    | 3.69                  | 0.02        | 3.77                   | 0.02        |
| 2     | Y    | 3.64                  | 0.02        | 3.79                   | 0.02        |
| 3     | X    | 3.78                  | 0.02        | 3.95                   | 0.02        |
| 3     | Y    | 3.78                  | 0.02        | 3.95                   | 0.02        |
| 4     | Х    | 2.93                  | 0.01        | 2.96                   | 0.01        |
| 4     | Y    | 2.95                  | 0.01        | 3.00                   | 0.01        |
| 5     | X    | 3.59                  | 0.02        | 3.74                   | 0.02        |
| 5     | Y    | 3.62                  | 0.02        | 3.73                   | 0.02        |

![](_page_26_Picture_4.jpeg)

# **Summary & Future Plans**

- Setup is ready
- > We confirmed that
  - Alibava and telescope DAQ can be synchronized
  - Vibration of the magnet do not affect our measurement
  - Everything works with magnetic field
- > We are ready to measure Lorentz angle!

#### August Test Beam:

- We will have the latest ATLAS strip test sensors
- Lorentz angle measurement with non-irradiated sensors

#### **Future Test Beams**

- Irradiated sensor with B field
  - Various radiation doses

up to 2 x  $10^{15}$  n<sub>eq</sub>/cm<sup>2</sup>

- Various magnetic fields
  - 0.25T, 0.50T, 0.75T, 1.00T

![](_page_27_Picture_16.jpeg)

# **Thanks!**

- Tony Affolder (University of Liverpool)
- Henry Arpe (FEA)
- Jose Bernabeu (Alibava Systems)
- Martin Bessner
- > Früd Braren
- > Cecile Deterre
- > Ralf Diener (FLC)
- Zdenek Dolezal (Charles University)
- Doris Eckstein (CMS)
- Thomas Eichhorn (CMS)
- Joachim Erfle (University of Hamburg)

- > Marco Filipuzzi
- Nils Flaschel
- Peter Goettlicher (FEB)
- Ingrid Gregor
- > Dieter Habercorn
- > Phillip Hamnett
- Ricardo Marco Hernandez (Alibava Systems)
- Tomas Jindra (Charles University)
- Alexandra Junkes (University of Hamburg)
- Peter Kodys (Charles University)
- > Ulrich Koetz

- > Torsten Kuelper
- Carlos Lacasta (Alibava Systems)
- Denys Lontkovskyi (ZEUS)
- Inna Makarenko (ZEUS)
- Carsten Muhl (CMS)
- Walter Ockenfels (University of Bonn)
- Ulrich Parfezall (University of Freiburg)
- Hanno Perrey (CMS)
- > Richard Peschke

- > Volker Prahl (FLC)
- Igor Rubinsky
- Ralph Schaefer
- > Hale Sert (FLC)
- Simon Spannagel (CMS)
- > Marcel Stanitzki
- > Kerstin Tackmann
- Ilya Tsurin (University of Liverpool)
- Jens Weingarten (University of Goettingen)
- Manfred Zimmer (FEA)

![](_page_28_Picture_42.jpeg)

## Thank You !

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

# **Magnetic Field**

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)