

An engineering prototype for a highly granular hadron calorimeter for a future linear collider

Oskar Hartbrich

Student Seminar on Detector Development, August 15th 2013

Universität Hamburg

BERGISCHE UNIVERSITÄT WUPPERTAL

Overview

- International Linear Collider
 - Accelerator
 - Physics
- International Large Detector
- Calorimetry at a future linear collider
 - Particle Flow Algorithms
 - Calorimeter Design
- The CALICE collaboration
- The CALICE AHCAL
 - Scintillator tiles / Silicon Photomultipliers
- Current status of the AHCAL prototype
 - Design
 - Electronics
 - Current Results

International Linear Collider

The International Linear Collider (ILC)

- e+e- linear collider, $\sqrt{s} = 500$ GeV (1 TeV upgrade included in designs)
- 31km superconducting cavities
 - DESY development (TESLA)
 - Market-ready (e.g. XFEL)

Physics at the ILC

- Higgs Boson found at LHC
- Really SM Higgs?
 - Coupling proportional to mass?
 - Absolute branching ratios
- ILC is the perfect tool for precision Higgs measurements!
- Capabilities in BSM searches, W, Z and top precision measurements...

LHC: $3000 \text{ fb}^{-1} \text{ pp at } \sqrt{s} = 14 \text{ TeV}$ HLC: $+ 250 \text{ fb}^{-1} \text{ e}^+\text{e}^- \text{ at } \sqrt{s} = 250 \text{ GeV}$ ILC: $+ 500 \text{ fb}^{-1} \text{ e}^+\text{e}^- \text{ at } \sqrt{s} = 500 \text{ GeV}$ ILCTeV: $+ 1000 \text{ fb}^{-1} \text{ e}^+\text{e}^- \text{ at } \sqrt{s} = 1 \text{ TeV}$

The International Large Detector

- Two detector concepts for ILC, SiD & ILD
 - Only one interaction point in linear collider
 - -> Push-pull operation

International Large Detector (ILD) design:

- Large central TPC + Si vertex detectors
- Calorimeters inside superconducting magnet

Calorimetry at a future linear collider

- Design goal: differentiate full hadronic
 W and Z decays from jet energy reconstruction
- Needs jet energy resolution $\sigma(E_{jet})/E_{jet} \approx 3-4\%$ for $E_{jet}=40-500$ GeV
- Classic hadronic calorimeter: $\sigma(E_{jet})/E_{jet} \approx 60\%/\sqrt{E(GeV)} \rightarrow \sigma(E_{jet})/E_{jet} \approx 10\%$ for $E_{jet} = 50$ GeV
- ILD approach: Particle Flow Algorithms

Particle Flow Algorithm

- Momentum resolution in trackers is orders of magnitude better than energy resolution in calorimeters
- Idea: Use detector with best resolution for each particle in a jet
 - Use tracks for charged particles (62% of jet content)
 - Neutral particles are measured in calorimeter (27% photons, 10% neutral hadrons)
- Problem: confusion of charged and neutral calorimeter depositions (overlapping showers)
 - Associate tracks to calorimeter hits
 - Needs very high calorimeter granularity
 - -> Imaging calorimetry

7/27

CALICE Collaboration

- CALICE: CAlorimeters for a LI near Collider Experiment
- International effort to explore different options for ILC calorimeters
- Electromagnetic Calorimeters (ECAL):
 - W absorbers
 - Readout options:
 - Silicon (5*5mm² pads)
 - Scintillator (5*45mm² strips)
- Hadronic Calorimeters (HCAL):
 - Fe absorbers (W under consideration for higher energy collider)
 - Readout options:
 - Gaseous (1*1cm2)
 - RPCs, GEMs (1-2 bit digitization)
 - Scintillator (3*3cm2)
 - 12bit digitization

CALICE AHCAL

- CALICE Analog Hadronic CALorimeter (AHCAL)
- Based on Scintillator tiles (3*3cm²)
 - Individual Silicon Photomultiplier (SiPM) per cell
- 1m³ physics prototype used in different testbeams 2006-2012

Signal Sampling

- Scintillator generates light from incident particles (ionisation)
 - Wavelength shifting fiber collects light onto SiPM

Silicon Photomultiplier (SiPM):

- Multi pixel array of Geiger-mode photodiodes
- Single photons can fire pixels
- Smaller, cheaper, lower bias voltage at similar gains compared to PMTs
- Non-linear, gain is temperature dependent
 - Calibration required
 - -> Single photon spectra

3

2

aoua.inoor

AHCAL Performance

- Very successful testbeam campaigns using large range of particles and energies
 - Many published results
 - Valuable input to simulation packages

-> Scintillator-SiPM readout is a feasible option for a highly granular calorimeter

- Physics prototype not scalable to full ILD size
 - Readout and power supply electronics completely external
 - Power dissipation not optimised
- Development of an engineering prototype
 - Meeting all ILD constraints
 - Fully integrated electronics

The AHCAL Engineering Prototype

32 segments (16 in ϕ , 2 in z)

- 40 layers per half-octant
- 3 *slabs* of 6 PCBs per layer
- 8 Millions of channels! 50000 boards
- Challenge: readout fully integrated into layers
 - Readout, power, calibration etc.
 - Tight space between absorbers
 - No active cooling inside layers

Readout Chip

- SPIROC ASIC family designed by OMEGA (France)
- Provides readout for 36 SiPMs
 - Individual bias voltage per channel
 - 12bit dual gain ADC
 - Auto trigger
 - External validation mode
 - 12bit TDC (<1ns resolution)
 - Low power dissipation (25uW/channel)

 \rightarrow Power pulsing (<1% duty cycle)

The HCAL Base Unit (HBU)

- ♦ 4 ASICs, 144 channels per PCB
- Extra thin PCB with cutouts for ASICs
- Integrated SiPM calibration system
 - Individual LED per channel
- One Central Interface Board (CIB) per layer
 - Power board
 - Calibration and trigger controller
 - DAQ interface
- 5 HBUs equipped and calibrated in DESY electron beam
 - 8 fresh HBUs to be equipped with tiles
 - Flexible in choice of tiles
 - New developments by Uni HH, ITEP
 - Rapid SiPM development progression

HBU

CIB

The road to a full prototype

Operation modes to be tested:

- Single HBUs in lab and testbeam
- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2D extension)
- Multiple layers in one detector (3D extension)

Commissioning

- Calibration and setup of bias for each channel
- Configuration of preamplifiers to equalise channel gain after digitisation
 - Should lead to homogenous MIP response on ADC scale
- Set autotrigger thresholds
 - Self triggered operation, data below threshold is lost
- MIP calibration

Scalability of procedures is very important

Number of events

10000

8000

6000

4000

2000

The road to a full prototype

Operation modes to be tested:

Single HBUs in lab and testbeam

Multiple boards in one slab (1D extension)

- Multiple HBUs in one layer (2D extension)
- Multiple layers in one detector (3D extension)

Full Slab Test

Full slab assembled in lab

- 6 serial HBUs
- Readout & calibration system tests
- Readout unhindered by 2.2m signal path

The road to a full prototype

Operation modes to be tested:

- Single HBUs in lab and testbeam
- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2D extension)
- Multiple layers in one detector (3D extension)

CERN Layer (2x2)

- First setup with parallel slabs
 - Still single layer, single CIB
 - 576 channels
- CERN hadron testbeam
 - Muons, Pions (behind 3.8λ)
 - Physics: timing of hadron showers
 - First beam test of SPIROC2b TDC

20/27

The road to a full prototype

Operation modes to be tested:

- Single HBUs in lab and testbeam
- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2+1D extension)
- Multiple layers in one detector (3D extension)

Multilayer Setup

- At the moment: no hadron beams available
- Start in DESY beam (EM showers)
 - Using available ILD prototype absorber
- Synchronous operation of multiple layers requires DAQ rework
 - Single layer operated via USB and Labview
 - Local clock generated on CIB
 - Multilayer needs central clock generation
 - Needs distribution of fast signals
 - Hardware from Uni Mainz
 - First step: data via USB, fast signals via HDMI
 - Next step: Data also via HDMI, dedicated data aggregation hardware
 - New DAQ software
 - Still Labview, but modular and faster

22/27

Multilayer Test Beam

- Operation of 5 synchronous layers
 - Fully self-triggered
 - Airstack for MIP calibration
 - ILD absorber for first calorimetric data
 - All mechanics already in ILD format!

Multilayer MIPs

Synchronous MIP calibration through several layers:

The road to a full prototype

Operation modes to be tested:

- Single HBUs in lab and testbeam
- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2+1D extension)
- Multiple layers in one detector (3D extension)

Operation is established, gradually increase number of layers!

Ingredients

Summary

- The CALICE collaboration develops calorimeters for a future linear collider
- The AHCAL is a scintillator-SiPM based concept for a hadronic calorimeter
 - Physics performance has been proven in various testbeam campaigns
- Now we are developing a prototype that is scalable to a full detector
 - The first multilayer setups have recently been tested in the DESY beams

Outlook

- Number of layers will increase until the end of this year
 - 4 weeks of beam time end of this year
 - Get first real calorimetric data
- DAQ developments will continue
- We will be ready once hadron beams are coming back!