

Verwaltung von Dateien und Datenbanken im Grid mit SRB und OGSA-DAI

Kathrin Peter, Zuse-Institut Berlin

Datenmanagement Workshop Berlin, 18-19.05.2006

Inhalt

- MediGRID Projekt
- Anwendungen in MediGRID
- Architektur und Datenmanagement
- Verwendung von SRB und OGSA-DAI
- Anforderungen und nächste Schritte

MediGRID

- Anwender aus Bioinformatik, medizinischer Bildverarbeitung und klinischer Forschung.
- Ziel: Arbeitsplattform für Biomedizinische Forschung am Beispiel ausgewählter Anwendungen
- Momentan keine gemeinsame Datennutzung wegen Heterogenität der Anwendungen und der Daten.
- Perspektivisch Vernetzung medizinischer und biologischer Daten.
- Aufgaben:
 - Globale Datenspeicherung auf verteilten heterogenen Ressourcen
 - Bereitstellung von Speicherplatz
 - Bereitstellung und transparenter Zugriff auf Datenbanken
 - Bereitstellung eines Metadatenmanagementsystems
 - Unterstützung der Anwender bei der Organisation und Speicherung großer Datenmengen

Bundesministeriun für Bildung und Forschung

Elektronische Patientenakte

- Patientenakte in computerlesbarer Form.
- Sammlung und Dokumentation aller Daten zur Gesundheitsversorgung eines Patienten, z.B. Befunde, Behandlungen.
- Die gewaltige Datenflut benötigt geeignete Mechanismen zur Verwaltung der Daten.
- Sortier- und Suchkriterien zur Navigation und zur Unterstützung einer multiplen Nutzung der Daten.
- Erfüllung strenger Sicherheitsanforderungen zur Langzeitarchivierung, Zugriffskontrolle und kryptografischen Sicherung der Kommunikationswege und Speicherung selbst.
- Vorteile:
 - Schnelle, umfassende Verfügbarkeit aller relevanten Informationen.
 - Effiziente Verwaltung.
- Nachteile:
 - Technikabhängigkeit, Zuverlässigkeit, Sicherheit, Missbrauch
 - Entscheidungsfindung auf Untersuchungsergebnissen anderer Ärzte.

Anwendungsklassen

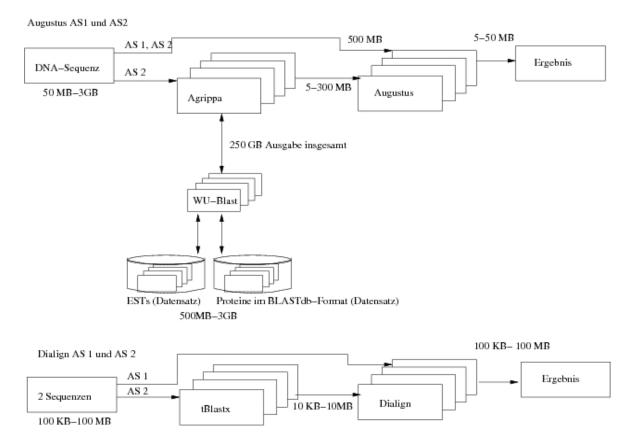
Bioinformatik

- Sequenzanalyse
- Genomdatenanalyse
- SequCorr
- RNAi Pipeline

Medizinische Bildverarbeitung

- Med. Bildverarbeitung: Prostatabiopsie
- Virtuelle Gefäßchirugie
- Funktionelle Hirnbilddaten

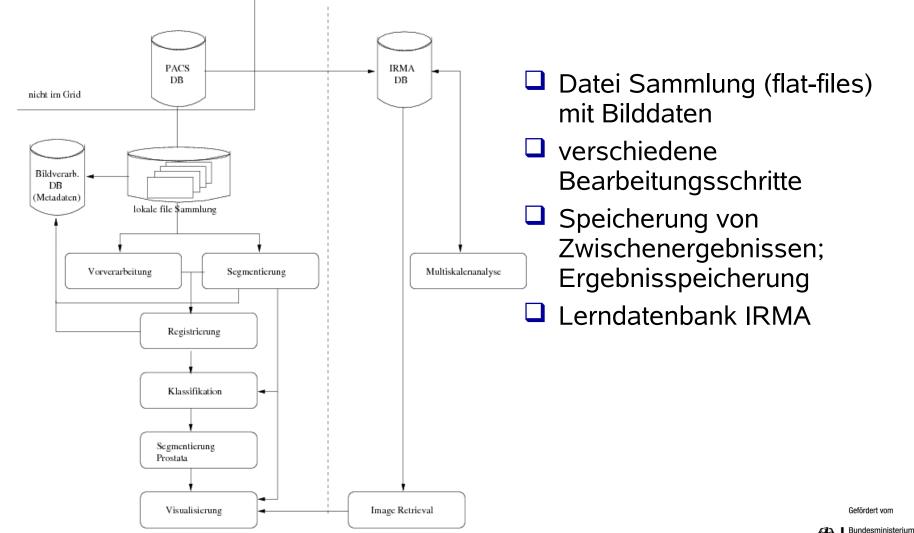
Anwendungsklasse: Bioinformatik


- Datentransfer:
 - Eingabedatensatz (Upload)
 - Berechnungen (DB-Zugriffe, temporäre Zwischenergebnisse, Nutzer-Interaktion zur Auswahl und Einschränkung von Daten)
 - Ausgabedatensatz (Download)
- keine permanente Datenhaltung erforderlich
- Nutzer ist für Ein- und Ausgabedaten selbst verantwortlich

Bioinformatik: Sequenzanalyse

- Upload DNA-Sequenzen
- große Zwischenergebnisse, großer Hauptspeicherbedarf
- temporäre Bereitstellung der Ergebnisse zum Download

Anwendungsklasse: Medizinische Bildverarbeitung

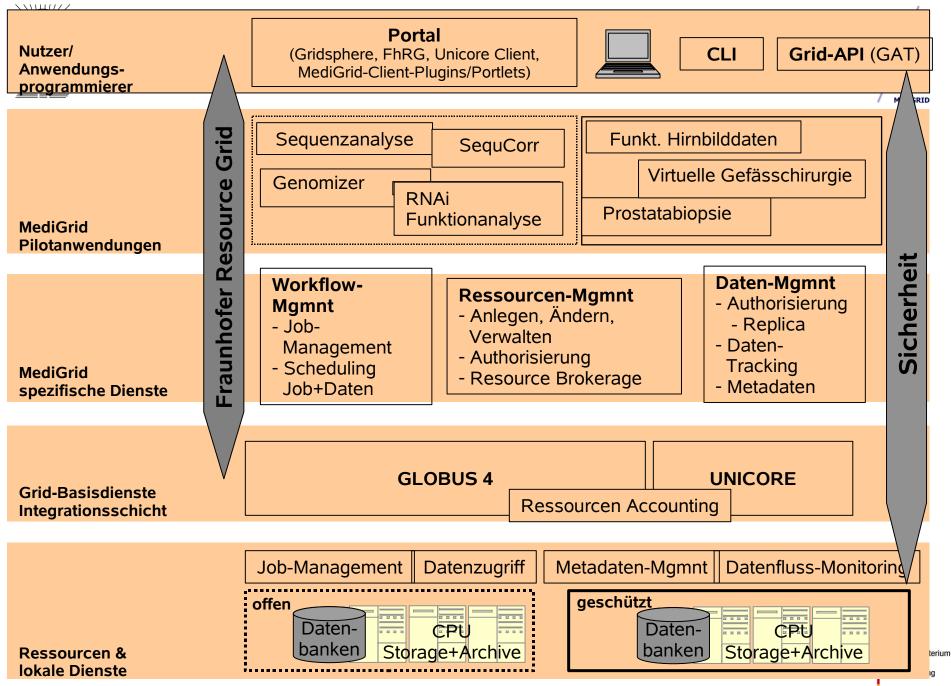

- Datentransfer:
 - Eingabedatensatz: Bilddaten + Metadaten
 - Verarbeitung (Produktion einer großen Menge neuer Daten, Interaktion zur Parameterauswahl und zur Wiederholung von Berechnungen usw.)
 - Ergebnis (weitere Interaktion zur Ergebnisauswahl und zum Postprocessing)
- Unterstützung durch Datenmanagement bei permanenter Datenspeicherung, Datensuche über Metadaten
- Zentrale Ergebnisbereitstellung für Lernzwecke

Medizinische Bildverarbeitung: Prostatabiopsie

Anwendungsklassen

- 250 GB Plattenplatz für Zwischenergebnisse (Sequenzanalyse)
- bis 100 GB Plattenplatz für Datenbank, 100 GB Plattenplatz für Dateien (Genomdatenanalyse, RNAi-Pipeleine)
- □ 300 MB pro Datensatz + 3*300 MB zu archivierende Daten pro Berechnung (funktionelle Hirnbilddaten)
- Art der Datenoperationen:
 - Datenupload: von nicht Grid-Rechner auf Grid-Rechner
 - Datentransfer zwischen Grid-Rechnern: Übertragung von Zwischenergebnissen und temporären Daten
 - Langfristige Datenspeicherung mit Ablage der Daten im Grid-Storage-System. Erzeugung von Metadaten u.a. für Suche nach Daten.
 - Datendownload: Ergebnisdownload von Grid-Rechner auf nicht Grid-Rechner

Bundesministerium für Bildung und Forschung



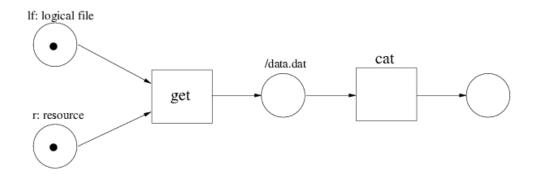
MediGRID-Architektur

- Basis-Technologie: Globus Toolkit 4
- Übernahme und Weiterentwicklung von Komponenten des Fraunhofer Resource Grid (FhRG)
- Hauptzugang über Portal, optional Nutzung von Diensten über Commandline Interfaces
- Ressourcenmetadaten mit MDS4, Ganglia Cluster Monitoring System und Ressourcenverwaltungssystem aus dem FhRG
- Datenmanagement zur Einführung einer Datenabstraktionsschicht.
 Datenressourcen: Datenbanken und Filesysteme

Datenmanagement

- Sicherheit: Nur authorisierte Benutzer dürfen Zugriff auf bestimmte Daten erhalten.
 - Portal: Anmeldung mit Passwort und Erzeugung kurzlebiger Credentials mit Hilfe des auf dem MyProxy-Server abgelegten MyProxy.
 - -> SRB GSI Authentifizierung Mapping, OGSA-DAI Mapping
- Metadatenmanagement: Verwaltung von Metadaten über Dateien, Verzeichnisse, Benutzer usw., benutzereigenen Metadaten und Replikainformationen.
 - -> SRB MCAT
- Datenmanagement bietet verschiedene Services, vorzugsweise als Webservices.
- Modellierung von Datentransfers und komplexeren Datenmanagementfunktionalitäten im Workflow mit Hilfe von Petri-Netzen.

Modellierung von Datenmangementservices



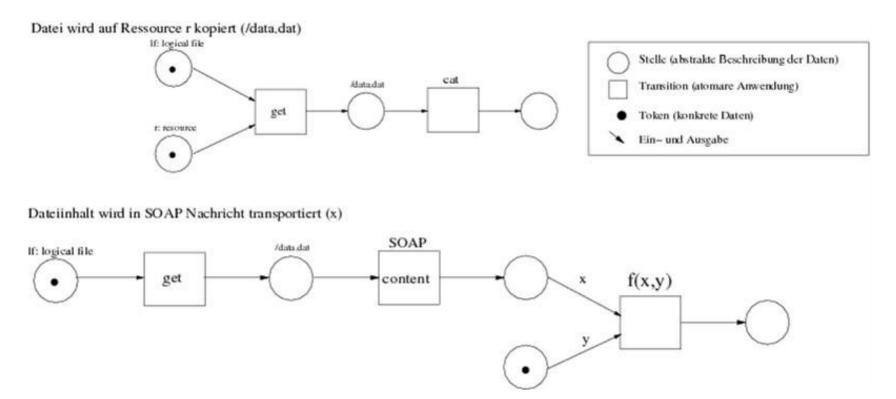
Stelle (abstrakte Beschreibung der Daten)

Transition (atomare Anwendung)

Token (konkrete Daten)

Ein- und Ausgabe

Beispiel für einen Workflow modelliert durch ein Petri-Netz:


- Transport einer Datei If aus dem Grid-Storage-System zur Ressource r.
- Auf Ressource r wird Job cat ausgeführt.

Bundesministerium für Bildung und Forschung

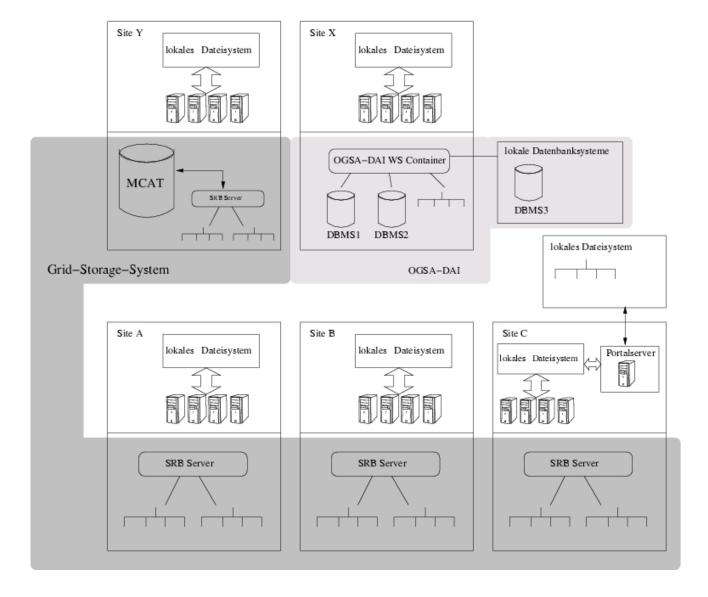
Modellierung von Datenmangementservices

Beispiel für einen Workflow modelliert durch ein Petri-Netz:

 Der Inhalt von Datei If wird in einer SOAP Nachricht an den Webservice f(x,y) übertragen

> Bundesministerium für Bildung und Forschung

Datenmanagement



- Datenmanagementservices um neue Funktionalitäten erweiterbar
- Datenmangementservices innerhalb des Grid:
 - Datentransfer mit gridFTP zwischen Grid-Rechnern
 - O Datentransfer zwischen Grid-Rechnern und Grid-Storage-System
 - Zugriff auf Datenbanken über WebServices

SRB und OGSA-DAI in MediGRID

SRB

- Wofür soll der SRB genutzt werden?
 - Grid-Storage-System mit globalem Namensraum. Virtualisierung der Speicherung durch Abstraktion vom physikalischen Ort.
 - Langfristige sichere Datenspeicherung, Möglichkeit zur Replizierung über mehrere Speicherressourcen.
 - Metadatenverwaltung mit MCAT (verteilt oder zentral)
 - Zugriffsrechteverwaltung
 - SRB-Clients: SCommands, JARGON, SRBAdmin
- Noch offen:
 - Eine MediGRID-Zone mit einem MCAT und pro Site ein SRB-Server.
 - Jede Site bildet eine SRB-Zone mit je einem MCAT. Verbindung der Zonen durch Zonenföderation.
 - Stresstest: Dateigrößen von mehreren Gigabyte?
- Interessante Zusatztools:
 - GridFTP Schnittstelle zum SRB
 - Matrix: Workflow aus SRB-Diensten mit SOAP/WSDL Schnittstelle (in Planung)

Gefördert vom

Bundesministerium
für Bildung
und Forschung

OGSA-DAI

- Wofür soll OGSA-DAI benutzt werden?
 - Bereitstellung von Datenbanken im Grid.
 - Generischer Zugriff unabhängig vom Ort der Datenbank.
 - 1. Realisierung: GeneOntology-Datenbank und Thesaurus im MediGRID-Portal
- OGSA-DAI WSRF verfügt über Webservice Schnittstellen.
- OGSA-DAI Webservice Container kann unter Globus betrieben werden.
- Modellierung des Datenbankzugriffs als Webservice im Workflow.
- OGSA-DAI-Clients: JavaClient, Administration per GUI oder CLI
- Noch offen:
 - Funktionalität des Zugriffs auf Dateisysteme mit OGSA-DAI.
 Einbindung von Dateiressourcen und Verwaltung der Zugriffsrechte.
 - Neues Release: OGSA-DAI WSRF 2.2 bietet Zugriffsverwaltung für Ressourcen?

Bundesministerium für Bildung und Forschung

Anforderungen

- □ SRB:
 - Datenaustausch zwischen Grid-Rechnern und SRB

- OGSA-DAI:
 - Dateizugriff nur auf strukturierte Daten, Metadaten zu Dateien?
 - Zugriffskontrolle für Dateien: Mapping auf Unix-Account unter Benutzung des Globus-Mapfiles?
 - Wie erfolgt der Datenbankzugriff wenn mehrere OGSA-DAI WS Container im Grid betrieben werden?
- Möglichkeit zum Upload/Download von lokalen Daten ohne Portal und ohne Installationen von Client-Interfaces auf lokalem Rechner?

Nächste Schritte

- Speicherung von Daten im Grid-Storage-System:
 - Webservice f
 ür SRB put und SRB get bereitstellen.
 - GSI-Authentifizierung, Delegation der Rechte im Portal und Workflow.
- Aufbau des Grid-Storage-Systems:
 - Installationen von SRB-Servern bei den Ressourcenprovidern.
 - Integration und Bereitstellung von weiteren Datenbanken mit OGSA-DAI.
- Planung weiterer Datenmanagementfunktionalitäten:
 - Bereitstellung als Webservice.
 - Modellierung im Workflow.

Danke.

