Albert Einstein Center forlfundamental Physics - . Institute for Theoretical Physics

a University of Bern

The 2tDiy of ype III He wisiv in the Decoupling timit

Outline:

- Introduction
- Matching on the MSSM on the 2HDM
- Resummation and effective Higgs-quark vertices
- 2-loop corrections
- Flavour-phenomenology of 2HDMs with generic flavour-structure
- Constraints from FCNC processes
- Tauonic B decays
- Limits on LFV processes
- Conclusions

Introduction

Sources of flavour violation in the MSSM

Quark masses

- Top quark is very heavy: $\mathrm{m}_{\mathrm{t}} \approx \mathrm{v}$
- Bottom quark rather light, but Y^{b} can be big at large $\tan (\beta)$
- All other quark masses are very small
\square sensitive to radiative corrections

CKM matrix

- CKM matrix is the only source of flavor and CP violation in the SM.
- No tree-level FCNCs

$$
\mathrm{V}_{\mathrm{CKM}}=
$$

- Off-diagonal CKM elements are small
\Rightarrow Flavor-violation
 is suppressed in the Standard Model.

MSSM at tree-level: 2HDM of type II

- One Higgs doublet couples only to down quarks the other Higgs doublet only to up-quarks.

- 2 additional free parameters: $\tan (\beta)=\mathrm{V}_{\mathrm{u}} / \mathrm{v}_{\mathrm{d}}$ and the heavy Higgs mass M_{H}
- Neutral Higgs-quark couplings are flavourconserving.

2HDM of type III

- Both Higgs doublets couple simultaneously to up and down quarks.

$$
\begin{array}{cc}
H_{i} \mathcal{E}_{f i}^{d} d_{f} & H^{d} \\
m_{i j}^{d}=v_{d} Y_{i j}^{d}+v_{u} \varepsilon_{i j}^{d} & m_{i j}^{u}=v_{u} Y_{i j}^{u}+v_{d} \varepsilon_{i j}^{u}
\end{array}
$$

- The parameters $\varepsilon_{i j}^{u, d}$ describe flavor-changing neutral Higgs interactions
- In the MSSM, $\mathcal{E}_{i j}^{u, d}$ are induced via loops

Squark mass matrix

$$
M_{\tilde{\mathrm{q}}}^{2}=\left(\begin{array}{cc}
\mathrm{M}_{\mathrm{LL}}^{\tilde{\mathrm{q}} 2} & \Delta^{\tilde{\mathrm{q}} \mathrm{LR}} \\
\Delta^{\tilde{\mathrm{q} L R} \dagger} & \mathrm{M}_{\mathrm{RR}}^{\tilde{\mathrm{q}} 2}
\end{array}\right)
$$

hermitian: $\longrightarrow \mathrm{W}^{\tilde{\mathrm{q}} \dagger} \mathrm{M}_{\tilde{\mathrm{q}}}^{2} \mathrm{~W}^{\tilde{\mathrm{q}}}=\mathrm{M}_{\tilde{\mathrm{q}}}^{2(\mathrm{D})}$
$\mathrm{M}_{\mathrm{LL}, \mathrm{RR}}^{\tilde{\mathrm{q}} 2}$ involves only bilinear terms (in the decoupling limit)

The chirality-changing elements are proportional to a vev

$$
\begin{aligned}
& \Delta_{i j}^{d L R}=-v_{d}\left(\mu \tan (\beta) Y_{i}^{d} \delta_{i j}+A_{i j}^{d}\right) \\
& \Delta_{i j}^{u L R}=-v_{u}\left(\mu \cot (\beta) Y_{i}^{u} \delta_{i j}+A_{i j}^{u}\right)
\end{aligned}
$$

$$
\tan (\beta)=\frac{v_{u}}{v_{d}}
$$

Squark-Higgs couplings

- The off-diagonal elements $\Delta_{\mathrm{ij}}^{\mathrm{q} L R}$ originate from squark-Higgs couplings

Higgs-quark couplings and
 quark self-energies

Loop corrections to Higgs quark couplings

- Before electroweak symmetry breaking

$$
\Gamma_{d_{f} d_{i}}^{H^{d}}
$$

$$
\Gamma_{d_{f} d_{i}}^{H^{u}}
$$

Loop corrections to Higgs quark couplings

- After electroweak symmetry breaking

$$
\Sigma_{f i A}^{d L R}=v_{d} \Gamma_{d_{f} d_{i}}^{H^{d}}
$$

$$
\Sigma_{f i Y}^{d L R}=v_{u} \Gamma_{d_{f} d_{i}}^{H^{u}}
$$

One-to-one correspondence between Higgs-quark couplings and chirality changing self-energies. (In the decoupling limit)

SQCD self-energy:

$-\mathrm{i} \Sigma(0)_{\mathrm{i}}^{\text {qL }}=$

$$
\sum_{\mathrm{fi}}^{q L R}=\alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}} \mathrm{~W}_{\mathrm{fs}} \mathrm{~W}_{\mathrm{i}+3, \mathrm{~s}}^{*} \mathrm{~B}_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{s}}}^{2}\right)
$$

Finite and proportional to at least one power of $\Delta_{\mathrm{fi}}^{\mathrm{q}} \mathrm{LR}$

$$
\begin{gathered}
\sum_{\mathrm{fi}}^{q L R}=\alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}}\left(\Lambda^{q \mathrm{LL}} \Delta^{q L R} \Lambda^{q R R}\right)_{\mathrm{fi}} C_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}}^{2}\right) \\
\text { decoupling limit }
\end{gathered}
$$

Decomposition of the self-energy

Decompose the self-energy

$$
\Sigma_{\mathrm{ii}}^{\mathrm{d} L R}=\Sigma_{\mathrm{ii}}^{\mathrm{d} \mathrm{~A}}+\sum_{\mathrm{ii} \mathrm{Y}}^{\mathrm{d} \mathrm{LR}}
$$

into a holomorphic part proportional to an A-term

$$
\Sigma_{\mathrm{fi} A}^{\mathrm{dLR}}=-\mathrm{v}_{\mathrm{d}} \alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}}\left(\Lambda^{\mathrm{dLL}} A^{\mathrm{q}} \Lambda^{\mathrm{dRR}}\right)_{\mathrm{fi}} \mathrm{C}_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}}^{2}, m_{\tilde{\mathrm{q}}}^{2}\right)
$$

non-holomorphic part proportional to a Yukawa

$$
\Sigma_{f i Y}^{d L R}=-v_{u} \mu \alpha_{s} \frac{2}{3 \pi} m_{\tilde{g}} \mu\left(\Lambda^{d L L} Y^{d} \Lambda^{d R R}\right)_{f i} C_{0}\left(m_{\tilde{g}}^{2}, m_{\tilde{q}}^{2}, m_{\tilde{q}}^{2}\right)
$$

Define dimensionless quantity $\quad \varepsilon_{\mathrm{i}}^{\mathrm{d}}=\Sigma_{\mathrm{ii}}^{\mathrm{dLR}} / \mathrm{V}_{\mathrm{u}} \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}}$
which is independent of a Yukawa coupling

Threshold corrections

and resummation of chirally enhanced corrections

Determination of the MSSM Yukawa coupling

- All corrections are finite and are non-decoupling Matching condition:

$$
\begin{aligned}
m_{d_{\mathrm{i}}} & =\mathrm{v}_{\mathrm{d}} Y^{\mathrm{d}_{\mathrm{i}}}+\sum_{\mathrm{ii}}^{\mathrm{dLR}} \\
& =\mathrm{v}_{\mathrm{d}} Y^{\mathrm{d}_{\mathrm{i}}}+\sum_{\mathrm{ii} \mathrm{~A}}^{\mathrm{LLR}}+\mathrm{v}_{\mathrm{d}} \tan (\beta) Y^{\mathrm{d}_{\mathrm{i}}} \varepsilon_{\mathrm{d}_{\mathrm{i}}} \\
\Rightarrow & Y^{\mathrm{d}_{\mathrm{i}}}=\frac{m_{d_{\mathrm{i}}}-\Sigma_{\mathrm{ii} A}^{q L R}}{v_{d}\left(1+\tan (\beta) \varepsilon_{\mathrm{i}}^{\mathrm{d}}\right)}
\end{aligned}
$$

- $\tan (\beta)$ is automatically resummed to all orders

Chiral enhancement

$$
\Sigma_{\mathrm{fi}}^{\mathrm{dLR}} \approx \frac{1}{50} \frac{\Delta_{\mathrm{i}}^{\mathrm{qLR}}}{\mathrm{M}_{\mathrm{susY}}}=\frac{-\mathrm{v}_{\mathrm{d}}}{50}\left(\tan (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{d}} \delta_{\mathrm{ij}}+\frac{\mathrm{A}_{\mathrm{ij}}^{\mathrm{d}}}{\mathrm{M}_{\mathrm{susY}}}\right)
$$

- For the bottom quark only the term proportional to $\tan (\beta)$ is important.
$\longrightarrow \tan (\beta)$ enhancement

$$
\begin{gathered}
\Sigma_{33 \mathrm{Y}}^{\mathrm{dLR}}=\frac{-1}{100} \mathrm{~V}_{\mathrm{d}} \tan (\beta) \mathrm{Y}^{\mathrm{b}} \sim \mathrm{~m}_{\mathrm{b}} \\
\mathrm{O}\left(\frac{\tan (\beta)}{100}\right)
\end{gathered}
$$

- For the light quarks also the part proportional to the A-term is relevant.

$$
\begin{aligned}
& \Sigma_{22 \mathrm{~A}}^{\mathrm{dLR}}=\mathrm{O}(1) \xlongequal{\wedge} \mathrm{A}_{22}^{\mathrm{d}} \approx \mathrm{M}_{\mathrm{SUSY}} \\
& \Sigma_{11 \mathrm{~A}}^{\mathrm{dLR}}=\mathrm{O}(1) \xlongequal{=} \mathrm{A}_{11}^{\mathrm{d}} \approx \frac{1}{50} \mathrm{M}_{\mathrm{SUSY}}
\end{aligned}
$$

Effective Higgs-quark vertices

Higgs vertices in the EFT I

Higgs vertices in the EFT II

$$
L_{Y}^{\text {eff }}=\bar{Q}_{\mathrm{Q} L}^{\mathrm{a}}\left(\left(Y_{\mathrm{i}}^{\mathrm{d}} \delta_{\mathrm{fi}}+\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}\right) \varepsilon_{\mathrm{ba}} H_{d}^{\mathrm{b}}+\mathrm{E}_{\mathrm{fi}}^{\prime \mathrm{d}} H_{\mathrm{u}}^{\mathrm{a}^{*}}\right) \mathrm{d}_{\mathrm{iR}}
$$

- Non-holomorphic corrections $E_{f i}^{\prime d}=\sum_{\mathrm{fi} \mathrm{Y}}^{\mathrm{dLR}} / \mathrm{v}_{\mathrm{u}}$
- Holomorphic corrections $\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}=\sum_{\mathrm{fiA}}^{\mathrm{dLR}} / \mathrm{v}_{\mathrm{d}}$
- The quark mass matrix $m_{\mathrm{fi}}^{\mathrm{d}}=\mathrm{v}_{\mathrm{d}}\left(\mathrm{Y}^{\mathrm{d}} \delta_{\mathrm{fi}}+\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}\right)+\mathrm{v}_{\mathrm{u}} \mathrm{E}_{\mathrm{fi}}^{\prime \mathrm{d}}$ is no longer diagonal in the same basis as the Yukawa coupling

Flavor-changing neutral Higgs couplings

Effective Yukawa couplings

- Final result: $\varepsilon_{i j}^{d}=\frac{1}{\mathrm{v}_{\mathrm{d}}}\left(\mathrm{m}_{\mathrm{d} i} \delta_{\mathrm{ij}}-\tilde{\Sigma}_{\mathrm{ij} \mathrm{Y} Y}^{\mathrm{dLR}}\right) \quad$ with $\tilde{\Sigma}_{\mathrm{j} k \mathrm{Y}}^{\mathrm{dLR}}=\mathrm{U}_{\mathrm{jf}}^{\mathrm{dL}} \Sigma_{\mathrm{jk} Y}^{\mathrm{dLR}} \mathrm{U}_{\mathrm{ki}}^{\mathrm{dR}}$

$$
\approx \Sigma_{\mathrm{fiY}}^{\mathrm{dLR}}-\left(\begin{array}{ccc}
0 & \frac{\Sigma_{22 \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{~m}_{\mathrm{d}_{2}}} \Sigma_{12}^{\mathrm{dLR}} & \frac{\Sigma_{33 \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{~m}_{\mathrm{d}_{3}}} \Sigma_{13}^{\mathrm{dLR}} \\
\frac{\sum_{22 \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{~m}_{\mathrm{d}_{2}}} \Sigma_{21}^{\mathrm{dLR}} & 0 & \frac{\Sigma_{33 \mathrm{~K}}^{\mathrm{dLR}}}{\mathrm{~m}_{\mathrm{q}_{3}}} \Sigma_{23}^{\mathrm{dLR}} \\
\frac{\sum_{33 \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{~m}_{\mathrm{d}_{3}}} \Sigma_{31}^{\mathrm{dLR}} & \frac{\Sigma_{33 \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{~m}_{\mathrm{q}_{3}}} \Sigma_{32}^{\mathrm{dLR}} & 0
\end{array}\right)
$$

Diagrammatic explanation in the full theory:

Higgs vertices in the full theory

- Cancellation incomplete since $v_{d} Y^{b} \neq m_{b}$ Part proportional to $\Sigma_{33 Y}^{d L R}$ is left over.

A-terms generate flavor-changing Higgs couplings

SUSY_FLAVOR 2.0

A.C., J. Rosiek et al, arXiv:1203.5023

Calculates a large set of flavour observables including the complete resummation of all chirally enhanced corrections and the effective Higgs vertices.

Observable	Most stringent constraints on	Experiment
$\Delta F=0$		
$\frac{1}{2}(g-2)_{e}$	$\operatorname{Re}\left[\delta_{11}^{\ell L R, R L}\right]$	$(1159652188.4 \pm 4.3) \times 10^{-12}$
$\frac{1}{2}(g-2)_{\mu}$	$\operatorname{Re}\left[\delta_{22}^{\ell L \mathrm{LR}, \mathrm{RL}}\right]$	$(11659208.7 \pm 8.7) \times 10^{-10}$
$\frac{1}{2}(g-2)_{\tau}$	$\operatorname{Re}\left[\delta_{33}^{\ell L R, R L}\right]$	$<1.1 \times 10^{-3}$
$\left\|d_{e}\right\|(\mathrm{ecm})$	$\operatorname{Im}\left[\delta_{11}^{\ell L R, R L}\right]$	$<1.6 \times 10^{-27}$
$\left\|d_{\mu}\right\|(\mathrm{ecm})$	$\operatorname{Im}\left[\delta_{22}^{\ell L R, R L}\right]$	$<2.8 \times 10^{-19}$
$\left\|d_{\tau}\right\|(\mathrm{ecm})$	$\operatorname{Im}\left[\delta_{33}^{\ell L 2, R L}\right]$	$<1.1 \times 10^{-17}$
$\left\|d_{n}\right\|(\mathrm{ecm})$	$\operatorname{Im}\left[\delta_{11}^{\mathrm{dLR}, \mathrm{RL}}\right], \operatorname{Im}\left[\delta_{11}^{\mathrm{uLR}, \mathrm{RL}}\right]$	$<2.9 \times 10^{-26}$
$\Delta F=1$		
$\operatorname{Br}(\mu \rightarrow e \gamma)$	$\delta_{12,21}^{\ell L R, R L}, \delta_{12}^{\ell L L, R R}$	$<2.8 \times 10^{-11}$
$\operatorname{Br}(\tau \rightarrow e \gamma)$	$\delta_{13,31}^{\ell L R, R L}, \delta_{13}^{\ell L L, R R}$	$<3.3 \times 10^{-8}$
$\operatorname{Br}(\tau \rightarrow \mu \gamma)$	$\delta_{23,32}^{\ell L R, R L}, \delta_{23}^{\ell L L, R R}$	$<4.4 \times 10^{-8}$
$\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \nu\right)$	$\delta_{23}^{u L R}, \delta_{13}^{u} L R ~ \times \delta_{23}^{u L R}$	$<6.7 \times 10^{-8}$
$\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \nu\right)$	sensitive to $\delta_{13}^{u L R} \times \delta_{23}^{u L R}$	$17.33_{-10.5}^{+11.5} \times 10^{-11}$
$\operatorname{Br}\left(B_{d} \rightarrow e e\right)$	$\delta_{13}^{d L L L, R R}$	$<1.13 \times 10^{-7}$
$\operatorname{Br}\left(B_{d} \rightarrow \mu \mu\right)$	$\delta_{13}^{d L L, R R}$	$<1.8 \times 10^{-8}$
$\operatorname{Br}\left(B_{d} \rightarrow \tau \tau\right)$	$\delta_{13}^{d L L, R R}$	$<4.1 \times 10^{-3}$
$\operatorname{Br}\left(B_{s} \rightarrow e e\right)$	$\delta_{23}^{d L L, R R}$	$<7.0 \times 10^{-5}$
$\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)$	$\delta_{23}^{d L L, R R}$	$<1.08 \times 10^{-8}$
$\operatorname{Br}\left(B_{s} \rightarrow \tau \tau\right)$	$\delta_{23}^{d L L, R R}$	--
$\operatorname{Br}\left(B_{s} \rightarrow \mu e\right)$	$\delta_{23}^{d L L, R R} \times \delta_{12}^{\ell L L, R R}$	$<2.0 \times 10^{-7}$
$\operatorname{Br}\left(B_{s} \rightarrow \tau e\right)$	$\delta_{23}^{d L L, R R} \times \delta_{13}^{\ell L L, R R}$	$<2.8 \times 10^{-5}$
$\operatorname{Br}\left(B_{s} \rightarrow \mu \tau\right)$	$\delta_{23}^{d L L, R R} \times \delta_{23}^{\ell L L, R R}$	$<2.2 \times 10^{-5}$
$\operatorname{Br}\left(B^{+} \rightarrow \tau^{+} \nu\right)$	-	$(1.65 \pm 0.34) \times 10^{-4}$
$\operatorname{Br}\left(B_{d} \rightarrow D \tau \nu\right) / \operatorname{Br}\left(B_{d} \rightarrow\right.$ Dl $)$	-	$(0.407 \pm 0.12 \pm 0.049)$
$\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)$	$\delta_{23}^{d L L, R R}$ for large $\tan \beta, \delta_{23,32}^{d L R}$	$(3.52 \pm 0.25) \times 10^{-4}$
$\Delta F=2$		
$\left\|\epsilon_{K}\right\|$	$\operatorname{Im}\left[\left(\delta_{12}^{\mathrm{dLL}, \mathrm{RR}}\right)^{2}\right], \operatorname{Im}\left[\left(\delta_{12,21}^{\mathrm{dLR}}\right)^{2}\right]$	$(2.229 \pm 0.010) \times 10^{-3}$
ΔM_{K}	$\delta_{12}^{d L L, R R}, \delta_{12,21}^{d L R}$	$(5.292 \pm 0.009) \times 10^{-3} \mathrm{ps}^{-1}$
ΔM_{D}	$\delta_{12}^{u L L, R R}, \delta_{12,21}^{u L R}$	$\left(2.37_{-0.71}^{+0.66}\right) \times 10^{-2} \mathrm{ps}^{-1}$
$\Delta M_{B_{d}}$	$\delta_{13}^{d L L, R R}, \delta_{13,31}^{d L R}$	$(0.507 \pm 0.005) \mathrm{ps}^{-1}$
$\Delta M_{B_{s}}$	$\delta_{23}^{d L L}, R R, \delta_{23,32}^{d L R}$	$(17.77 \pm 0.12) \mathrm{ps}^{-1}$

The SQCD quark self-energy at two-loop

NLO calculation of the quark self-energies

NLO calculation is important for:

- Computation of effective Higgs-quark vertices.
- Determination of the Yukawa couplings of the MSSM superpotential (needed for the study of Yukawa unification in GUTs).
- NLO calculation of FCNC processes in the MSSM at large $\tan (\beta)$.

Reduction of the matching scale dependence

NLO calculation

Examples of 2-loop diagrams

- NLO calculation includes analytic results and $\tan (\beta)$ resummation in the generic MSSM.
Δ_{b} at order α_{s}^{2}

NLO results

Relative importance of the 2-loop corrections approximately 9\%

Flavour Phenomenology of the 2HDM of Type III

Type-II 2HDM

- Allowed

2б regions from: (superimposed)

$$
\begin{aligned}
& \mathrm{b} \rightarrow \mathrm{~s} \mathrm{\gamma} \\
& \mathrm{~B} \rightarrow \tau \mathrm{v} \\
& \mathrm{~K} \rightarrow \mu \nu / \pi \rightarrow \mu \nu \\
& \mathrm{B} \rightarrow \mathrm{D} \tau \nu \\
& \mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-} \\
& \mathrm{B} \rightarrow \mathrm{D}^{*} \tau \nu
\end{aligned}
$$

Tension from $B \rightarrow D^{*} \tau v$

Type-III: constraints from $M \rightarrow \mu^{+} \mu^{-}$

- B $\rightarrow \mu^{+} \mu^{-}$constrains $\varepsilon_{13,31}^{\mathrm{d}}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$constrains $\varepsilon_{23,32}^{\mathrm{d}}$
- $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$constrains $\varepsilon_{12,21}^{\mathrm{d}}$
- $\mathrm{D} \rightarrow \mu^{+} \mu^{-}$constrains $\varepsilon_{12,21}^{\mathrm{u}}$ $\varepsilon_{32,23}^{u}$ and $\varepsilon_{13,31}^{u}$ unconstrained from tree-level FCNCs
$\tan (\beta)=50$
$\mathrm{m}_{\mathrm{H}}=700 \mathrm{GeV}$

Type-III: Constraints from $\mathrm{b} \rightarrow \mathrm{s}(\mathrm{d}) \gamma$

$$
\mathrm{m}_{\mathrm{H}}=500 \mathrm{GeV}
$$

- $\mathrm{b} \rightarrow \mathrm{s} \gamma$ constrains $\varepsilon_{23}^{\mathrm{u}}$
- $\mathrm{b} \rightarrow \mathrm{d} \gamma$ constrains $\varepsilon_{13}^{\mathrm{u}}$
- $\varepsilon_{31,32}^{\mathrm{u}}$ still unconstrained

$$
\mathrm{m}_{\mathrm{H}}=700 \mathrm{GeV}
$$

Tauonic B decays

- Tree-level decays in the SM via W-boson
- Sensitive to a charged Higgs due to the heavy tau lepton in the final state.

Observable	SM	Experiment	Significance
$\operatorname{Br}[B \rightarrow \tau v]$	$\left(0.719_{-0.076}^{+0.15}\right) \times 10^{-4}$	$(1.15 \pm 0.23) \times 10^{-4}$	1.6σ
$\operatorname{Br}[B \rightarrow D \tau v] / \operatorname{Br}[B \rightarrow D \ell v]$	0.297 ± 0.017	0.440 ± 0.072	2.0σ
$\operatorname{Br}\left[B \rightarrow D^{*} \tau v\right] / \operatorname{Br}\left[B \rightarrow D^{*} \ell v\right]$	0.252 ± 0.003	0.332 ± 0.030	2.7σ

\longrightarrow All three observables are above the SM prediction

$B \rightarrow \tau \nu$

$$
\operatorname{Br}[B \rightarrow \tau v]=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{8 \pi} m_{\tau}^{2} f_{B}^{2} m_{B}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right) \tau_{B}\left|1+\frac{m_{B}^{2}}{m_{b} m_{t}} \frac{C_{R}^{u b}-C_{L}^{u b}}{C_{S M}^{u b}}\right|^{2}
$$

V_{ub} can be
determined from

- $B \rightarrow \pi \ell \nu$
- inclusive decay
- Global fit to the CKM matrix

Different determinations do not agree

V_{ub} problem

$B \rightarrow D^{(*)} \tau \nu$

$$
\begin{aligned}
& R(D)=\frac{\operatorname{Br}[B \rightarrow D \tau v]}{\operatorname{Br}[B \rightarrow D \ell v]}=R_{S M}(D)\left(1+1.5 \operatorname{Re}\left[\frac{C_{R}^{c b}+C_{L}^{c b}}{C_{S M}^{c b}}\right]+1.0\left|\frac{C_{R}^{c b}+C_{L}^{c b}}{C_{S M}^{c b}}\right|^{2}\right) \\
& R\left(D^{*}\right)=\frac{\operatorname{Br}\left[B \rightarrow D^{*} \tau v\right]}{\operatorname{Br}\left[B \rightarrow D^{*} \ell v\right]}=R_{S M}\left(D^{*}\right)\left(1+0.12 \operatorname{Re}\left[\frac{C_{R}^{c b}-C_{L}^{c b}}{C_{S M}^{c b}}\right]+0.05\left|\frac{C_{R}^{c b}-C_{L}^{c b}}{C_{S M}^{c b}}\right|^{2}\right)
\end{aligned}
$$

- Form factors uncertainties drop out to a large extend in the rations $R(D)$ and $R\left(D^{*}\right)$.
- $R\left(D^{*}\right)$ less sensitive to NP
- C_{R} cannot explain $R(D)$ and $R\left(D^{*}\right)$ simultaneously but C_{L} can.

Tauonic B decays in the 2HDM II

$C_{R}^{q b}=\frac{-1}{m_{H^{ \pm}}^{2}} V_{q b} \frac{m_{b} m_{\tau}}{v^{2}} \tan ^{2}(\beta)$
$C_{L}^{q b} \approx 0$

- Contribution to $\mathrm{B} \rightarrow \mathrm{TV}$ necessarily destructive.
- $\tan (\beta) / m_{H^{ \pm}}$needed for $R\left(D^{*}\right)$ too large.
- Cannot explain $B \rightarrow D^{(*)} \mathrm{TV}$ and $\mathrm{B} \rightarrow$ DTV simultaneously. BaBar collaboration 1205.5442

arXiv:1205.5442

\square measurement

\longrightarrow Disfavored by current data
theory prediction

2HDM of type III with flavourviolation in the up-sector

- Constructive contribution to $\mathrm{B} \rightarrow \mathrm{TV}$ using ε_{31}^{u} is possible.
- $\mathrm{B} \rightarrow \mathrm{D}^{(*)}$ TV and $\mathrm{B} \rightarrow$ DTv can be explained simultaneously using $\varepsilon_{32^{\circ}}^{u} \quad \longrightarrow$ Check model via $H^{0}, A^{0} \rightarrow \overline{t c}$

Allowed regions from:
$\square \mathrm{B} \rightarrow \mathrm{D} \tau \mathrm{V}$
$\mathrm{B} \rightarrow \mathrm{D}^{*} \tau \mathrm{~V}$
$\mathrm{~B} \rightarrow \tau \mathrm{~V}$
EDM

Lepton Flavor violation

- Correlations between $\tau \rightarrow \mu \mu \mu$ and $\tau \rightarrow \mu \gamma$

Predicted ratio in the 2HDM of type III

Upper limits on lepton flavour violating B decays

Allowed regions respecting
\square the constraints from $\mu \rightarrow \mathrm{e} \gamma$ and $\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}$

Conclusions

- In the MSSM self-energies generate threshold correction which can be of order one.
- A-terms generate flavor-changing neutral Higgs couplings.
- SUSY_FLAVOR 2.0 is a useful tool for calculating flavour observables in the generic MSSM.
- 2-loop calculation of Higgs-quark couplings significantly reduces the matching scale dependence.
- A 2HDM of type III with flavour violation in the up-sector can explain $\mathrm{B} \rightarrow \mathrm{TV}, \mathrm{B} \rightarrow$ DTV and $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{TV}$ despite the stringent constraints from FCNC processes.
- Interesting correlations among lepton flavour violating observabels in the 2HDM with generic flavour structure.

