

Outline:

- Introduction
- Matching on the MSSM on the 2HDM
 - Resummation and effective Higgs-quark vertices
 - 2-loop corrections
- Flavour-phenomenology of 2HDMs with generic flavour-structure
 - Constraints from FCNC processes
 - Tauonic B decays
 - Limits on LFV processes
- Conclusions

Introduction

Sources of flavour violation in the MSSM

Quark masses

- Top quark is very heavy: m_₁ ≈ v
- Bottom quark rather light, but Y^b can be big at large tan(β)
- All other quark masses are very small
 - sensitive to radiative corrections

CKM matrix

- CKM matrix is the only source of flavor and CP violation in the SM.
- No tree-level FCNCs

 $V_{CKM} =$

- Off-diagonal CKM elements are small
 - Flavor-violation is suppressed in the Standard Model.

MSSM at tree-level: 2HDM of type II

 One Higgs doublet couples only to down quarks the other Higgs doublet only to up-quarks.

- 2 additional free parameters: tan(β)=v_u/v_d and the heavy Higgs mass M_H
- Neutral Higgs-quark couplings are flavourconserving.

2HDM of type III

 Both Higgs doublets couple simultaneously to up and down quarks.

- The parameters $\mathcal{E}_{ij}^{u,d}$ describe flavor-changing neutral Higgs interactions
- In the MSSM, $\mathcal{E}_{ij}^{u,d}$ are induced via loops

Squark mass matrix

$$\mathbf{M}_{\tilde{\mathbf{q}}}^{2} = \begin{pmatrix} \mathbf{M}_{LL}^{\tilde{\mathbf{q}} \, 2} & \boldsymbol{\Delta}^{\tilde{\mathbf{q}} \, LR} \\ \boldsymbol{\Delta}^{\tilde{\mathbf{q}} \, LR \, \dagger} & \mathbf{M}_{RR}^{\tilde{\mathbf{q}} \, 2} \end{pmatrix}$$

hermitian: $W^{\tilde{q}\dagger}M_{\tilde{q}}^2W^{\tilde{q}}=M_{\tilde{q}}^{2(D)}$

 $M_{\rm LL,RR}^{ ilde{\mathfrak{q}}\,2}$ involves only bilinear terms (in the decoupling limit)

The chirality-changing elements are proportional to a vev

$$\begin{split} & \Delta_{ij}^{d \, LR} = -v_d \left(\mu \tan \left(\beta \right) Y_i^d \delta_{ij} + A_{ij}^d \right) \\ & \Delta_{ij}^{u \, LR} = -v_u \left(\mu \cot \left(\beta \right) Y_i^u \delta_{ij} + A_{ij}^u \right) \end{split} \qquad \qquad \tan \left(\beta \right) = \frac{v_u}{v_d} \end{split}$$

Squark-Higgs couplings

The off-diagonal elements $\Delta_{ii}^{q LR}$ originate from squark-Higgs couplings

$$= \qquad \qquad \hat{d}_{i}^{R} \qquad \qquad \hat{d}_{f}^{L} \qquad \qquad \hat{d}_{f}^{LR} \qquad \qquad \delta_{\mathrm{fi}}^{\tilde{q}\,LR} \equiv \frac{\Delta_{\mathrm{fi}}^{\tilde{q}\,LR}}{\hat{m}_{\tilde{q}}^{2}} \quad \hat{m}_{\tilde{q}}^{2} \text{ average squark mass}$$

$$\delta_{\rm fi}^{ ilde{q}\,{
m LR}}\equiv rac{\Delta_{
m fi}^{
m q\,LR}}{\hat{m}_{ ilde{q}}^2}\quad \hat{m}_{ ilde{q}}^2 \ \ {
m average \ squark \ mass}$$

Higgs-quark couplings and and quark self-energies

Loop corrections to Higgs quark couplings

Before electroweak symmetry breaking

$$\Gamma^{H^d}_{d_f d_i}$$

$$\Gamma^{H^u}_{d_f d_i}$$

Loop corrections to Higgs quark couplings

After electroweak symmetry breaking

$$\Sigma_{fi\,A}^{d\,LR} = \nu_d \Gamma_{d_f d_i}^{H^d}$$

$$\Sigma_{fiY}^{dLR} = \nu_u \Gamma_{d_f d_i}^{H^u}$$

One-to-one correspondence between Higgs-quark couplings and chirality changing self-energies. (In the decoupling limit)

SQCD self-energy:

$$\Sigma_{fi}^{q LR} = \alpha_{s} \frac{2}{3\pi} m_{\tilde{g}} W_{fs} W_{i+3,s}^{*} B_{0} (m_{\tilde{g}}^{2}, m_{\tilde{q}_{s}}^{2})$$

Finite and proportional to at least one power of $\Delta_{
m fi}^{
m q\,LR}$

$$\Sigma_{\mathrm{fi}}^{\mathrm{q\,LR}} = \alpha_{\mathrm{s}} \frac{2}{3\pi} m_{\tilde{\mathrm{g}}} \left(\Lambda^{\mathrm{q\,LL}} \Delta^{\mathrm{q\,LR}} \Lambda^{\mathrm{q\,RR}} \right)_{\mathrm{fi}} C_{0} \left(m_{\tilde{\mathrm{g}}}^{2}, m_{\tilde{\mathrm{q}}}^{2}, m_{\tilde{\mathrm{q}}}^{2} \right)$$

decoupling limit

Decomposition of the self-energy

Decompose the self-energy

$$\Sigma_{ii}^{d LR} = \Sigma_{ii A}^{d LR} + \Sigma_{ii Y}^{d LR}$$

into a holomorphic part proportional to an A-term

$$\Sigma_{\text{fi A}}^{\text{d LR}} = -v_{\text{d}}\alpha_{\text{s}} \frac{2}{3\pi} m_{\tilde{g}} \left(\Lambda^{\text{d LL}} A^{\text{q}} \Lambda^{\text{d RR}} \right)_{\text{fi}} C_{0} \left(m_{\tilde{g}}^{2}, m_{\tilde{q}}^{2}, m_{\tilde{q}}^{2} \right)$$

non-holomorphic part proportional to a Yukawa

$$\Sigma_{\text{fi Y}}^{\text{d LR}} = -v_{\text{u}}\mu\alpha_{\text{s}}\frac{2}{3\pi}m_{\tilde{\text{g}}}\mu\left(\Lambda^{\text{d LL}}Y^{\text{d}}\Lambda^{\text{d RR}}\right)_{\text{fi}}C_{0}\left(m_{\tilde{\text{g}}}^{2},m_{\tilde{\text{q}}}^{2},m_{\tilde{\text{q}}}^{2}\right)$$

Define dimensionless quantity $\epsilon_{i}^{d} = \sum_{ii}^{d LR} / v_{u} Y^{d_{i}}$

which is independent of a Yukawa coupling

Threshold corrections

and resummation of chirally enhanced corrections

Determination of the MSSM Yukawa coupling

All corrections are finite and are non-decoupling

Matching condition:

$$\begin{split} m_{d_i} &= v_d Y^{d_i} + \Sigma_{ii}^{d LR} \\ &= v_d Y^{d_i} + \Sigma_{ii A}^{q LR} + v_d \tan(\beta) Y^{d_i} \epsilon_{d_i} \end{split}$$

$$Y^{d_i} = \frac{m_{d_i} - \sum_{ii A}^{q LR}}{v_d \left(1 + \tan(\beta) \varepsilon_i^d\right)}$$

tan(β) is automatically resummed to all orders

Chiral enhancement

$$\Sigma_{fi}^{d LR} \approx \frac{1}{50} \frac{\Delta_{fi}^{q LR}}{M_{SUSY}} = \frac{-v_d}{50} \left(\tan(\beta) Y_i^d \delta_{ij} + \frac{A_{ij}^d}{M_{SUSY}} \right)$$

- For the bottom quark only the term proportional to tan(β) is important.
 - \rightarrow tan(β) enhancement

$$\Sigma_{33 \, Y}^{d \, LR} = \frac{-1}{100} \, v_d \, \tan(\beta) \, Y^b \sim m_b$$

$$O\left(\frac{\tan{(\beta)}}{100}\right)$$

 For the light quarks also the part proportional to the A-term is relevant.

$$\Sigma_{22 \text{ A}}^{\text{d LR}} = O(1) \stackrel{\wedge}{=} A_{22}^{\text{d}} \approx M_{\text{SUSY}}$$

$$\Sigma_{11A}^{d LR} = O(1) \stackrel{\triangle}{=} A_{11}^{d} \approx \frac{1}{50} M_{SUSY}$$

Effective Higgs-quark vertices

Higgs vertices in the EFT I

Higgs vertices in the EFT II

$$L_{Y}^{eff} = \overline{Q}_{fL}^{a} \left(\left(Y_{i}^{d} \delta_{fi} + E_{fi}^{d} \right) \epsilon_{ba} H_{d}^{b} + E_{fi}^{\prime d} H_{u}^{a*} \right) d_{iR}$$

- Non-holomorphic corrections $E_{\rm fi}^{\prime d} = \sum_{\rm fi}^{\rm d \, LR} / v_{\rm u}$
- \blacksquare Holomorphic corrections $E_{\rm fi}^{\rm d} = \Sigma_{\rm fi\,A}^{\rm d\,LR} \left/ v_{\rm d} \right.$
- The quark mass matrix $m_{fi}^d = v_d \left(Y^{d_i} \delta_{fi} + E_{fi}^d \right) + v_u E_{fi}'^d$ is no longer diagonal in the same basis as the Yukawa coupling
 - Flavor-changing neutral Higgs couplings

Effective Yukawa couplings

$$\boldsymbol{\tilde{\Sigma}_{jk\;Y}^{d\;LR}} = \boldsymbol{U_{jf}^{d\;L^*}} \boldsymbol{\Sigma_{jk\;Y}^{d\;LR}} \boldsymbol{U_{ki}^{d\;R}}$$

$$\approx \Sigma_{\text{fi Y}}^{\text{d LR}} - \begin{bmatrix} 0 & \frac{\Sigma_{22\,Y}^{\text{d LR}}}{m_{\text{d}_2}} \Sigma_{12}^{\text{d LR}} & \frac{\Sigma_{33\,Y}^{\text{d LR}}}{m_{\text{d}_3}} \Sigma_{13}^{\text{d LR}} \\ \frac{\Sigma_{22\,Y}^{\text{d LR}}}{m_{\text{d}_2}} \Sigma_{21}^{\text{d LR}} & 0 & \frac{\Sigma_{33\,Y}^{\text{d LR}}}{m_{\text{q}_3}} \Sigma_{23}^{\text{d LR}} \\ \frac{\Sigma_{33\,Y}^{\text{d LR}}}{m_{\text{d}_3}} \Sigma_{31}^{\text{d LR}} & \frac{\Sigma_{33\,Y}^{\text{d LR}}}{m_{\text{q}_3}} \Sigma_{32}^{\text{d LR}} & 0 \end{bmatrix}$$

Diagrammatic explanation in the full theory:

Higgs vertices in the full theory

- Cancellation incomplete since $v_d Y^b \neq m_b$ Part proportional to $\sum_{33Y}^{d LR}$ is left over.
- A-terms generate flavor-changing Higgs couplings

SUSY_FLAVOR 2.0

A.C., J. Rosiek et al, arXiv:1203.5023
Calculates a large set of
flavour observables
including the complete
resummation of
all chirally enhanced
corrections and the
effective Higgs vertices.

Observable	Most stringent constraints on	Experiment
$\Delta F = 0$		
$\frac{1}{2}(g-2)_e$	$\mathrm{Re}\left[\delta_{11}^{\ell\mathrm{LR,RL}} ight]$	$(1159652188.4 \pm 4.3) \times 10^{-12}$
$\frac{1}{2}(g-2)_{\mu}$	$\mathrm{Re}\left[\delta_{22}^{\ell\mathrm{LR,RL}} ight]$	$(11659208.7 \pm 8.7) \times 10^{-10}$
$\frac{1}{2}(g-2)_{\tau}$	$\mathrm{Re}\left[\delta_{33}^{\ell\mathrm{LR,RL}} ight]$	$<1.1\times10^{-3}$
$ d_e (\text{ecm})$	$\operatorname{Im}\left[\delta_{11}^{\ell\operatorname{LR,RL}} ight]$	$< 1.6 \times 10^{-27}$
$ d_{\mu} (\text{ecm})$	$\mathrm{Im}\left[\delta_{22}^{\ell\mathrm{LR,RL}} ight]$	$< 2.8 \times 10^{-19}$
$ d_{\tau} (\text{ecm})$	$\mathrm{Im}\left[\delta_{33}^{\ell\mathrm{LR,RL}} ight]$	$< 1.1 \times 10^{-17}$
$ d_n (\text{ecm})$	$\operatorname{Im}\left[\delta_{11}^{\operatorname{dLR,RL}}\right],\operatorname{Im}\left[\delta_{11}^{\operatorname{uLR,RL}}\right]$	$< 2.9 \times 10^{-26}$
$\Delta F = 1$		
$Br(\mu \to e\gamma)$	$\delta_{12,21}^{\ellLR,RL},\delta_{12}^{\ellLL,RR}$	$< 2.8 \times 10^{-11}$
$\operatorname{Br}(\tau \to e\gamma)$	$\delta_{13,31}^{\ellLR,RL},\delta_{13}^{\ellLL,RR}$	$< 3.3 \times 10^{-8}$
$\operatorname{Br}(\tau \to \mu \gamma)$	$\delta^{\ell LR,RL}_{23,32}, \delta^{\ell LL,RR}_{23}$	$< 4.4 \times 10^{-8}$
$\operatorname{Br}(K_L \to \pi^0 \nu \nu)$	$\delta^{uLR}_{23}, \delta^{uLR}_{13} \times \delta^{uLR}_{23}$	$< 6.7 \times 10^{-8}$
$Br(K^+ \to \pi^+ \nu \nu)$	sensitive to $\delta^{uLR}_{13} \times \delta^{uLR}_{23}$	$17.3^{+11.5}_{-10.5} \times 10^{-11}$
$Br(B_d \to ee)$	$\delta_{13}^{dLL,RR}$	$< 1.13 \times 10^{-7}$
$\operatorname{Br}(B_d \to \mu\mu)$	$\delta_{13}^{dLL,RR}$	$< 1.8 \times 10^{-8}$
$Br(B_d \to \tau\tau)$	$\delta_{13}^{dLL,RR}$	$< 4.1 \times 10^{-3}$
$Br(B_s \to ee)$	$\delta^{dLL,RR}_{23}$	$< 7.0 \times 10^{-5}$
$\operatorname{Br}(B_s \to \mu\mu)$	$\delta^{dLL,RR}_{23}$	$< 1.08 \times 10^{-8}$
$Br(B_s \to \tau\tau)$	$\delta_{23}^{dLL,RR}$	
$Br(B_s \to \mu e)$	$\delta^{dLL,RR}_{23} imes \delta^{\ellLL,RR}_{12}$	$< 2.0 \times 10^{-7}$
$\operatorname{Br}(B_s \to \tau e)$	$\delta^{dLL,RR}_{23} imes \delta^{\ellLL,RR}_{13}$	$< 2.8 \times 10^{-5}$
$\operatorname{Br}(B_s \to \mu \tau)$	$\delta^{dLL,RR}_{23} imes \delta^{\ellLL,RR}_{23}$	$< 2.2 \times 10^{-5}$
$\operatorname{Br}(B^+ \to \tau^+ \nu)$	-	$(1.65 \pm 0.34) \times 10^{-4}$
$Br(B_d \to D\tau\nu)/Br(B_d \to Dl\nu)$	-	$(0.407 \pm 0.12 \pm 0.049)$
$\operatorname{Br}(B \to X_s \gamma)$	$\delta_{23}^{dLL,RR}$ for large $\tan \beta,\delta_{23,32}^{dLR}$	$(3.52 \pm 0.25) \times 10^{-4}$
$\Delta F = 2$		
$ \epsilon_K $	$\operatorname{Im}\left[(\delta_{12}^{\mathrm{dLL,RR}})^{2}\right],\operatorname{Im}\left[(\delta_{12,21}^{\mathrm{dLR}})^{2}\right]$	$(2.229 \pm 0.010) \times 10^{-3}$
ΔM_K	$\delta_{12}^{dLL,RR},\delta_{12,21}^{dLR}$	$(5.292 \pm 0.009) \times 10^{-3} \text{ ps}^{-1}$
ΔM_D	$\delta_{12}^{uLL,RR},\delta_{12,21}^{uLR}$	$(2.37^{+0.66}_{-0.71}) \times 10^{-2} \text{ ps}^{-1}$
ΔM_{B_d}	$\delta_{13}^{dLL,RR},\delta_{13,31}^{dLR}$	$(0.507 \pm 0.005) \text{ ps}^{-1}$
ΔM_{B_s}	$\delta^{dLL,RR}_{23},\delta^{dLR}_{23,32}$	$(17.77 \pm 0.12) \text{ ps}^{-1}$

The SQCD quark self-energy at two-loop

NLO calculation of the quark self-energies

NLO calculation is important for:

- Computation of effective Higgs-quark vertices.
- Determination of the Yukawa couplings of the MSSM superpotential (needed for the study of Yukawa unification in GUTs).
- NLO calculation of FCNC processes in the MSSM at large tan(β).

Reduction of the matching scale dependence

NLO calculation

Examples of 2-loop diagrams

■ NLO calculation includes analytic results and tan(β) resummation in the generic MSSM. $Δ_b$ at order $α_s^2$

NLO results

Relative importance of the 2-loop corrections approximately 9%

Flavour Phenomenology of the 2HDM of Type III

Type-II 2HDM

Allowed2σ regions from: (superimposed)

$$b \rightarrow s\gamma$$

$$B \rightarrow \tau V$$

$$K \rightarrow \mu\nu / \pi \rightarrow \mu\nu$$

$$\mathrm{B}
ightarrow \mathrm{D} \mathrm{ au} \mathrm{v}$$

$$B_s \rightarrow \mu^+ \mu^-$$

$$B \rightarrow D^* \tau \nu$$

Type-III: constraints from M→µ+µ-

- B $\rightarrow \mu^{+}\mu^{-}$ constrains $\epsilon^{d}_{13,31}$
- $B_s \rightarrow \mu^+\mu^-$ constrains $\epsilon^d_{23,32}$
- $K_L \rightarrow \mu^+ \mu^-$ constrains $\mathcal{E}_{12,21}^d$

 $oldsymbol{\mathcal{E}}^u_{32,23}$ and $oldsymbol{\mathcal{E}}^u_{13,31}$ unconstrained

from tree-level FCNCs

$$\tan(\beta) = 50$$

$$m_H = 500 \text{ GeV}$$

Type-III: Constraints from $b \rightarrow s(d) \gamma$

- $b \rightarrow s\gamma$ constrains ε_{23}^{u}
- b \rightarrow dγconstrains ε_{13}^{u}
- $\mathbf{\epsilon}_{31,32}^{\mathrm{u}}$ still unconstrained

Tauonic B decays

- Tree-level decays in the SM via W-boson
- Sensitive to a charged Higgs due to the heavy tau lepton in the final state.

Observable	SM	Experiment	Significance
$Br[B \to \tau V]$	$\left(0.719^{+0.115}_{-0.076}\right) \times 10^{-4}$	$(1.15 \pm 0.23) \times 10^{-4}$	1.6σ
$Br[B \to D\tau v]/Br[B \to D\ell v]$	0.297 ± 0.017	0.440 ± 0.072	2.0σ
$Br[B \to D^*\tau v]/Br[B \to D^*\ell v]$	0.252 ± 0.003	0.332 ± 0.030	2.7σ

All three observables are above the SM prediction

$B \rightarrow \tau \nu$

$$Br[B \to \tau V] = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2} \right) \tau_B \left| 1 + \frac{m_B^2}{m_b m_t} \frac{C_R^{ub} - C_L^{ub}}{C_{SM}^{ub}} \right|^2$$

V_{ub} can be determined from

- $B \rightarrow \pi \ell \nu$
- inclusive decay
- Global fit to the CKM matrix

Different determinations do not agree

→ V_{ub} problem

$B \rightarrow D^{(*)} \tau \nu$

$$R(D) = \frac{\operatorname{Br}\left[B \to D\tau V\right]}{\operatorname{Br}\left[B \to D\ell V\right]} = R_{SM}(D) \left(1 + 1.5\operatorname{Re}\left[\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}}\right] + 1.0\left|\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}}\right|^2\right)$$

$$R(D^*) = \frac{\operatorname{Br}\left[B \to D^*\tau V\right]}{\operatorname{Br}\left[B \to D^*\ell V\right]} = R_{SM}(D^*) \left(1 + 0.12\operatorname{Re}\left[\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}}\right] + 0.05\left|\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}}\right|^2\right)$$

- Form factors uncertainties drop out to a large extend in the rations R(D) and R(D*).
- R(D*) less sensitive to NP
- C_R cannot explain R(D) and R(D*) simultaneously but C_L can.

Tauonic B decays in the 2HDM II

$$C_R^{qb} = \frac{-1}{m_{H^{\pm}}^2} V_{qb} \frac{m_b m_{\tau}}{v^2} \tan^2(\beta)$$

$$C_L^{qb} \approx 0$$

- Contribution to B→TV necessarily destructive.
- tan $(\beta)/m_{H^{\pm}}$ needed for R(D*) too large.
- Cannot explain B→D^(*)TV and B→DTV simultaneously. BaBar collaboration 1205.5442
 - Disfavored by current data

arXiv:1205.5442

2HDM of type III with flavourviolation in the up-sector

- Constructive contribution to B \rightarrow TV using \mathcal{E}_{31}^{u} is possible.
- B \to D^(*)TV and B \to DTV can be explained simultaneously using \mathcal{E}_{32}^u . Check model via $H^0, A^0 \to \overline{tc}$

Allowed regions from:

Lepton Flavor violation

■ Correlations between $\tau \rightarrow \mu\mu\mu$ and $\tau \rightarrow \mu\gamma$

Predicted ratio in the 2HDM of type III

$$\varepsilon_{23}^{\ell} \neq 0, \varepsilon_{32}^{\ell} \neq 0$$

$$\varepsilon_{32}^{\ell} = 0, \varepsilon_{23}^{\ell} \neq 0$$

$$\varepsilon_{32}^{\ell} \neq 0, \varepsilon_{23}^{\ell} = 0$$

Upper limits on lepton flavour violating B decays

$$\tan(\beta) = 30$$

$$\tan(\beta) = 40$$

$$|\tan(\beta)| = 50$$

Allowed regions respecting the constraints from $\mu \to e \gamma$ and $~B_{\rm d} \to \mu^+ \mu^-$

Conclusions

- In the MSSM self-energies generate threshold correction which can be of order one.
- A-terms generate flavor-changing neutral Higgs couplings.
- SUSY_FLAVOR 2.0 is a useful tool for calculating flavour observables in the generic MSSM.
- 2-loop calculation of Higgs-quark couplings significantly reduces the matching scale dependence.
- A 2HDM of type III with flavour violation in the up-sector can explain B→TV, B→DTV and B→D*TV despite the stringent constraints from FCNC processes.
- Interesting correlations among lepton flavour violating observabels in the 2HDM with generic flavour structure.