Status and prospects of the electroweak SM fit after the Higgs discovery with Gfitter

Roman Kogler for the Gfitter group

LHC Run I Aftermath Bad Honnef, Oct 1, 2013

The Gfitter group: M. Baak (CERN), J. Cuth (Univ. of Mainz) J. Haller (Univ. of Hamburg), A. Hoecker (CERN), R. K. (Univ. of Hamburg), K. Mönig (DESY), M. Schott (Univ. of Mainz) J. Stelzer (Univ. of Michigan)

Predictive Power of the SM

Tree level relations for $Z \rightarrow f \overline{f}$

$$g_{V,f}^{(0)} \equiv g_{L,f}^{(0)} + g_{R,f}^{(0)} = I_3^f - 2Q^f \sin^2 \theta_W$$

$$g_{A,f}^{(0)} \equiv g_{L,f}^{(0)} - g_{R,f}^{(0)} = I_3^f$$

- Unification connects the electromagnetic and the weak couplings
- M_W can be expressed in terms of M_Z and G_F

Radiative corrections

- Parametrisation through electroweak form factors ρ , κ , Δr
- Effective couplings at the Z-pole
- $\rho, \kappa, \Delta r$ depend nearly quadratically on m_t and logarithmically on M_H

$$\sin^2 \theta_{\rm eff}^f = \frac{\kappa_Z^f}{\kappa_Z^f} \sin^2 \theta_W$$

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$$

Electroweak Fits

A long tradition

- Huge amount of pioneering work to precisely understand loop corrections
- Observables known at least in two-loop order, sometimes higher orders available
- Precision measurements crucial, after the LEP/SLC era results from Tevatron and LHC become available

- Top mass predictions from loop effects available since ~1990
 - LEPEWWG fits since 1993
- The EW fit has always been able to predict the top mass correctly

The Last Missing Piece

- Indirect determination (2011): $M_H = 96 + 31 24 \text{ GeV}$
- Exclusion limits incorporated in EW fits: $M_H = 120^{+12}_{-5} \text{GeV}$

Outline

I. Status of the Global EW Fit

2. BSM and Higgs Coupling

3. Prospects of the EW Fit

The SM Fit with the Higgs

The discovery of a new boson

- Cross section, production rate times branching ratios, spin, parity sofar compatible with predictions for the SM Higgs
- Assume that the boson is the SM Higgs
- EW fit: $M_H = 125.7 \pm 0.4 \text{ GeV}$ ATLAS: $M_H = 126.0 \pm 0.4 \pm 0.4 \text{ GeV}$ CMS: $M_H = 125.3 \pm 0.4 \pm 0.5 \text{ GeV}$ [arXiv:1207.7214, arXiv:1207.7235]
- Change between fully uncorrelated and fully correlated systematic uncertainties minor: $\delta M_H: 0.4 \rightarrow 0.5 \text{ GeV}$

The SM Fit with Gfitter

Unique situation

- For first time SM is fully over-constrained.
- electroweak observables can be unambiguously predicted at loop level
- Powerful predictions of key observables now possible, much better than without M_H

Calculations used

- ► M_W mass of the W boson [M.Awramik et al., Phys. Rev. D69, 053006 (2004)]
- Γ_Z , Γ_W partial and total widths of the Z and W [Cho et. al, arXiv:1104.1769]
- $\sin^2 \theta_{eff}^l$ effective weak mixing angle [M.Awramik et al., JHEP 11, 048 (2006),

M.Awramik et al., Nucl.Phys.B813:174-187 (2009)]

- ► Thad QCD Adler functions at N3LO [P.A. Baikov et al., Phys.Rev.Lett. 108, 222003 (2012)]
- ▶ R_b partial width of $Z \rightarrow b\overline{b}$ [Freitas et al., JHEP08, 050 (2012), Erratum. 1305 (2013) 074] **NEW!**

Updated Calculation of R⁰_b

- R^{0}_{b} = partial decay width of $Z \rightarrow b\overline{b}$ to $Z \rightarrow q\overline{q}$
- We use calculation with full EW 2-loop corrections of $Z \rightarrow b\overline{b}$
- A. Freitas et al., JHEP 1208 (2012) 050, Erratum ibid. 1305 (2013) 074

Recently a mistake was found in this calculation

- Old: Two-loop corrections to R^{0}_{b} comparable to experimental uncertainty (6.6 x 10^{-4})
 - Moved theoretical prediction by 1.5σ
 - Much more than the originally estimated theory uncertainty!
- New: bug in calculation of R⁰_b has been corrected
 - sizeable reduction of the size of the two-loop correction
- All results shown here and on Gfitter homepage use the corrected R⁰_b calculation

Experimental Input

Observables:

- Z-pole observables: LEP/SLD results [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
- ► *M_W* and *Γ_W*: LEP/Tevatron [arXiv:1204:0042, arXiv:1302.3415]
- ▶ *m_t*:Tevatron [arXiv:1305:3929]
- $\Delta \alpha_{\text{had}}^{(5)}(M_Z)$ [M. Davier et al., EPJC 71, 1515 (2011)]
- ► $\overline{m_c}$, $\overline{m_b}$: world averages [PDG, J. Phys. G33, I (2006)]
- ► *M_H*: LHC [arXiv:1207.7214, arXiv:1207.7235]

7 (+2) free fit parameters:

- M_Z , M_H , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, $\overline{m_c}$, $\overline{m_b}$, m_t
- nuisance parameters for theoretical uncertainties δM_W (4 MeV), δsin²θ^l_{eff} (4.7 · 10⁻⁵)

$M_H \; [\text{GeV}]^\circ$	$125.7^{+0.4}_{-0.4}$	LHC
M_W [GeV]	80.385 ± 0.015	
Γ_W [GeV]	2.085 ± 0.042	levatron
M_Z [GeV]	91.1875 ± 0.0021	
Γ_Z [GeV]	2.4952 ± 0.0023	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	SLC
$\sin^2\!\! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	
A_c	0.670 ± 0.027	SLC
A_b	0.923 ± 0.020	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LEP
R_c^0	0.1721 ± 0.0030	1
R_b^0	0.21629 ± 0.00066	
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	
m_t [GeV]	173.20 ± 0.87	Tevatron
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \triangle)}$	2757 ± 10	-

SM Fit Results

[The Gfitter Group, EPJC 72, 2205 (2012)]

Fi	t	CO	m	es	in	
th	nre	ee	fla	av	ou	rs
		•	•		0	

- left: full fit incl. MH
- middle: full
 fit w/o MH
- right: fit w/o
 observable
 in given row

	Parameter	Input value	Free in fit	Fit Result	Fit without M_H measurements	Fit without exp. input in line
s in	$\overline{M_H} \; [\text{GeV}]^\circ$	$125.7_{-0.4}^{+0.4}$	yes	$125.7^{+0.4}_{-0.4}$	94.7^{+25}_{-22}	94.7^{+25}_{-22}
ours	$\overline{M_W}$ [GeV]	80.385 ± 0.015	_	$80.367^{+0.006}_{-0.007}$	$80.367^{+0.006}_{-0.007}$	80.360 ± 0.011
	Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
fit	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1878 ± 0.0021	91.1978 ± 0.0114
4	Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4954 ± 0.0014	2.4954 ± 0.0014	2.4950 ± 0.0017
-	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.479 ± 0.014	41.479 ± 0.014	41.471 ± 0.015
full	R^0_ℓ	20.767 ± 0.025	_	20.740 ± 0.017	20.740 ± 0.017	20.715 ± 0.026
	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	—	$0.01626^{+0.0001}_{-0.0002}$	$0.01626^{+0.0001}_{-0.0002}$	0.01624 ± 0.0002
MH	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	_	0.1472 ± 0.0007	0.1472 ± 0.0007	_
	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	—	$0.23149^{+0.00010}_{-0.00008}$	$0.23149^{+0.00010}_{-0.00008}$	0.23150 ± 0.00009
t w/o	A_c	0.670 ± 0.027	_	$0.6679^{+0.00034}_{-0.00028}$	$0.6679^{+0.00034}_{-0.00028}$	0.6680 ± 0.00031
ahle	A_b	0.923 ± 0.020	—	$0.93464^{+0.00005}_{-0.00007}$	$0.93464^{+0.00005}_{-0.00007}$	0.93463 ± 0.00006
aure	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	—	0.0738 ± 0.0004	0.0738 ± 0.0004	0.0737 ± 0.0004
n row	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0005	0.1032 ± 0.0005	0.1034 ± 0.0003
	R_c^0	0.1721 ± 0.0030	_	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006
	R_b^0	0.21629 ± 0.00066	-	0.21548 ± 0.00005	0.21548 ± 0.00005	0.21547 ± 0.00005
	\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	_
	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	_
	m_t [GeV]	173.20 ± 0.87	yes	173.53 ± 0.82	173.53 ± 0.82	$176.11^{+2.88}_{-2.35}$
	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2757 ± 10	yes	2755 ± 11	2755 ± 11	2718_{-43}^{+49}
	$\alpha_s(M_Z^2)$	_	yes	$0.1190^{+0.0028}_{-0.0027}$	$0.1190^{+0.0028}_{-0.0027}$	0.1190 ± 0.0027

G fitter

Pull values after the fit

- No pull value exceeds deviations of more than 3σ (consistency of SM)
- Small values for M_H, A_c, R⁰_c, m_c and m_b indicate that their input accuracies exceed the fit requirements
- Largest deviations in the b-sector:
 A^{0,b}_{FB} with 2.5σ
 (small dependence on M_H)
- R^{0}_{b} using one-loop calculation: 0.8 σ
- inclusion of M_H: largest effect on M_W
 prediction shifted by ~13 MeV

Indirect determination of EWPO

- Shown are pull values for
 - full fit
 - indirect determination
 - measurement
- deviations from indirect determination
 - divided by total error (=error from indirect and measurement)
- Fit result agrees well with the measurements
- Prediction often more precise than the measurement

Indirect determination of EWPO

- Shown are pull values for
 - full fit
 - indirect determination
 - measurement
- deviations from indirect determination
 - divided by total error (=error from indirect and measurement)
- Fit result agrees well with the measurements
- Prediction often more precise than the measurement
- Consistent picture when combining asymmetry observables

Goodness of Fit

 $\chi^{2}_{min}/ndf = 18.1/14 \rightarrow p-value = 0.20$

- value of χ^2_{min} does not change much due to inclusion of M_H measurement
- without M_H measurement: χ^2_{min} /ndf = 16.7/13 \rightarrow naive p-value = 0.21
- p-value = 0.18 (exp) ± 0.02 (theo)

Scan of the $\Delta \chi^2$ profile versus M_H

- blue line: full SM fit
- grey band: fit without M_H measurement
- fit without M_H input gives $M_H = 94 {}^{+25}_{-22} \text{ GeV}$
- \blacktriangleright consistent within 1.3σ with measurement

Determination of M_H removing all sensitive observables except the given one:

Tension (2.5 σ) between $A^{0,b}_{FB}$, $A_{1ep}(SLD)$ and M_W visible

Indirect Determination: W Mass

Scan of the $\Delta \chi^2$ profile versus M_W

- M_H measurement allows for precise constraint of M_W
- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H and fermion masses

- Consistency between total fit and SM fit with minimal input
- Fit result for the indirect determination of M_W :

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{\text{theo}}$$

 $= 80.359 \pm 0.011_{tot}$

More precise than the direct measurements

The Effective Weak Mixing

Scan of the $\Delta \chi^2$ profile versus $\sin^2 \theta^{l}_{eff}$

- all observables sensitive to sin²θ^l_{eff} removed from fit
- M_H measurement allows for precise constraint of sin²θ^l_{eff}
- also shown: SM fit with minimal input

 $\begin{aligned} \sin^2 \theta_{\text{eff}}^{\ell} &= 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ &\pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}}. \end{aligned}$

 $= 0.23150 \pm 0.00010_{tot}$

More precise than the direct determination from LEP/SLD measurements

Indirect Determination: Top Mass

Scan of the $\Delta \chi^2$ profile versus m_t

- consistency with direct measurements
- M_H measurement allows for better constraint of m_t

 $m_t = 175.8^{+2.7}_{-2.4} \text{ GeV}$ Tevatron average: $m_t = 173.20 \pm 0.87 \text{ GeV}$ LHC average: $m_t = 173.29 \pm 0.95 \text{ GeV}$

W and Top Mass

Impressive consistency of the SM

W and Top Mass

Impressive consistency of the SM

2. BSM and Higgs Coupling

Oblique Corrections

- If energy scale of NP is high, BSM physics appears dominantly through vacuum polarization corrections
 - Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak form factors
 - $\Delta\rho$, $\Delta\kappa$, Δr parameters, appearing in: M_W^2 , $sin^2\theta_{eff}$, G_F , α , etc.
- Electroweak fit sensitive to BSM physics through oblique corrections x

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_S S + c_T T + c_U U$

- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: extended parameters (VWX), correction to Z→bb couplings.

[Burgess et al., Phys. Lett. B326, 276 (1994)] [Burgess et al., Phys. Rev. D49, 6115 (1994)]

Constraints on S, T and U

- S,T,U obtained from EW fit
- SM reference chosen to be $M_{H,ref} = 126 \text{ GeV}$ $m_{t,ref} = 173 \text{ GeV}$ defines (0, 0, 0)
 - S,T depend logarithmically on M_H
- Fit result:
 - $S = 0.03 \pm 0.10$
 - $T = 0.05 \pm 0.12$
 - $U = 0.03 \pm 0.10$

with large correlation between S and T

- Stronger constraints from fit with U=0
- Also available for $Z \rightarrow b\overline{b}$

No indication of new physics

Constrains on 2HDM, LED, Technicolor...

Modified Higgs Couplings

- Study of potential deviations of Higgs couplings from SM
 - BSM modelled as extension of SM through effective Lagrangian
- Consider leading corrections only
- Popular benchmark model:
 - Scaling of Higgs-vector boson (κ_V) and Higgs-fermion couplings (κ_F)
 - No additional loops in the production or decay of the Higgs, no invisible Higgs decays and undetectable width
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (κ_V)
 - Involving the longitudinal d.o.f.
- Most BSM models: $\kappa_V < 1$
 - Additional Higgses typically give positive contribution to $M_{\it W}$

$$L_{V} = \frac{h}{v} \left(2\kappa_{V} m_{W}^{2} W_{\mu} W^{\mu} + \kappa_{V} m_{Z}^{2} Z_{\mu} Z^{\mu} \right)$$
$$L_{F} = -\frac{h}{v} \left(\kappa_{F} m_{t} \bar{t}t + \kappa_{F} m_{b} \bar{b}b + \kappa_{F} m_{\tau} \bar{\tau}\tau \right)$$

H $K_{V}, (k_{V})$ Z/W K_{V}^{2} Z/W

Modified Higgs Couplings

• Main effect on EWPO due to Higgs coupling to gauge bosons (κ_V)

$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right), \quad T = -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \log\left(\frac{\Lambda^2}{M_H^2}\right), \quad \Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|}}$$

Espinosa et al [arXiv:1202.3697]

- Cut-off scale A represents mass scale of new states that unitarize longitudinal gauge boson couplings (as required in this model)
- λ is varied between 1-10 TeV, nominally fixed to 3 TeV (4 πv)

Reproduction of Experimental Results

Higgs Couplings Results

- Private LHC combination:
 - $\kappa_V = 1.00 \pm 0.06$
 - $\kappa_F = 0.89 \pm 0.13$
 - perfectly consistent with SM
- Results from stand-alone EW fit
 - $\kappa_V = 1.03^{+0.04}_{-0.03}$ ($\lambda = 1 \text{ TeV}$)

•
$$\kappa_V = 1.02^{+0.02}_{-0.02} (\lambda = 3 \text{ TeV})$$

• $\kappa_V = 1.02^{+0.02}_{-0.01}$ ($\lambda = 10 \text{ TeV}$)

- EW fit sofar more precise result for κ_V than current LHC experiments
- EW fit results in positive deviation of κ_V from 1.0 (Many BSM models: $\kappa_V < 1$)

Higgs Couplings Results

• EW fit: positive deviation of κ_V from one driven by small tension in W mass prediction versus measurement

3. Prospects of the EW Fit

ILC Scheme | O www.form-one.de

Roman Kogler

Future Prospects of the EW Fit

Two future scenarios are studied

► LHC Run-2+3

- Final W and top mass measurements, combination with LEP and Tevatron $\delta M_W: 15 \rightarrow 8$ MeV, $\delta m_t: 0.9 \rightarrow 0.6$ GeV
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 4.5% precision
- (possibly optimistic scenario, but not impossible)

ILC with GigaZ option

- Operation of ILC at lower energies like Z-pole or WW threshold. Allows to perform precision measurements of EW sector
- At Z-pole, several billion Z's can be studied within 1-2 months
- $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 1% precision

Common improvement: theory

- Assuming ~25% of today's theoretical uncertainties on M_W and $\sin^2 \theta_{eff}^l$ Implies three-loop EW calculations!
- ► δM_W (4→1 MeV), $\delta \sin^2 \theta_{eff}^1$ (4.7×10-5 → 1×10-5)

Future Prospects of the EW Fit

In following: central values of input measurements adjusted to M_H = 126 GeV

	Experimental	input $[\pm 1\sigma]$	
Parameter	Present LHC	ILC/Giga	Z
M_H [GeV]	$0.4 \rightarrow < 0.1$	< 0.1	
M_W [MeV]	$15 \longrightarrow 8$	→ 5	WW threshold
$M_Z [{ m MeV}]$	2.1 2.1	2.1	
$m_t [{ m GeV}]$	$0.9 \longrightarrow 0.6$	→ 0.1	tt threshold scan
$\sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	16 16	→ 1.3	$\delta A^{0,f}_{LR} \colon 0^{-3} \rightarrow 0^{-4}$
$\Delta \alpha_{\rm had}^5 M_Z^2 \ [\cdot 10^{-5}]$	$10 \rightarrow 4.7$	4.7	low energy data
$R_l^0 \ [\cdot 10^{-3}]$	25 25	→ 4	high statistics on Z-pole
$\delta_{ m th} M_W ~[{ m MeV}]$	$4 \longrightarrow 1$	1	three-loop calculations
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^\ell$ [$\cdot 10^{-5}$]	$4.7 \longrightarrow 1$	1 _	

Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.

- no theory uncertainty: $M_H = 126 \pm 7 \text{ GeV}$
- ▶ present day theory uncertainty: $M_H = 126^{+20}_{-17} \text{ GeV}$
- future theory uncertainty (Rfit): $M_H = 126 + \frac{10}{-9} \text{ GeV}$

If EWPO central values unchanged, i.e. keep favouring low value of M_H (94 GeV), ~5 σ discrepancy with measured Higgs mass

- Huge reduction of uncertainty on indirect determinations of m_t , M_W , and $\sin^2\theta_{eff}^1$ by a factor of 3 or more
- Assuming central values of m_t and M_W do not change (at ILC), a deviation between the SM prediction and the direct measurements would be prominently visible

- Breakdown of individual contributions to errors of M_W and $\sin^2\theta_{eff}^l$
- Parametric uncertainties (not the full fit)

	error due to uncertainty $(\pm 1\sigma)$									
Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m pred}$	δ_{exp}	δM_H	δM_Z	δm_t	$\delta\Deltalpha_{ m had}$	$\delta lpha_S$	$\delta_{ m theo}$
	Present	15	10.3	6.3	0.2	2.6	5.2	1.8	1.7	4.0
M_W [MeV]	LHC	8	5.8	4.8	—	2.6	3.6	0.9	1.7	1.0
	ILC	5	3.8	2.8	—	2.6	0.6	0.9	0.4	1.0
	Present	16	9.5	4.8	0.2	1.5	2.8	3.5	1.0	4.7
$\sin^2 \theta_{ m eff}^{\ell}$ (°)	LHC	16	4.1	3.1	—	1.5	1.9	1.6	1.0	1.0
	ILC	1.3	3.2	2.2	—	1.5	0.3	1.6	0.2	1.0

 $^{(\circ)}$ In units of 10^{-5} .

- Breakdown of individual contributions to errors of M_W and $\sin^2\theta_{eff}^l$
- Parametric uncertainties (not the full fit)

				er	ror due t	to uncert	tainty (±	$=1\sigma)$		
Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m pred}$	$\delta_{ m exp}$	δM_H	δM_Z	δm_t	$\delta\Delta\alpha_{\rm had}$	$\delta lpha_S$	$\delta_{ m theo}$
	Present	15	10.3	6.3	0.2	2.6	5.2	1.8	1.7	4.0
M_W [MeV]	LHC	8	5.8	4.8	—	2.6	3.6	0.9	1.7	1.0
	ILC	5	3.8	2.8	—	2.6	0.6	0.9	0.4	1.0
	Present	16	9.5	4.8	0.2	1.5	2.8	3.5	1.0	4.7
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	LHC	16	4.1	3.1	—	1.5	1.9	1.6	1.0	1.0
	ILC	1.3	3.2	2.2	—	1.5	0.3	1.6	0.2	1.0
	10-5									

 $^{(\circ)}$ In units of 10^{-5} .

- Breakdown of individual contributions to errors of M_W and $\sin^2\theta_{eff}^l$
- Parametric uncertainties (not the full fit)

				er	ror due t	to uncert	tainty $(\exists$	$=1\sigma)$		
Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m pred}$	$\delta_{ m exp}$	δM_H	δM_Z	δm_t	$\delta\Deltalpha_{ m had}$	$\delta lpha_S$	$\delta_{ m theo}$
	Present	15	10.3	6.3	0.2	2.6	5.2	1.8	1.7	4.0
M_W [MeV]	LHC	8	5.8	4.8	—	2.6	3.6	0.9	1.7	1.0
	ILC	5	3.8	2.8	—	2.6	0.6	0.9	0.4	1.0
	Present	16	9.5	4.8	0.2	1.5	2.8	3.5	1.0	4.7
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	LHC	16	4.1	3.1	—	1.5	1.9	1.6	1.0	1.0
	ILC	1.3	3.2	2.2	—	1.5	0.3	1.6	0.2	1.0
$(0)\mathbf{T} \cdot \mathbf{C}$	10-5									

 $^{(\circ)}$ In units of 10^{-5} .

- M_W and $\sin^2\theta_{eff}^l$ will be sensitive probes of new physics
- At the ILC/GigaZ: precision of M_Z will become important again! (current uncertainty: $\delta M_Z = 2.1$ MeV)

- ▶ For STU parameters, improvement of factor of >5 is possible at ILC
- Again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- Competitive results between EW fit and Higgs coupling measurements! (level of 1%.)

Summary

Paradigm shift for EW fit:

υн

Ĥ

From Higgs mass prediction to consistency tests of the Standard Model

LHC has only added one parameter to the EW fit

Knowledge of M_H dramatically improves SM prediction of key observables

Higgs coupling measurements and ILC/GigaZ

Expect further exploration of Higgs couplings in the EW fit

Additional Material

Error on M_W

rel. uncertainty: $\delta x = (\delta M_{VV,X})^2 / (\Sigma_i \delta M_{VV,i}^2)$

δM_W (indirect) = 11 MeV

δM_w (exp) = 15 MeV

Error on sin²(\theta^{I}_{eff})

rel. uncertainty: $\delta x = (\delta M_{W,X})^2 / (\Sigma_i \delta M_{W,i^2})$

$\delta sin^2(\theta_{eff})$ (indirect) = $I \cdot I0^{-4}$

 $\delta sin^{2}(\theta_{eff}) (exp) = 1.6 \cdot 10^{-4}$

$\alpha_{s}(M_{z})$ from $Z \rightarrow$ hadrons

- Determination of α_s at NNNLO
- most sensitivity through total hadronic cross section o⁰had and the partial leptonic width R⁰
- Theory uncertainty obtained by scale variation, per-mille level

$$\alpha_s(M_Z) = 0.1191 \pm 0.0028 \,(\text{exp.}) \pm 0.0001 \,(\text{theo.})$$

• Good agreement with value from τ decays, also at N³LO

Improvement in precision only with ILC/GigaZ expected

ILC with GigaZ

A future linear collider would tremendously improve the precision of electroweak observables

- tt threshold
 - obtain m_t indirectly from production cross section: $\delta m_t = 1 \rightarrow 0.1 \text{ GeV}$
- Z peak measurements
 - polarised beams, uncertainty $\delta A^{0,f}_{LR}: |0^{-3} \rightarrow |0^{-4}$ translates to $\delta \sin^2 \theta^l_{eff}: |0^{-4} \rightarrow |.3 \cdot |0^{-5}$
 - high statistics: 10^9 Z decays: $\delta R^{0}_{\text{lep}}: 2.5 \cdot 10^{-2} \rightarrow 4 \cdot 10^{-3}$
- WW threshold
 - from threshold scan: δM_W : 15 \rightarrow 6 MeV
- Low energy data
 - $\Delta \alpha_{had}$: more precise cross section data for low energy $(\sqrt{s} < 1.8 \text{ GeV})$ and around $c\overline{c}$ resonance (BES-III), improved α_s , improvements in theory: $10^{-4} \rightarrow 4.7 \cdot 10^{-5}$

Measurements at the Z-Pole

Total cross section

• Express in terms of partial decay width of initial and final state

Measurements at the Z-Pole

Definition of Asymmetry

Distinguish axial and axial-vector couplings of the Z

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = \frac{2g_{V,f} g_{A,f}}{g_{V,f}^{2} + g_{A,f}^{2}}$$

Directly related to $\sin^{2} \theta_{\text{eff}}^{f\bar{f}} = \frac{1}{4Q_{f}} \left(1 + \mathcal{R}e\left(\frac{g_{V,f}}{g_{A,f}}\right)\right)$

Observables

- In case of no beam polarisation (LEP) use final state angular distribution to define forward/backward asymmetry
- Polarised beams (SLC): define left/right asymmetry

 $A_{FB}^{0,\ell}$

• Measurements:

$$A_{FB}^{f} = \frac{N_{F}^{f} - N_{B}^{f}}{N_{F}^{f} + N_{B}^{f}} \qquad A_{FB}^{0,f} = \frac{3}{4}A_{e}A_{f}$$

$$A_{LR}^{f} = \frac{N_{L}^{f} - N_{R}^{f}}{N_{L}^{f} + N_{R}^{f}} \frac{1}{\langle |P|_{e} \rangle} \quad A_{LR}^{0} = A_{e}$$

 A_{ℓ}

 $A_{FB}^{0,b}$

 $A_{FB}^{0,c}$

The Electromagnetic Coupling

Running of the EM coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ (better than 1%)
- Conventionally parametrised as $(\alpha(0) = \text{fine structure constant})$

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$$

Evolution with renormalisation scale

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Leptonic term known up to three loops for $q^2 \gg m_l$ [M. Steinhauser, Phys. Lett. B429, 158 (1998)]
- ▶ Top quark contribution known up to two loops, small: -0.7 · 10⁻⁴
- Hadronic contribution difficult, cannot be obtained from pQCD alone
 - ▶ analysis of low energy e⁺e⁻ data
 - usage of pQCD if lack of data

$$\Delta \alpha_{\rm had}(M_Z^2) = (274.2 \pm 1.0) \cdot 10^{-4}$$

[M. Davier et al., Eur. Phys. J. C71, 1515 (2011)]

Radiator Functions

- Partial widths are defined inclusively: they contain QCD and QED contributions
- Corrections can be expressed as radiator functions $R_{A,f}$ and $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$
[D. Bardin, G. Passarino, "The Standard

- High sensitivity to the strong coupling α_s
- Recently full four-loop calculation of QCD Adler function became available (N³LO)
- Much reduced scale dependence
- Theoretical uncertainty of 0.1 MeV, compare to experimental uncertainty of 2.0 MeV

Calculation of Mw

- Full EW one- and two-loop calculation of fermionic and bosonic contributions
- One- and two-loop QCD corrections and leading terms of higher order corrections
- Results for Δr include terms of order
 O(α), O(αα_s), O(αα_s²), O(α²_{ferm}),
 O(α²_{bos}), O(α²α_smt⁴), O(α³mt⁶)
- Uncertainty estimate:
 - missing terms of order O(α²α_s): about 3 MeV (from O(α²α_sm_t⁴))
 - electroweak three-loop correction *O*(α³): < 2 MeV
 - three-loop QCD corrections $O(\alpha \alpha_s^3)$: < 2 MeV
 - Total: $\delta M_W \approx$ 4 MeV

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

The global electroweak SM fit

Calculation of $sin^2(\theta_{eff})$

- Effective mixing angle: $\sin^2 \theta_{\text{eff}}^{\text{lept}} = \left(1 - M_{\text{W}}^2 / M_{\text{Z}}^2\right) (1 + \Delta \kappa)$
- Two-loop EW and QCD correction to Δκ known, leading terms of higher order QCD corrections
- fermionic two-loop correction about 10⁻³, whereas bosonic one 10⁻⁵
- Uncertainty estimate obtained with different methods, geometric progression:

 $\mathcal{O}(\alpha^2 \alpha_{\rm s}) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_{\rm s}).$ $\mathcal{O}(\alpha^2 \alpha_{\rm s}) \text{ beyond leading } m_{\rm t}^4 \quad 3.3 \dots 2.8 \times 10^{-5}$ $\mathcal{O}(\alpha \alpha_{\rm s}^3) \qquad 1.5 \dots 1.4$ $\mathcal{O}(\alpha^3) \text{ beyond leading } m_{\rm t}^6 \qquad 2.5 \dots 3.5$ $\text{Total: } \delta \sin^2 \theta^1_{\rm eff} \approx 4.7 \ 10^{-5}$

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)] [M Awramik et al., JHEP 11, 048 (2006)]

New Calculation of $sin^2(\theta^{bb}_{eff})$

- Calculation of sin²θ_{eff} for b-quarks more involved, because of top quark propagators in the Z→bb vertex
- Investigation of known discrepancy between sin²θ_{eff} from leptonic and hadronic asymmetry measurements
- Two-loop EW correction only recently completed, effect of O(10⁻⁴)
- Now sin²θ^{bb}_{eff} known at the same order as sin²θ_{eff} for leptons and light quarks
- Uncertainty assumed to be of same size as for sin²θ_{eff}:

$\delta \sin^2 \theta^{bb}_{eff} \approx 4.7 \ 10^{-5}$

[M Awramik et al, Nucl. Phys. B813, 174 (2009)]

New Calculation of R⁰_b

Full two-loop calculation of $Z \rightarrow b\overline{b}$

[A. Freitas et al., JHEP 1208, 050 (2012) Erratum ibid. 1305 (2013) 074]

• The branching ratio R^{0}_{b} : partial decay width of $Z \rightarrow b\overline{b}$ and $Z \rightarrow q\overline{q}$

$$R_b \equiv \frac{\Gamma_b}{\Gamma_{\text{had}}} = \frac{\Gamma_b}{\Gamma_d + \Gamma_u + \Gamma_s + \Gamma_c + \Gamma_b} = \frac{1}{1 + 2(\Gamma_d + \Gamma_u)/\Gamma_b}$$

- \blacktriangleright Contribution of same terms as in the calculation of $sin^2\theta^{bb}{}_{eff}$
 - \rightarrow cross-check the two results, found good agreement
- Two-loop corrections are small compared to experimental uncertainty (6.6 · 10⁻⁴) and one-loop corrections

	I-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	I+2-loop QCD correction to gauge boson selfenergies
$\frac{M_{\rm H}}{[{\rm GeV}]}$	$\mathcal{O}(\alpha) + \mathrm{FSR}_{\alpha,\alpha_{\mathrm{s}},\alpha_{\mathrm{s}}^{2}}$ $[10^{-4}]$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{array}$	$ \mathcal{O}(\alpha_{\text{ferm}}^2) + \text{FSR}_{\alpha_s^3, \alpha \alpha_s, m_b^2 \alpha_s, m_b^4} \\ [10^{-4}] $	$ \begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2) \\ [10^{-4}] \end{array} $
100	-35.66	-0.856	-2.496	-0.407
200	-35.85	-0.851	-2.488	-0.407
400	-36.09	-0.846	-2.479	-0.406

47

