Perturbative and numerical aspects of string sigma models

based on 1407.4788, 1505.00783, 1508.07331, 1511.01091, 1601.04670 with M. Bianchi, V. Forini, B. Leder, E. Vescovi.

Lorenzo Bianchi

Universität Hamburg

March 1st, 2016

Perturbative and numerical aspects of string sigma models

based on 1407.4788, 1505.00783, 1508.07331, 1511.01091, 1601.04670 with M. Bianchi, V. Forini, B. Leder, E. Vescovi.

Lorenzo Bianchi

Universität Hamburg

March 1st, 2016 Trieste, GATIS workshop

Perturbative and numerical aspects of string sigma models

based on 1407.4788, 1505.00783, 1508.07331, 1511.01091, 1601.04670 with M. Bianchi, V. Forini, B. Leder, E. Vescovi.

Lorenzo Bianchi

Universität Hamburg

March 1st, 2016 Trieste, GATIS workshop Hamburg

01/03/2016 1 / 9

01/03/2016 2 / 9

AdS/CFT integrability

$\mathcal{N}=4$ Super Yang-Mills. SCFT in 4d	$\frac{INTEGRABILITY}{(N_c \to \infty)}$	Type <i>IIB</i> superstring in $AdS_5 \times S^5$
		、 、
	$\lambda = rac{g^2 N_c}{4\pi}$	/

AdS/CFT integrability

$$\lambda = \frac{g^2 N_c}{4\pi}$$

Folded spinning string [Gubser, Klebanov, Polyakov, 2002; Frolov, Tseytlin, 2002; Belitsky, Gorsky, Korchemsky, 2006; Frolov, Tirziu, Tseytlin, 2007; Kruczenski, Roiban, Tirziu, Tseytlin, 2008]

Lorenzo Bianchi (HH)

Perturbation and numerics of string sigma models

01/03/2016 2 / 9

Scattering amplitudes

Lorenzo Bianchi (HH)

Scattering amplitudes

Square and pentagon [Drummond, Henn, Korchemsky, Sokatchev, 2007]

$$\begin{split} \log F_4 &= \frac{1}{4} \Gamma_{\rm cusp}(a) \log^2 \left(\frac{x_{13}^2}{x_{24}^2} \right) + \text{ const} \\ \log F_5 &= -\frac{1}{8} \Gamma_{\rm cusp}(a) \sum_{i=1}^5 \log \left(\frac{x_{i,i+2}^2}{x_{i,i+3}^2} \right) \log \left(\frac{x_{i+1,i+3}^2}{x_{i+2,i+4}^2} \right) + \text{ const} \end{split}$$

イロン イヨン イヨン イヨン

Scattering amplitudes

GKP string

- Free energy:
- Dispersion relation: E
- S-matrix:

$$\log Z = \Gamma_{cusp}(\lambda)V$$

ion: $E_i = E_i(p_i) \Leftrightarrow \{E(\mathbf{u}), p(\mathbf{u})\}$
 $S(\mathbf{u}, \mathbf{v}) \Leftrightarrow P(\mathbf{u}|\mathbf{v})$

Square and pentagon [Drummond, Henn, Korchemsky, Sokatchev, 2007]

$$\begin{split} \log F_4 &= \frac{1}{4} \Gamma_{\rm cusp}(a) \log^2 \left(\frac{x_{13}^2}{x_{24}^2} \right) + \text{ const} \\ \log F_5 &= -\frac{1}{8} \Gamma_{\rm cusp}(a) \sum_{i=1}^5 \log \left(\frac{x_{i,i+2}^2}{x_{i,i+3}^2} \right) \log \left(\frac{x_{i+1,i+3}^2}{x_{i+2,i+4}^2} \right) + \text{ const} \end{split}$$

Hexagon and higher [Basso, Sever, Vieira, 2013]

$$\mathcal{W}_{\mathsf{hep}} = \sum_{\psi_1,\psi_2} P(0|\psi_1) P(\psi_1|\psi_2) P(\psi_2|0)$$
$$\mathcal{W}_{\mathsf{hep}} = \sum_{\psi_1,\psi_2} P(0|\psi_1) P(\psi_1|\psi_2) P(\psi_2|0)$$
$$\times e^{-E_1 \tau_1 + ip_1 \sigma_1 + im_1 \phi_1 - E_2 \tau_2 + ip_2 \sigma_2 + im_2 \phi_2}$$

Perturbing the string theory side

Motivation

- Perturbative calculations are essential to give a solid foundation and inspiration to any integrability-based construction, and thus to guarantee its predictivity.
- Non-trivial checks of quantum integrability of the AdS/CFT systems.
- The choice of the regularization is crucial to find agreement with results from integrability (not clear for higher loops).

イロト イポト イヨト イヨト

Perturbing the string theory side

Motivation

- Perturbative calculations are essential to give a solid foundation and inspiration to any integrability-based construction, and thus to guarantee its predictivity.
- Non-trivial checks of quantum integrability of the AdS/CFT systems.
- The choice of the regularization is crucial to find agreement with results from integrability (not clear for higher loops).

イロト イポト イヨト イヨト

Strategy

The Lagrangian

Asymptotic spectrum

- Bosons: 1 mode $\phi m^2 = 1$; 2 modes $x, x^* m^2 = 1/2$; 5 modes $y^a m^2 = 0$.
- Fermions: 8 modes θ^i , $\eta^i m^2 = \frac{1}{4}$.

$$\begin{split} S_{\text{cusp}} &= g \int dt ds \left\{ |\partial_t x + \frac{1}{2} x|^2 + \frac{1}{z^4} |\partial_s x - \frac{1}{2} x|^2 + \left(\partial_t z^M + \frac{1}{2} z^M + \frac{i}{z^2} z_N \eta_i \left(\rho^{MN} \right)_j^i \eta^j \right)^2 \right. \\ &+ \frac{1}{z^4} \left(\partial_s z^M - \frac{1}{2} z^M \right)^2 + i \left(\theta^i \partial_t \theta_i + \eta^i \partial_t \eta_i + \theta_i \partial_t \theta^i + \eta_i \partial_t \eta^i \right) - \frac{1}{z^2} \left(\eta^i \eta_i \right)^2 \\ &+ 2i \left[\frac{1}{z^3} z^M \eta^i (\rho^M)_{ij} \left(\partial_s \theta^j - \frac{1}{2} \theta^j - \frac{i}{z} \eta^j \left(\partial_s x - \frac{1}{2} x \right) \right) \right. \\ &+ \frac{1}{z^3} z^M \eta_i (\rho^{\dagger}_M)^{ij} \left(\partial_s \theta_j - \frac{1}{2} \theta_j + \frac{i}{z} \eta_j \left(\partial_s x - \frac{1}{2} x \right)^* \right) \right] \bigg\} \end{split}$$

$$z = e^{\phi}, \qquad z^{M} = e^{\phi} u^{M}, \qquad M = 1, \dots 6$$
$$u^{a} = \frac{y^{a}}{1 + \frac{1}{4}y^{2}}, \qquad u^{6} = \frac{1 - \frac{1}{4}y^{2}}{1 + \frac{1}{4}y^{2}}, \qquad y^{2} \equiv \sum_{a=1}^{5} (y^{a})^{2}, \qquad a = 1, \dots, 5$$

Summary of perturbative computations

Free energy (cusp anomaly)

- Computed at two loops in $AdS_5 imes S^5$ [Giombi, Ricci, Roiban, Tseytlin, Vergu, 2009]
- Computed at two loops in $AdS_4 \times \mathbb{CP}^3$ [LB, Bianchi, Bres, Forini, Vescovi, 2014]
 - Confirmed a conjecture for the exact form of the effective coupling $h(\lambda)$, necessary ingredient to grant the predictivity of integrability. [Gromov, Sizov, 2014]

イロト イポト イヨト イヨト

Summary of perturbative computations

Free energy (cusp anomaly)

- Computed at two loops in $AdS_5 imes S^5$ [Giombi, Ricci, Roiban, Tseytlin, Vergu, 2009]
- Computed at two loops in $AdS_4 \times \mathbb{CP}^3$ [LB, Bianchi, Bres, Forini, Vescovi, 2014]
 - Confirmed a conjecture for the exact form of the effective coupling $h(\lambda)$, necessary ingredient to grant the predictivity of integrability. [Gromov, Sizov, 2014]

Quantum dispersion relation

- Computed at one loop in $AdS_5 \times S^5$ [Giombi, Ricci, Roiban, Tseytlin, 2010]
- Computed at one loop in $\textit{AdS}_4\times \mathbb{CP}^3$ [LB, M. Bianchi, 2015]
 - The mapping of the weak and strong coupling excitations is subtle due to SO(6)-symmetry breaking.
 - Up to these subtleties agreement with the integrability predictions is found.

イロン イロン イヨン イヨン 油

Summary of perturbative computations

Free energy (cusp anomaly)

- Computed at two loops in $AdS_5 imes S^5$ [Giombi, Ricci, Roiban, Tseytlin, Vergu, 2009]
- Computed at two loops in $AdS_4 \times \mathbb{CP}^3$ [LB, Bianchi, Bres, Forini, Vescovi, 2014]
 - Confirmed a conjecture for the exact form of the effective coupling $h(\lambda)$, necessary ingredient to grant the predictivity of integrability. [Gromov, Sizov, 2014]

Quantum dispersion relation

- Computed at one loop in $AdS_5 \times S^5$ [Giombi, Ricci, Roiban, Tseytlin, 2010]
- Computed at one loop in $\textit{AdS}_4\times \mathbb{CP}^3$ [LB, M. Bianchi, 2015]
 - The mapping of the weak and strong coupling excitations is subtle due to SO(6)-symmetry breaking.
 - Up to these subtleties agreement with the integrability predictions is found.

S-matrix

- Computed at tree-level for four and six legs in $AdS_5 imes S^5$ [LB, M. Bianchi 2015]
- Computed at one loop in $AdS_5 imes S^5$ for xx-scattering [LB, M. Bianchi 2015]
 - The calculation agrees with integrability as long as massless modes are not involved

Discretization and numerics

[LB, M. Bianchi, V.Forini, B.Leder, E. Vescovi, 2016]

Main idea

Discretize the two-dimensional string sigma model on a lattice and study the previous observables at finite coupling (still in the planar limit)

Various technical complications: fermion doubling, quartic fermionic interactions...

イロト イポト イヨト イヨト

Discretization and numerics

[LB, M. Bianchi, V.Forini, B.Leder, E. Vescovi, 2016]

Main idea

Discretize the two-dimensional string sigma model on a lattice and study the previous observables at finite coupling (still in the planar limit)

Various technical complications: fermion doubling, quartic fermionic interactions...

Hubbard-Stratonovich

$$\exp\left\{-g\int dtds\left[-\frac{1}{z^{2}}\left(\eta^{i}\eta_{i}\right)^{2}+\left(\frac{i}{z^{2}}z_{N}\eta_{i}\rho^{MN^{i}}_{j}\eta^{j}\right)^{2}\right]\right\}$$

~ $\int D\phi D\phi_{M} \exp\left\{-g\int dtds\left[\frac{1}{2}\phi^{2}+\frac{\sqrt{2}}{z}\phi\eta^{2}+\frac{1}{2}(\phi_{M})^{2}-i\frac{\sqrt{2}}{z^{2}}\phi_{M}z_{N}\left(i\eta_{i}\rho^{MN^{i}}_{j}\eta^{j}\right)\right]\right\}$

$$\mathcal{L} = |\partial_t x + \frac{m}{2}x|^2 + \frac{1}{z^4} |\partial_s x - \frac{m}{2}x|^2 + (\partial_t z^M + \frac{1}{2}z^M)^2 + \frac{1}{z^4} (\partial_s z^M - \frac{m}{2}z^M)^2 + \frac{1}{2}\phi^2 + \frac{1}{2}(\phi_M)^2 + \psi^T O_F \psi$$
$$\int D\psi \ e^{-\int dtds \ \psi^T O_F \psi} = \Pr O_F \equiv (\det O_F \ O_F^{\dagger})^{\frac{1}{4}} = \int D\xi D\bar{\xi} \ e^{-\int dtds \ \bar{\xi}(O_F O_F^{\dagger})^{-\frac{1}{4}} \xi}$$

There is a sign problem.

イロト イポト イヨト イヨト

Sign problem

Figure: Histograms for the frequency of the real part of the phase factor $e^{i\theta}$ of the Pfaffian Pf $O_F = |(\det O_F)^{\frac{1}{2}}| e^{i\theta}$, based on the ensembles generated at g = 30, 10, 5, 1 $(g = \frac{\sqrt{\lambda}}{4\pi})$.

For very large g our simulations are reliable.

イロト イヨト イヨト イヨト

The mass of the excitation x

Figure: Effective mass plot $m_x^{\text{eff}} = \frac{1}{a} \ln \frac{C_x(t)}{C_x(t+a)}$, as calculated from the correlator $C_x(t) = \sum_{s_1, s_2} \langle x(t, s_1) x^*(0, s_2) \rangle$ of bosonic fields x, x^* in presence of Wilson terms.

<ロ> (日) (日) (日) (日) (日)

The mass of the excitation x

Figure: Effective mass plot $m_x^{\text{eff}} = \frac{1}{a} \ln \frac{C_x(t)}{C_x(t+a)}$, as calculated from the correlator $C_x(t) = \sum_{s_1, s_2} \langle x(t, s_1) x^*(0, s_2) \rangle$ of bosonic fields x, x^* in presence of Wilson terms.

THANK YOU

イロン イヨン イヨン イヨン

Cusp anomaly [Aharony, Bergman, Jafferis, Maldacena, 2008]

Prediction from the Bethe Ansatz [Gromov, Vieira, 2008]

$$f_{
m ABJM}(\lambda) = \left. rac{1}{2} \, f_{\mathcal{N}=4}(\lambda_{
m YM}) \,
ight|_{rac{\sqrt{\lambda_{
m YM}}}{4\pi}
ightarrow h(\lambda)}$$

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

Cusp anomaly [Aharony, Bergman, Jafferis, Maldacena, 2008]

Prediction from the Bethe Ansatz [Gromov, Vieira, 2008]

$$f_{
m ABJM}(\lambda) = \left. rac{1}{2} \, f_{\mathcal{N}=4}(\lambda_{
m YM}) \,
ight|_{rac{\sqrt{\lambda_{
m YM}}}{4\pi}
ightarrow h(\lambda)}$$

Conjecture for $h(\lambda)$ [Gromov, Sizov, 2014]

$$\lambda = \frac{\sinh^2 2\pi h(\lambda)}{2\pi} {}_3F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, \frac{3}{2}; -\sinh^2 2\pi h(\lambda)\right)$$
$$h(\lambda) \sim \sqrt{\frac{\tilde{\lambda}}{2}} - \frac{\log 2}{2\pi} + \mathcal{O}\left(\frac{e^{-2\pi\sqrt{2\lambda}}}{2\pi}\right) \quad \lambda \gg 1 \qquad \tilde{\lambda} = \lambda - \frac{1}{24} = \frac{T^2}{8} \quad \text{[Bergman, Hirano, 2009]}$$

No genuine two-loop contribution.

* (1) * (2) * (2) * (2) * (2) *

Cusp anomaly [Aharony, Bergman, Jafferis, Maldacena, 2008]

Prediction from the Bethe Ansatz [Gromov, Vieira, 2008]

$$f_{
m ABJM}(\lambda) = \left. rac{1}{2} \, f_{\mathcal{N}=4}(\lambda_{
m YM}) \,
ight|_{rac{\sqrt{\lambda_{
m YM}}}{4\pi}
ightarrow h(\lambda)}$$

Conjecture for $h(\lambda)$ [Gromov, Sizov, 2014]

$$\begin{split} \lambda &= \frac{\sinh^2 2\pi h(\lambda)}{2\pi} \, _3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{2};-\sinh^2 2\pi h(\lambda)\right) \\ h(\lambda) &\sim \sqrt{\frac{\tilde{\lambda}}{2}} - \frac{\log 2}{2\pi} + \mathcal{O}\left(e^{-2\pi\sqrt{2\lambda}}\right) \quad \lambda \gg 1 \qquad \tilde{\lambda} = \lambda - \frac{1}{24} = \frac{T^2}{8} \quad \text{[Bergman, Hirano, 2009]} \end{split}$$

No genuine two-loop contribution.

Cusp anomaly at strong coupling

$$f_{ABJM}\left(\tilde{\lambda}\right) = \sqrt{2\tilde{\lambda}} - \frac{5\log 2}{2\pi} - \frac{K}{4\pi^2\sqrt{2\tilde{\lambda}}} + \mathcal{O}\left(\tilde{\lambda}^{-1}\right)$$

Confirmed by two-loop computation [LB, M. Bianchi, A. Bres, V. Forini, E. Vescovi, 2014]

One-loop S-matrix by unitarity [LB, Hoare, Forini, 2013; Engelund, McKeown, Roiban, 2013.]

01/03/2016 2 / 4

(ロ) (回) (三) (三)

One-loop S-matrix by unitarity [LB, Hoare, Forini, 2013; Engelund, McKeown, Roiban, 2013.]

Standard unitarity in 4d [Bern, Dixon, Dunbar, Kosower, 1994]

Generalized unitarity in 4d [Bern, Dixon, Kosower, 1998; Britto, Cachazo, Feng, 2004]

One-loop S-matrix by unitarity [LB, Hoare, Forini, 2013; Engelund, McKeown, Roiban, 2013.]

Standard unitarity in 2d [LB, Forini, Hoare, 2013]

Glue together the two amplitudes and uplift the integral with

$$i\pi\delta^+(p^2-m^2)
ightarrow rac{1}{p^2-m^2-i\epsilon}$$

Generalized unitarity in 2d [Engelund, McKeown, Roiban, 2013]

$$\begin{array}{ccc} T & \stackrel{tS}{=} T \\ T & T \end{array} \begin{array}{ccc} T & \stackrel{TS}{=} T \\ \frac{1}{2m^2} T^{SF}_{NR}(p,p) T^{FQ}_{SN}(p,p') + \frac{1}{2m'^2} T^{FS}_{MR}(p,p') T^{SN}_{SN}(p',p') & T^{SQ}_{MR}(p,p') T^{FR}_{SN}(p',p') \\ \frac{1}{2m^2} T & \stackrel{TS}{=} T \\ \frac{1}{2m^2} \widetilde{T} & \stackrel{T}{\leftarrow} T + \frac{1}{2m'^2} T \stackrel{(e)}{\to} \widetilde{T} \\ \end{array}$$

01/03/2016 3 / 4

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

The result

$$T^{(1)} = \frac{\theta}{2\pi} (T \textcircled{o} T - T \textcircled{o} T) + \frac{i}{2} T \textcircled{o} T + \frac{1}{16\pi} (\frac{1}{m^2} \widetilde{T} \textcircled{o} T + \frac{1}{m'^2} T \textcircled{o} \widetilde{T})$$

<ロ> (日) (日) (日) (日) (日)

Solution to the sign problem

01/03/2016 4 / 4