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Motivation

> Using the methods of the recently proposed Quantum Spectral Curve (QSC)
originating from integrability of N = 4 Super—Yang-Mills theory analytically
continue the scaling dimensions of twist-2 operators and reproduce the so-called
pomeron eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation with
nonzero conformal spin.

> Derive the Faddeev-Korchemsky Baxter equation for the Lipatov's spin chain
known from the integrability of the gauge theory in the BFKL limit.

» Find a way for systematic expansion in the scaling parameter in the BFKL regime.
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BFKL regime and twist-2 operators in the N =4 SYM

> We consider important class of operators
trZ (D )% Z + permutations

For the case with nonzero conformal spin there are also derivatives in the
orthogonal directions.
2 .. .
» BFKL scaling is determined by: S —+ —1, g — 0 and g_ﬁ is finite. Leading order

. . . 2\ T
BFKL approximation corresponds to resumming all the powers <SL+1) .

> Regge trajectories S(A) corresponding to the twist-2 operator tr Z(D )5 Z and
different values of g (Gromov, Levkovich-Maslyuk, Sizov'15)
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Spectral problem of the N = 4 supersymmetric Yang-Mills theory

> Y-system

(1+ Yas+1 (u))(1+ Ya,sfl(u—))

Yaos(u+1/2)Yqs(u+1i/2) =

» T-functions
o Ta,s+lTa,sfl

Yas = .
' TcHrl,s Tafl,s

> Hirota equations

TctsTcT,s = Ta,s+lTa,sfl + Ta+1,sTa71,s-

(14 1/Ya+1,s (w))(1+ l/Yafl,s (u)) '
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Generalities of the QSC

» The QSC gives the generalization of the Baxter equation describing the 1-loop
spectrum of twist-2 operators to all loops. The spectrum of the N = 4 SYM can
be described by 16 basic Q-functions, which we denote by P, P¢, Q; and Qj,
where a,j =1,...,4.

» The AdS/CFT Q-system is formed by 28 Q-functions which we denote as
QA (u) where A, J C{1,2,3,4} are two ordered subsets of indices. They
satisfy the Q Q-relations

_ O+ — — +
QanQAaabir = QAQ‘IQAW - QAauQAbu '
— 0Ot - - +
QainQajy = QA\IiQA\Ij - QAlIiQA\Ij '
— 0Ot - + —
QAa\IQA\Ii - QAauiQAu - QA\IQAam

and reshuffling a pair of individual indices (small letters a, b, 1,j) we can express
all Q-functions through 8 basic ones. In addition we also impose the constraints
Qoo = Qu2341234 = 1.

> Another effect which happens at finite coupling is that the poles of Q-functions
in the lower-half plane, described above, resolve into cuts [—2g, 2g] (where
g= VA/4m). Finally, we have to introduce new objects — the monodromies g}
and wj; corresponding to the analytic continuation of the functions P, and Q;
under these cuts.
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Generalities of the QSC

> Here we present our new result which allows for the direct transition between two
equivalent systems. As a consequence of the Q Q-relations, P's and Q's are

related through the following 4th order finite-difference equation

0=Q*¥ Dy — Q+2 [D1 _ P£1+2]Pa[+4]DO] +

%Q [Dz 4+ P.PHD, + PaP‘le]Dl] tee

where
pil+2l  pal+2]
P! ... P*
Do = det pl-2  pal-2 |
pi=4 . pAA
pll+4]
pil+2
D) = det P1[72]
pll—4

P
D 1= det Pl[iz]

pil+4]
1

plli—4]

p4l+al

P4

P4[72] '
P4[74]

The four solutions of this equation give four functions Q;. (Say about the similar

equation for QJ.)
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Pp-system

» We can focus on a much smaller closed subsystem constituted of 8 functions Pq
and P9, having only one short cut on the real axis on their defining sheet

Po = pap(WP? , B =p®(u)Py,

and P’s satisfy the orthogonality relations PoP% = 0.

> The analytic continuation for the u-functions is given by

Hab (LL) = Hab (u + i)-

4 N\ N\
P, S 75
2g+i Mb— 2g+i
Por— . N
B 29 29
P S 7 /‘Lab
a
2g—i _ 2y
29 —2i 29 —2i
\ J \ J

> The other equations make the Pp-system closed

flab — Hab = Paf)b - PbPu .
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Quw-system

> Knowing Py and Q; we construct Q 43 which allows us to define wy;

wij = Qg Qpji

> One can show that Qg defined in this way will have one long cut. Also yj, with
short cuts, happens to be periodic (DJ; wl), similarly to its counterpart with
long cuts [iqp! Finally, their discontinuities are given by

@y — wij = QiQy — QO
Qi = wy;Q .

and Q's satisfy the orthogonality relations Qij =0.

'd N\ )
294+ 2i Qj - 2g+2i Wik

(:)'
2o — Y
Q]m //ZD—

Q; ik
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Asymptotics of P and Q-functions and their relation to global S°> and AdSs

charges

A Al
A,A2
AzAS

A A4

“J1JptIa2 J1+)2T
Aru gt p! A1u+1+?2 :
N A2u711+12*13 p2 N A2u+l1*12+13*2
| AgutERE gi T oAz
A4u+11+212+13 A4u7J17J%7]372
+A—S1—S, | —AES 45y
Biu— =2 Ql B *u— 2
+A+S +Sy—2 ; G P
- Bou 2 Q - B u LI
~ B3 u —A—S1+S) Q3 — B3 u+A+51—52—2
—AFS1—Sp—2 Q* 4 FA=S1+Sy
Bau— 7 B*u—— =2
(Di4J2=Ts =S +1° = (A+81-1°) (U1 +J2 = Ja +S2+1)* — (A= S1 +1)?)
=161 (Ji+J2+1) (J1—Js) (J2—Js+ 1)
(0r=T2 4T =S = 17 = (A+81-1°) (U1 = Ja+ 3+ S2 = 1)* = (A= S, + 1)?)
+16i (Ji—Jo—1) (J1+Js) (Ja—Jz + 1)
(=T =Ja+8: =1 = (A +5=1%) (i —Ja = Js = S2a = 1)’ — (A—$1 +1)°)
=161 (Ji—Jo—=1)(J1—Js) (J2+Js+ 1)
((J1+Iz+]3*52+1) —(A—S;+1) ((11+]2+I3+52+1)2*(A+51*1)2)

+161(J1+Jo+1) (Ji+J3) (J2+J3 +1)
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QSC for twist-2 operators with zero conformal spin

> For the twist-2 operators in question, the charges are fixed to Jo = J3 = S =0

and J1 = 2, and we will use the notation S; = S = —1 + w. These operators
belong to the so called left-right symmetric sector for which we have the following
reduction

Pe=x*P;, Q' =x"Q;,
> The asymptotics are simplified to

Po ~ (Aju? Aut Az Asu),,

Q =~ (Biu T Byt Byu Y Bau Y );
and
AtAs = —A AL — 9—;((5—w)2 A ((1+w)? - A?),
AxAz = +A A% = %((1 —w)2— A2 ((3—w)2 — A?).

> Prescription for analytic continuation in S. In order to analytically continue the
QSC to non-physical domain of non-integer S one should relax the power-like
behavior of g1, (required for all physical states) allowing for the following
leading and subleading terms in the asymptotics

+A-2 + e27tu

W12 ~ const u const u 1S 4
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Leading Order and Next-to-leading Order solutions of the Pu-system

> After some demanding calculations we get the result for the P-functions

b L, 2Aw
1= ut
1 2Aw
Py~ — + 3
u uw

Py~ AL + AW,

. ( .
A2 —1)2 c A2 —1)2A
Py ~ A‘[‘O)u _HAT— 1) + (Af]u—i— —lf’l _HAT— 1A w.

,

96u

2
where A = & and
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Passing to Qw-system
> Substituting the obtained LO P-functions into the 4-th order Baxter equation for
Q-functions we get a very nice factorization in the LO

_ A2 A2
(u+2i)°D + (uf2i)2D7172u27¥} {D+D’1—2—% Q-o,

where D = e'%u s the shift operator.

> Thus, we get the equation for Q; and Q3 in the LO

Q A2 —1—8u?
) 4112

which coincides with the Faddeev-Korchemsky Baxter equation for the Lipatov's

+Q; +Qf " =0,
spin chain after a redefinition Q = % It has the following solutions

Qi3(u) =Qo(uw) {71 coth(7tu) F tan %} + Qo (—u) sec %

1 A A 1
=2iusF (iu+1,-—=, = +2;1,2,1
Qo (u) ius 2<1u+ '3 ) —0—2 )

> In the NLO the 4-th order Baxter equation also factorizes and we obtain the
following 2nd order Baxter equation

2_1_ 2 A2—1 A — 2
Qj(A 8u +w( ) u>+

412 2u?

+Q;*<17LW/2> Q++< lW/?>:o, j=1,3.

u—+1
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QSC for twist-2 operators with nonzero conformal spin

> Nonzero conformal spin means that S = n.. These operators do not belong to
the so called left-right symmetric sector anymore. But there is still some
symmetry

P(n,u) = x*Pc(—n,u),  Qi(m,u) =x¥Q;(—n,u),
> The asymptotics are simplified to

Po ~ (Aju? Axu! As Asu)g,

QJ ~ (BluAfn;rlfw ’ B2uA+n;3+w ' B3u7Afn2+17w ’ B4u_ 7A7n273+w )]
and
AAL = (5w (A (1w (A ),
AT = é((l_wﬁ_w—n)z)(B—W)z—(A+n)2),
AAT = (W) (A (W) (A n)?),
AAt = %((57W)2*(A*“)2)((1+W)zf(A+n) ).
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Leading Order and Next-to-leading Order solutions of the Pu-system with
conformal spin

> After some demanding calculations we get the result for the P-functions

b 1, 2w
R ut '
1 2Aw
PQZf 3
u

u
Ps~AY + AW,
A

0) i((A2—1)2—2(A2+1)n2+n4)+
{0y

P ~
4 b 961
Ay, el i(A2—1)2—2(A%+ D)n? + n*)A .y
4 uA 48u3
where A = £ and
iA
) = 712—4(& 2 42((A—n)P2—1)((A+n)2—1A—1).
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Passing to Qw-system with conformal spin

> Substituting the obtained LO P-functions into the 4-th order Baxter equation for
Q-functions we get a very nice factorization in the LO.
» Thus, we get the equation for Q; and Q3 in the LO

(A—n)2—1—8u?
Q 4u?

and for Q2 and Q* in the LO

o (A+n)2—1—8u?
4u?

> In the NLO the 4-th order Baxter equations also factorize and we obtain the
following 2nd order Baxter equations

)2 _1—_8u2
Qj<(A n)?—1—8u JrW((A n)2u4)/\ u)+

+Q+Q =0

+Q +Q " =0

42

+Q;*<1—wa2>+Q++<1+lw/2> 0, j=1,3.

u-—+1i

42

+Q (1— W"/2) + Qi (1+ ‘W/2> -0, j=24

u—1 u-+1

2_1_ 2 2 _ _ a2
Qj<(A+n) 1-8u +W((A+n)2u41)/\ u)+
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Calculation of the LO BFKL dimension

> From the NLO 2nd order Baxter equation for Q; and Q3 one can note the
following relation between these functions in the LO and NLO

T = e + 0, j=13.
Q¥ 2w

The key idea of finding the BFKL dimension is to obtain this ratio independently.

» On the other hand we can use the trick

Qs — Qs 42+Q3+Q3:
2¢/u? — 492
_ | Q— Qs
Vu?2 —4g2
from where we conclude that we need to express Q3 () in the LO in terms of
Q1 () and Q3(u) in the case n = 0 (or Q?(u) and Q*(u) in the case . # 0).

> |t can be done with some effort, which requires to find w-functions in the first
nonvanishing order. This calculation gives the result

Q3 =

Aw  A?w?
TR + ... | + regular,
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Calculation of the LO BFKL dimension

» Combining the previously obtained results, we get

~ 21 () w(A)A

w
" + regular + O (w?),

where
1 A A

B 1
viar=v(3-2)+e(3+5) -2
» Thus, comparing two independent results, we obtain the relation

—AY(AIA =1,

which gives exactly the well-known LO BFKL dimension

4N 2 2 2 2

> Performing the same calculations for the case with nonzero conformal spin, we

obtain

(W(A+n)+¥(A—n))+0(g%) =

——w (R -3 ) e (R 5) s+ oled)

2 2

= (3-2) v (3+3) r v+ 007,
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Numerical results for the case n =1
Using the method of Quantum Spectral Curve and asymptotics of the Q-functions
described above we are able to numerically calculate (Gromov, Levkovich-Maslyuk,
Sizov'15) the following quantities.
> The Regge trajectory S(A) for g = 1/10.

9=0.1, n=1, S(A)
-03 1

-04

-05

-086

-07

-08

-09
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Numerical results for the case n =1

> Dependence of S on g for fixed A = 0.45.

—-1.000

A=0.45, n=1

> Numerical fitting of the BFKL eigenvalues in the first four orders for A = 0.45.

0.10 0.15

Fit of numerics

Exact perturbative

LO 0.509195398361183370691859 | 0.509195398361183370691860
NLO —9.9263626361061612225 —9.9263626361061612225
NNLO 151.9290181554014 ?
NNNLO —2136.77907308 ?
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Conclusions and outlook

> In our work we managed to reproduce the dimension of twist-2 operator with
conformal spin of N = 4 SYM theory in the 't Hooft limit in the leading order
(LO) of the BFKL regime directly from exact equations for the spectrum of local
operators called the Quantum Spectral Curve.

> This is one of a very few examples of all-loop calculations, with all wrapping
corrections included, where the integrability result can be checked by direct
Feynman graph summation of the original BFKL approach.

> The ultimate goal of the BFKL approximation to QSC would be to find an
algorithmic way of generation of any BFKL correction (NNLO
, NNNLO, etc) on Mathematica program, similarly
to the one for the weak coupling expansion via QSC.
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Thanks for your attention!
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