Integrability and Exact results in $\mathcal{N} = 2$ gauge theories

Elli Pomoni

DESY Theory

March 1, 2016

GATIS spring 2016 workshop

arXiv:1310.5709 arXiv:1406.3629 with Vladimir Mitev arXiv:1511.02217 with Vladimir Mitev work in progress

Elli Pomoni (DESY Theory)

Integrability and Exact results in $\mathcal{N} = 2$

March 1, 2016 1 / 37

Motivation: The success story for $\mathcal{N}=4$ SYM

Possible to compute observables in the **strong coupling regime** and in some cases to even obtain **Exact results** (for any value of the coupling).

- AdS/CFT (gravity/sigma model description)
- Integrability (The spectral problem is solved) at large N_c

• Localization (Exact results: e.x. Circular WL) for any N_c

Which of these properties/techniques are transferable to **more realistic** gauge theories in 4D with less SUSY?

2 / 37

Localization

Localization works for $\mathcal{N} = 2$ theories (Pestun)

The path integral localizes to (a Matrix model) an ordinary integral!

$$Z_{S^4} = \int \left[D\Phi \right] e^{-S[\Phi]} = \int da \left| \mathcal{Z}(a) \right|^2$$

An example of exact observable:

$$W(\lambda) = 2 \frac{h(\sqrt{\lambda})}{\sqrt{\lambda}} = \begin{cases} 1 + \frac{\lambda}{8} + \frac{\lambda^2}{192} + \frac{\lambda^3}{9216} + \cdots & \lambda << 1 \\ \sqrt{\frac{2}{\pi}} \lambda^{-\frac{3}{4}} e^{\sqrt{\lambda}} + \cdots & \lambda >> 1 \end{cases}$$

the $\mathcal{N} = 4$ SYM circular Wilson loop in the planar limit.

• Even if the observable cannot be written in a **closed form**, one can always **expand** both from the weak and from the strong coupling.

3 / 37

Integrability (only in the planar limit)

- Perturbation theory: integrable spin chain (Minahan, Zarembo, ...).
- Gravity side: integrable 2D sigma model (Bena, Polchinski, Roiban,...)
- The spectral problem is solved $\forall \lambda$ (Gromov, Kazakov, Vieira,...).
- Now other observables: scattering amplitudes, correlation functions...

Integrability: 2-body problem \rightarrow *n*-body problem

Exact result $(\forall \lambda)$ is due to symmetry:

• The dispersion relation $\Delta - |r| = \sqrt{1 + h(g) \sin^2(\frac{p}{2})}$ and the 2-body **S- matrix**

are fixed due to the $SU(2|2) \subset PSU(2,2|4)$ symmetry (Beisert).

• For
$$\mathcal{N}=2$$
 theories we also have it: $SU(2|2) \subset SU(2,2|2)!$

AdS/CFT

AdS duals only for a sparse set of 4D theories:

- D3 branes in critical string theory. (e.g. orbifolds)
- Adjoint and bifundamental matter. (Flavors in the probe approx.)

It has been argued that:

- $\mathcal{N} = 1$ SQCD in the Seiberg **conformal** window is dual to 6d non-critical backgrounds of the form $AdS_5 \times S^1$. (Klebanov-Maldacena, Fotopoulos-Niarchos-Prezas, Murthy-Troost,...)
- $\mathcal{N} = 2$ SCQCD is dual to 8*d non-critical* string theory in a background with an $AdS_5 \times S^1$ factor (Gadde-EP-Rastelli)

Checked at the level of the **chiral spectrum**. For non-protected quantities there is nothing to compare with! Discover the string from the "bottom up".

$$AdS_5 imes S^1 imes \mathcal{M}$$

- Probe the $AdS_5 \times S^1$ factor of the geometry: **purely gluonic sector**
- Probe the compact $S^1 imes \mathcal{M}$ factor: sectors with quarks

$$f_1(g^2) = rac{R^4_{AdS}}{(2\pilpha')^2}\,, \quad f_2(g^2) = rac{R^4_{S^1}}{(2\pilpha')^2}\,, \quad f_3(g^2) = rac{R^4_{\mathcal{M}}}{(2\pilpha')^2}$$

using:

- Perturbation theory
- The spin chain description (Symmetry and Integrability)
- Localization

Elli Pomoni (DESY Theory)

The main statement

The main statement

• Every $\mathcal{N} = 2$ superconformal gauge theory has a **purely gluonic** SU(2,1|2) sector **integrable in the planar limit**

$$H_{\mathcal{N}=2}\left(g\right)=H_{\mathcal{N}=4}\left(\mathbf{g}\right)$$

One Exact Effective coupling (relative finite renormalization of g)

$$\mathbf{g}^2 = f(g^2) = g^2 + g^2 (Z_{\mathcal{N}=2} - Z_{\mathcal{N}=4})$$

we compute using localization

$$W_{\mathcal{N}=2}\left(g^{2}
ight)=W_{\mathcal{N}=4}\left(\mathbf{g}^{2}
ight)$$

3 AdS/CFT: effective string tension $f(g^2) = T_{eff}^2 = \left(\frac{R^4}{(2\pi\alpha')^2}\right)_{eff}$

Obtain any observable classically in the factor $AdS_5 \times S^1$ of the geometry by replacing $g^2 \rightarrow f(g^2)$.

Elli Pomoni (DESY Theory)

Review

2 Integrability of the purely gluonic SU(2,1|2) Sector

S Localization and the Exact Effective couplings

Onclusions and outlook

9 / 37

Review

э

$\mathcal{N}=2$ SuperConformal QCD (SCQCD)

• ADE classification $\mathcal{N}=2$ SCFT: finite/affine Dynkin diagrams

One parameter family $\mathcal{N} = 2$ SCFT: product gauge group $SU(N) \times SU(N)$ and **two exactly marginal couplings** g and \check{g} (Gadde-EP-Rastelli)

• For $\check{g} \rightarrow 0$ obtain $\mathcal{N}=2$ SCQCD with $N_f=2N$

• For $\check{g} = g$ one finds the well-known \mathbb{Z}_2 orbifold of $\mathcal{N} = 4$ SYM, with an $AdS_5 \times S^5/\mathbb{Z}_2$ gravity dual (Kachru-Silverstein, Lawrence-Nekrasov-Vafa,...)

$\mathcal{N} = 2$ SuperConformal QCD (SCQCD)

 $\mathcal{N} = 2$ vector multiplet **adjoint** in SU(N):

$$\lambda_{\alpha}^{1} \stackrel{A_{\mu}}{\underset{\phi}{\overset{\lambda^{2}}{\overset{\lambda}{}}}}, \quad \lambda^{\mathcal{I}} = \left(\begin{array}{c} \lambda^{1} \\ \lambda^{2} \end{array}\right), \quad \mathcal{I} = 1, 2$$

 $\mathcal{N} = 2$ hypermultiplet **fundamental** in SU(N) and $U(N_f)$:

$$\begin{array}{ccc} \psi_{\alpha \ i} & \\ q_{i} & & \left(\tilde{q}\right)_{i}^{*} \\ \left(\tilde{\psi}_{\alpha}\right)_{i}^{\dagger} & \\ \end{array}, \quad Q^{\mathcal{I}} = \left(\begin{array}{c} q \\ \tilde{q}^{*} \end{array}\right), \quad i = 1, \dots N_{f} \end{array}$$

 $\left(eta=rac{g_{YM}^3}{16\pi^2}\left(N_f-2N
ight)
ight)$ when $N_f=2N$ exactly marginal coupling!

It should have an AdS dual description with $\lambda \equiv g_{YM}^2 \bigwedge_{\mathfrak{S} \to \mathfrak{S}} \left(\frac{R_{AdS}}{\ell_{\mathfrak{S}}} \right)^4$.

Elli Pomoni (DESY Theory)

The theory admits a *Veneziano* expansion:

$$N
ightarrow \infty$$
 and $N_f
ightarrow \infty$

with
$$\frac{N_f}{N}$$
 and $\lambda = g_{YM}^2 N$ kept fixed.

(Veneziano 1976)

Generalized double line notation:

Consequences of the Veneziano expansion

The two diagrams are of the same order $N \sim N_f$

Operators will mix:

$$\mathcal{O} \sim \mathsf{Tr}\left(\phi^\ell ar{\phi}
ight) + \mathsf{Tr}\left(\phi^{\ell-1} q_i ar{q}^i
ight)$$

 ${\sf Closed \ string \ states} \longrightarrow {\tt ``generalized \ single-trace''} \ {\sf operators}$

$$\operatorname{Tr}\left(\phi^{k_1}\mathcal{M}^{\ell_1}\phi^{k_2}\dots\phi^{k_n}\mathcal{M}^{\ell_n}\right), \quad \mathcal{M}^{a}_{\ b} \equiv \sum_{i=1}^{N_f} q^{a}_{\ i} \ \bar{q}^{i}_{\ b}, \quad a, b = 1,\dots, N$$

One parameter family of $\mathcal{N} = 2$ SCFT $SU(N) \times SU(N)$

$${\cal N}=$$
 2 vector multiplet adjoint in ${\it SU}({\it N})$: $~~~ig(\phi,~\lambda^{\cal I}_lpha,~{\cal F}_{lphaeta}ig)^{a}~_{b}$

 $\mathcal{N} = 2$ vector multiplet adjoint in SU(N): $(\check{\phi}, \check{\lambda}^{\mathcal{I}}_{\alpha}, \check{\mathcal{F}}_{\alpha\beta})^{a}_{b}$

 $\mathcal{N} = 2$ hypermultiplet bifundamental in SU(N) and SU(N):

$$\left(oldsymbol{Q}^{\mathcal{I}},\,\psi_{lpha},\,ar{ar{\psi}}_{lpha}
ight)^{\hat{\mathcal{I}}}\,{}^{a} \qquad \qquad \hat{\mathcal{I}}=1,2 \quad SU(2)_{L}$$

For $\check{g} \to 0$: $\mathcal{N} = 2$ SCQCD *plus* a decoupled free vector multiplet. symmetry enhancement: $SU(2)_L \times SU(N) \to U(N_f = 2N)$, $(\hat{\mathcal{I}}, \check{a}) \to i$

15 / 37

Constructing the Spin Chain

 $\mathcal{N}=4$ SYM

 \forall site hosts a "letter" from the single **ultrashort singleton** multiplet:

$$V_{F} = \mathcal{D}^{n}\left(X, \ Y, \ Z, \ ar{X}, \ ar{Y}, \ ar{Z}, \ \lambda^{A}_{lpha}, \ ar{\lambda}^{\dot{lpha}}_{A}, \ \mathcal{F}_{lphaeta}, \ ar{\mathcal{F}}_{\dot{lpha}\dot{eta}}
ight)$$

The state space \forall lattice site is $\mathcal{V}_{\ell} = V_F$ and the total space is $\otimes_{\ell}^{L} \mathcal{V}_{\ell}$.

$\mathcal{N}=2~\text{SCQCD}$

The state space at each lattice site is ∞ -dim, spanned by

 $\mathcal{V}_{\ell} = \{ \mathcal{V} \,, \quad \bar{\mathcal{V}} \,, \quad \mathcal{H} \,, \quad \bar{\mathcal{H}} \}$

$$\mathcal{V} = \mathcal{D}^{n}\left(\phi\,,\,\lambda_{\alpha}^{\mathcal{I}}\,,\,\mathcal{F}_{\alpha\beta}\right)^{a}{}_{b} \quad,\quad \mathcal{H} = \mathcal{D}^{n}\left(Q^{\mathcal{I}}\,,\,\psi\,,\,\bar{\psi}\right)^{a}{}_{i}$$

The color index structure imposes **restrictions** on the total space $\otimes_{\ell}^{L} \mathcal{V}_{\ell}$: $\cdots \phi \phi \phi \phi \phi \phi \phi \cdots \phi \phi \phi \phi \phi \cdots$

Elli Pomoni (DESY Theory)

Elementary excitations come from the vector multiplet

$\mathcal{N}=4$ SYM

- Choice of vacuum $tr Z^{\ell}$ with $\Delta r = 0$ (= magnon number).
- 8 + 8 elementary excitations with $\Delta r = 1$:

$$\lambda^{\mathcal{A}}_{lpha},\, X,ar{X},Y,ar{Y},\,ar{Y},\, \mathcal{D}_{lpha\dot{lpha}}$$
 with $\mathcal{A}=1,\ldots,4$ the $SU(4)$ index.

• $\Delta - r \geq 2$: \overline{Z} , $\mathcal{F}_{\alpha\beta}$, ... are composite states.

$\mathcal{N}=2~\text{SCQCD}$

- Choice of **vacuum** $\operatorname{tr} \phi^{\ell}$ with $\Delta r = 0$
- 4 + 4 elementary excitations with $\Delta r = 1$:

$$\left[egin{array}{c} \lambda^{\mathcal{I}}_{lpha} ext{ and } \mathcal{D}_{lpha \dot{lpha}} \end{array}
ight]$$
 with $\mathcal{I}=1,2$ the $SU(2)_R$ index.

• $\Delta - r \geq 2$: \mathcal{M} , $\mathcal{F}_{\alpha\beta}$... are composite states.

17 / 37

"Regularizing" $\mathcal{N}=2$ SCQCD by gauging the flavor

• Consider the $SU(N) \times SU(N)$ $\mathcal{N} = 2$ SCFT (SCQCD $\check{g} \rightarrow 0$)

 \check{g}/g should be thought of as a **regulator**.

 We regularize by inserting ds between the Qs giving the dimeric impurities the possibility to split:

$$\cdots \phi \phi \, \mathbf{Q} \, \check{\phi} \, \check{\phi} \cdots \check{\phi} \, \check{\phi} \, \bar{\mathbf{Q}} \, \phi \phi \cdots$$

• Now the Qs can move independently

$$\Delta - r = 1$$

and can be interpreted as elementary excitations!

• Back to 8 + 8 elementary excitations with $\Delta - r = 1$:

 $Q^{\mathcal{I}\hat{\mathcal{I}}}$, $\lambda^{\mathcal{I}}_{\alpha}$ and $\mathcal{D}_{\alpha\dot{\alpha}}$ with \mathcal{I} the $SU(2)_R$ and $\hat{\mathcal{I}}$ the $SU(2)_L$ index.

Beisert's all loop Scattering Matrix

 $\mathcal{N}=4$ SYM

3

< ∃ →

< □ > < 同 > < 三 >

Beisert's all loop Scattering Matrix

 $\mathcal{N}=4$ SYM

• The broken generators (Goldstone excitations) and correspond to gapless magnons.

Beisert's all loop Scattering Matrix

 $\mathcal{N}=4$ SYM

- The **broken generators** (Goldstone excitations) and correspond to **gapless magnons**.
- These magnons transform in the fundamental of SU(2|2)

$$\Delta - |r| = 2C = \sqrt{1 + h(g)\sin^2\left(rac{p}{2}
ight)}$$

• The two-body S-matrix is fixed by Beisert's centrally extended $SU(2|2) \times SU(2|2)$ symmetry. (Beisert)

$\mathcal{N}=2$ all loop Scattering Matrix

- ∢ 同 ▶ - ∢ 三

$\mathcal{N}=2$ all loop Scattering Matrix

Choice of vacuum $tr\phi^{\ell}$:

The broken generators \rightarrow Goldstone excitations \rightarrow Gapless magnons Non-existing generators \rightarrow non-Goldstone excitations \rightarrow Gapped magnons

$\mathcal{N}=2$ all loop Scattering Matrix

Choice of vacuum $tr\phi^{\ell}$:

The broken generators \rightarrow Goldstone excitations \rightarrow Gapless magnons Non-existing generators \rightarrow non-Goldstone excitations \rightarrow Gapped magnons

$$2 C_{\lambda,\mathcal{D}} = \sqrt{1 + 8\mathbf{g}^2 \sin^2\left(\frac{p}{2}\right)} \qquad 2 C_{Q,\psi} = \sqrt{1 + 2(\mathbf{g} - \check{\mathbf{g}})^2 + 8\mathbf{g}\check{\mathbf{g}}\sin^2\left(\frac{p}{2}\right)} \\ \mathbf{g}^2 = f(g,\check{g}) = g^2 + \cdots \qquad (\mathbf{g} - \check{\mathbf{g}})^2 = f_1(g,\check{g}) = (g - \check{g})^2 + \cdots \\ \check{\mathbf{g}}^2 = \check{f}(g,\check{g}) = \check{g}^2 + \cdots \qquad \mathbf{g}\check{\mathbf{g}} = f_2(g,\check{g}) = g\check{g} + \cdots$$

The S-matrix of highest weight states in $SU(2)_{\alpha}$ and $SU(2)_{L}$ is fixed by the centrally extended SU(2|2). (Gadde, Rastelli)

Integrability of the purely gluonic SU(2,1|2) Sector

A diagrammatic observation

The **only possible way** to make diagrams with **external fields in the vector mult.** different from the $\mathcal{N} = 4$ ones is to make a loop with hyper's and then in this loop let a **checked vector** propagate! (EP-Sieg)

The same with $\mathcal{N} = 4$ SYM

Different from $\mathcal{N} = 4$ SYM but finite !!

A diagrammatic observation

The **only possible way** to make diagrams with **external fields in the vector mult.** different from the $\mathcal{N} = 4$ ones is to make a loop with hyper's and then in this loop let a **checked vector** propagate! (EP-Sieg)

The same with $\mathcal{N} = 4$ SYM

Different from $\mathcal{N} = 4$ SYM but finite !!

Novel Regularization prescription:

(Arkani-Hamed-Murayama)

For every individual $\mathcal{N} = 2$ diagram subtract its $\mathcal{N} = 4$ counterpart.

Operator renormalization in the Background Field Gauge

Background Field Method: $\varphi \rightarrow A + Q$

where A the classical background and Q the quantum fluctuation

$$g_{bare} = Z_g \ g_{ren} \ , \ A_{bare} = \sqrt{Z_A} \ A_{ren} \ , \ Q_{bare} = \sqrt{Z_Q} \ Q_{ren} \ , \ \xi_{bare} = Z_{\xi} \ \xi_{ren}$$

In the Background Field Gauge $Z_g \sqrt{Z_A} = 1$ and $Z_Q = Z_{\xi}$

24 / 37

Operator renormalization in the Background Field Gauge

Background Field Method: $\varphi \rightarrow A + Q$

where A the classical background and Q the quantum fluctuation

$$g_{bare} = Z_g \ g_{ren} \ , \ A_{bare} = \sqrt{Z_A} \ A_{ren} \ , \ Q_{bare} = \sqrt{Z_Q} \ Q_{ren} \ , \ \xi_{bare} = Z_{\xi} \ \xi_{ren}$$

In the Background Field Gauge $\boxed{Z_g \sqrt{Z_A} = 1}$ and $\boxed{Z_Q = Z_{\xi}}$

• Compute $\langle \mathcal{O}(y)A(x_1)\cdots A(x_L)\rangle$ for $\mathcal{O} \sim \operatorname{tr}(\varphi^L)$.

Background Field Method: No Q's outside, no A's inside!

- $\langle QQAA \rangle$ renormalize as $Z_Q^{2/2} Z_A^{2/2} \langle QQAA \rangle$
- The Q propagators as Z_Q^{-1}
- the \mathcal{O}^{ren} has two more $Z_Q^{1/2}$
- all Z_Q will cancel \forall individual diagram (We knew it gauge invariance!)

• Only
$$Z = Z_g^2 = Z_A^{-1}$$
, the combinatorics the same as in $\mathcal{N} = 4$:

$$\mathsf{H}_{\mathcal{N}=2}\left(g\right) = \mathcal{H}_{\mathcal{N}=4}\left(\mathbf{g}\right) \quad \text{with} \quad \mathbf{g}^{2} = f(g^{2},\check{g}^{2}) = g^{2} + g^{2}\left(Z_{\mathcal{N}=2} - Z_{\mathcal{N}=4}\right)$$

New non-Holomorphic vertices cannot contribute

$$\Gamma \,=\, \Gamma_{\textit{ren. tree}} + \Gamma_{\textit{new}} = \int d^{4}\theta \mathcal{F}\left(\mathcal{W}\right) + c.c. + \int d^{4}\theta d^{4}\bar{\theta} \,\mathcal{H}\left(\mathcal{W},\bar{\mathcal{W}}\right)$$

- $\Gamma_{ren.\ tree}$: vertex and self-energy renormalization all encoded in $Z = Z_g^2 = Z_A^{-1}$
- Γ_{new}: New non-Holomorphic vertices cannot contribute due to the non-renormalization theorem (Fiamberti, Santambrogio, Sieg, Zanon)

Localization and Exact Effective couplings

Elli Pomoni (DESY Theory)

Integrability and Exact results in $\mathcal{N} = 2$

March 1, 2016 27 / 37

Pestun Localization on the sphere

 $\langle \phi
angle = \operatorname{diag}\left(a_{1}, \ldots, a_{N}
ight)$

$$Z_{S^4} = \int [da] |Z_{Nek}(a, \epsilon_1 = r^{-1}, \epsilon_2 = r^{-1})|^2$$

 $\epsilon_{1,2} = r^{-1}$ omega deformation parameters serve as an **IR regulator**

$$\log\left(Z_{\textit{Nek}}(\textit{a},\epsilon_1,\epsilon_2)
ight) \sim -rac{1}{\epsilon_1\epsilon_2}\mathcal{F}(\textit{a})$$

• The UV divergences on the sphere are the same as those on \mathbb{R}^4 .

The circular wilson loop can be computed

$$W(g) = Z_{S^4}^{-1} \int [da] \left(\frac{1}{N} \sum_{i} e^{2\pi a_i} \right) |Z_{Nek}(a, r^{-1})|^2$$

and is given by a matrix model calculation.

• For $\mathcal{N}=4$ the matrix model is Gaussian (Erickson, Semenoff, Zarembo)

$$W_{\mathcal{N}=4}(g)=\frac{I_1(4\pi g)}{2\pi g}$$

• For $\mathcal{N} = 2$ theories we have a more complicated multi-matrix model

$$W_{\mathcal{N}=2}(g,\check{g}) = W_{\mathcal{N}=4}(f(g,\check{g}))$$

$$f(g,\check{g}) = \begin{cases} g^2 + 2(\check{g}^2 - g^2) \left[6\zeta(3)g^4 - 20\zeta(5)g^4(\check{g}^2 + 3g^2) \right] + \mathcal{O}(g^{10}) \\ \frac{2g\check{g}}{g+\check{g}} + \mathcal{O}(1) \end{cases}$$

• Checked with Feynman diagrams calculation (up to 4-loops)

$$\rightarrow$$

• Agrees with AdS/CFT (Gadde-EP-Rastelli) (Gadde-Liendo-Rastelli-Yan)

Hama-Hosomichi Localization on the ellipsoid

Deformation parameter $b=\sqrt{rac{r_1}{r_2}}=\sqrt{rac{\epsilon_2}{\epsilon_1}}$

$$Z_{S_b^4} = \int [da] |Z_{Nek}(a, \epsilon_1, \epsilon_2)|^2$$

• The **UV divergences** on the ellipsoid are the same as those on \mathbb{R}^4 .

• Two parameter IR regularization

Two supersymmetric wilson loops $\langle W^{\pm}_{\mathcal{N}=4}(g^2;b)\rangle = \frac{l_1(4\pi g b^{\pm 1})}{2\pi g b^{\pm 1}} + \mathcal{O}((b-1)^2)$

$$W^+_{\mathcal{N}=2}(g^2;b)
angle=W^+_{\mathcal{N}=4}(f(g^2,b))
angle$$

Cusp anomalous dimension and Bremsstrahlung function

Analytically continue to Minkowski signature $\phi = i \varphi$:

$$W_{arphi} \sim e^{-\Gamma_{\rm cusp}(arphi)\log rac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}}}$$
 with $\Lambda_{\rm UV}$ and $\Lambda_{\rm IR}$ the UV and IR cutoff.

• For big φ : light-like cusp anomalous dimension

 $\Gamma_{\rm cusp}(\varphi) \sim K\varphi$

leading log behavior of the anomalous dims of finite twist operators

$$\Delta - S \sim K \log S$$
 as $S
ightarrow \infty$

• For small φ :

$$\Gamma_{\rm cusp}(\varphi) = B\varphi^2 + \mathcal{O}(\varphi^4)$$

 $B \propto$ the energy emitted by an uniformly accelerating probe quark

Elli Pomoni (DESY Theory)

Bremsstrahlung function from localization

Follow (Lewkowycz-Maldacena) and (Fiol-Gerchkovitz-Komargodski)

$$B=\pmrac{1}{4\pi^2}rac{d}{db}\log \langle W^{\pm}(b)
angle _{ig|b=1}$$

• For $\mathcal{N} = 4$

$$B_{\mathcal{N}=4}(g^2) = rac{g I_2(4g\pi)}{\pi I_1(4g\pi)}$$

• For $\mathcal{N}=2$ theories we have a more complicated multi-matrix model

$$B_{\mathcal{N}=2}(g,\check{g}) = B_{\mathcal{N}=4}(f(g,\check{g}))$$

$$f(g,\check{g}) = \begin{cases} g^2 + 2\left(\check{g}^2 - g^2\right) \left[6\zeta(3)g^4 - 20\zeta(5)g^4\left(\check{g}^2 + 3g^2\right)\right] + \mathcal{O}(g^{10}) \\ \frac{2g\check{g}}{g+\check{g}} + \mathcal{O}(1) \end{cases}$$

The same up to four-loops and the leading term in strong coupling!

Elli Pomoni (DESY Theory)

March 1, 2016 32 / 37

Discrepancies from 5-loops and scheme dependance

$$\Delta f = f_B - f_W \sim \frac{\partial f}{\partial b} \propto \zeta(2)$$

• Discrepancies depend on how we cut-off the low energy momenta

Five loops: order
$$g^{10}$$

 $f_W^{(5)} = 2 \left(g_2^2 - g_1^2\right) g_1^4 \left[70\zeta(7)\left(g_2^4 + 5g_1^2g_2^2 + 8g_1^4\right) - 2(6\zeta(3))^2 \left(g_2^4 - g_1^2g_2^2 + 2g_1^4\right) - 40\zeta(2)\zeta(5)g_1^4\right]$

We compute on sphere, or on ellipsoid some fields become massive: scheme dependance due to IR regularization!

$$= -14\zeta(7) - 12\zeta(3)\zeta(4) + 36\zeta(2)\zeta(5)$$

Conclusions

Conclusions and outlook

- \forall observable in the purely gluonic SU(2, 1|2) sector $(AdS_5 \times S^1)$ take the $\mathcal{N} = 4$ answer and replace $g^2 \rightarrow \mathbf{g}^2 = f(g^2) = \frac{R^4}{(2\pi\alpha')^2}$ We need <u>more data</u>! (EP-Mitev), (Leoni-Mauri-Santambrogio) and (Fraser) $\Gamma_{cusp}(\varphi, g^2) = \Omega(\varphi, \mathcal{K}(g^2))$ (Grozin-Henn-Korchemsky-Marquard) Use the "Exact correlation functions" (Baggio-Niarchos-Papadodimas).
- Similar story for:
 - $\bullet\,$ asymptotically conformal $\mathcal{N}=2$ theories (massive quarks) and
 - $\mathcal{N} = 1$ SCFTs in 4D (EP-Roček)
 - theories in 3D: compare ABJ with ABJM (localization powerful in 3D)

Conclusions and Lessons

• Lesson: Think of $\mathcal{N} = 4$ SYM as a regulator! (A.Hamed-Murayama) The integrable $\mathcal{N} = 4$ model knows all about the combinatorics. For $\mathcal{N} = 2$: relative finite renormalization encoded in $\mathbf{g}^2 = f(g^2)$.

Even explicit calculation the Feynman diagrams is not so hard:
 Only calculate the difference:

$$\mathbf{g}^2 = f(g^2) = g^2 + g^2 (Z_{\mathcal{N}=2} - Z_{\mathcal{N}=4})$$

Only very particular finite integrals:

$$-\left(\begin{array}{c} 1\\ 1\\ 1\end{array}\right) - \left(\begin{array}{c} 2n-1\\ n\end{array}\right) \zeta(2n-1)\frac{1}{p^2}$$
(Broadhurst)

Thank you!