Yangian-type symmetries of non-planar on-shell diagrams

Rouven Frassek

GATIS workshop 2016

Based on work to appear with David Meidinger

Scattering amplitudes in $\mathcal{N} = 4$ SYM

Tree-level scattering amplitudes in N = 4 SYM are Yangian invariant: Superconformal + dual superconformal = Yangian IDrummond, Henn, Plefkal (Drummond, Henn, Korchemsky, Sokatchev)

- Yangian invariance is broken at loop level
- The all-loop planar integrand can be expressed using the Grassmannian integral formula [Arkani-Hamed et al]
- Grassmannian integral formula is Yangian invariant and fixed by symmetry [Drummond, Ferro]

Scattering amplitudes in $\mathcal{N} = 4$ SYM

Grassmannian integral formula

$$\mathcal{G}_{n,k} = \int \frac{d^{k \times n} C}{Vol[GL(k)]} \frac{1}{(1...k)(2...k+1)\cdots(n...n+k-1)} \delta^{4k|4k} (C \cdot \mathcal{W})$$

- n number of particles and k MHV degree
- $(p \dots p + k 1)$ minor of the $n \times k$ matrix C
- Twistor variables \mathcal{W}_i^a with i = 1, ..., n and a = 1, ..., 8
- Grassmannian integral formula has interpretation in terms of on-shell diagrams

On-shell diagrams

► All on-shell diagrams can obtained from gluing elementary building blocks G_{3,1} and G_{3,2}

- MHV degree k = 1,2 and number of legs n = 3
- Gluing procedure

 $\Delta_{ij} = \int \frac{d\alpha}{\alpha} \delta^{4|4}(\mathcal{W}_i + \alpha \mathcal{W}_j)$ and integrating over \mathcal{W} 's

Gluing lowers MHV degree and number of external legs

- Infinite-dimensional Hopf algebra
- Appears as a symmetry of exactly solvable models: spinchains, Hubbard model, 2d IQFT's and planar N = 4 SYM
- Yangian invariance of scattering amplitudes was originally formulated using Drinfeld's 1st realization
- Here RTT-realization (Yang-Baxter)

RTT-realization of $\mathcal{Y}(\mathfrak{gl}(4|4))$

Yang-Baxter equation

 $\mathbf{R}(u-v)(\mathcal{M}(u)\otimes\mathbb{I})(\mathbb{I}\otimes\mathcal{M}(v))=(\mathbb{I}\otimes\mathcal{M}(v))(\mathcal{M}(u)\otimes\mathbb{I})\mathbf{R}(u-v)$

with $\mathbf{R}(u) = u + (-1)^b e^{ab} \otimes e^{ba}$ and $\mathcal{M}(u) = e^{ab} \otimes \mathcal{M}^{ab}(u)$

 Yangian generators as expansion of operator valued 8×8-matrix

$$\mathcal{M}^{ab}(u) = \delta^{ab} + u^{-1} \left(\mathcal{M}^{[1]} \right)^{ab} + u^{-2} \left(\mathcal{M}^{[2]} \right)^{ab} + \dots$$

Yangian invariance of planar diagrams

In the RTT-realisation Yangian invariance of Grassmannian integral formula is expressed as a set of eigenvalue equations Chicherin, Derkachov, Kirschner '14; RF, Kanning, Ko, Staudacher '14;

$$\mathcal{M}^{ab}(u)\mathcal{G}_{n,k} = (u-1)^k u^{n-k} \delta^{ab} \mathcal{G}_{n,k}$$

involving the spin chain monodromy

 $\mathcal{M}(u) = \mathcal{L}_1(u)\mathcal{L}_2(u)\cdots\mathcal{L}_n(u)$ with $\mathcal{L}_i(u) = u + (-1)^b e^{ab} \mathcal{W}_i^b \frac{\partial}{\partial \mathcal{W}_i^b}$

It follows that Yangian generators act diagonally

$$\left(\mathcal{M}^{[i]}\right)^{ab}\mathcal{G}_{n,k}\sim\delta^{ab}\mathcal{G}_{n,k}$$

Yangian invariance of non-planar diagrams

- Concept of on-shell diagrams naturally generalises to non-planar topologies [Gekhtman,Shapiro,Vainshtein '12] [Franco,Galloni,Mariotti '13] [Franco,Galloni,Penante,Wen '15]
- Relevant for the study of non-planar contributions to amplitudes [Arkani-Hamed,Bourjaily,Cachazo,Postnikov,Trnka '14]

Q: Does Yangian invariance manifest itself in non-planar on shell diagrams?

- A: Yes! [RF, Meidinger (to appear)]
 - Obtained action of the Yangian on color-ordered boundaries of non-planar on-shell diagrams
 - Found that lower levels of the Yangian are broken while higher level invariance may remain intact
 - Introduced transfer matrix to derive further Yangian-type symmetries

Decomposition of non-planar diagrams

• All non-planar diagrams \mathcal{G}_{np} can be cut into a planar one

- Planar diagram G_p has n_p = n_{np} + 2n_{cut} external legs and MHV degree k_p = k_{np} + n_{cut}
- Natural decomposition:

$$\mathcal{G}_{\sf np} = \int_{C,C'} \Delta_{C,C'} \mathcal{G}_{\sf p}$$

• Cut internal edges: $C = \{C_1, \dots, C_{n_{cut}}\}$ and $C' = \{C'_1, \dots, C'_{n_{cut}}\}$

Example of a non-planar diagram

5-point MHV diagram on a cylinder

- Non-planar diagram: $n_{np} = 5$, $k_{np} = 2$
- Planar diagram: $n_p = 7$, $k_p = 3$

Yagian invariance of planar decomposition

• Planar diagram \mathcal{G}_p is Yangian invariant

 $\mathcal{M}_{RB}^{ab}(u)\mathcal{G}_{p} = (u-1)^{k_{p}}u^{n_{p}-k_{p}}\delta^{ab}\mathcal{G}_{p}$

Monodromy can be decomposed as

 $\mathcal{M}_{RB}(u) = \mathcal{M}_{R}(u)\mathcal{M}_{B}(u)$

Here we focus on one boundary *B* Example:

B = (1,2,3,4) and R = (C',5,C) $\mathcal{M}_B(u) = \mathcal{L}_1(u)\mathcal{L}_2(u)\mathcal{L}_3(u)\mathcal{L}_4(u)$ $\mathcal{M}_R(u) = \mathcal{L}_{C'}(u)\mathcal{L}_5(u)\mathcal{L}_C(u)$

Yagian invariance of planar decomposition

Inverse of Lax operators is again Lax operator (unitarity)

$$\mathcal{L}_i^{-1}(u) = \frac{1}{u(1-u-\mathbb{C}_i)}\mathcal{L}_i(1-u-\mathbb{C}_i)$$

- Central charge set to zero when acting on on-shell diagrams
- Rewrite Yangian invariance relation as

 $u^{n_{R}}(1-u)^{n_{R}}\mathcal{M}_{B}^{ab}(u)\mathcal{G}_{p}=(u-1)^{k_{p}}u^{n_{p}-k_{p}}\mathcal{M}_{\bar{B}}^{ab}(1-u)\mathcal{G}_{p}$

R
 denotes reversed ordered set R

Symmetries of non-planar diagrams

 Integrate over cut lines to obtain action of monodromy on non-planar on-shell diagram

$$\mathcal{M}_{B}^{ab}(u)\mathcal{G}_{np} = rac{(-1)^{k_{p}}u^{n_{B}-k_{p}}}{(1-u)^{n_{R}-k_{p}}}\int_{C,C'}\Delta_{C,C'}\mathcal{M}_{\bar{R}}^{ab}(1-u)\mathcal{G}_{p}$$

Yangian generators

$$\mathcal{M}_{B}^{ab}(u) = u^{n_{B}}\delta^{ab} + u^{n_{B}-1}\left(\mathcal{M}_{B}^{[1]}\right)^{ab} + \ldots + \left(\mathcal{M}_{B}^{[n_{B}]}\right)^{ab}$$

► Higher level Yangian generators may still annihilate *G*_{np}

$$\left(\mathcal{M}_{B}^{[i]}\right)^{ab}\mathcal{G}_{np}=0 \text{ for } i=k_{p}+1,\ldots,n_{B}$$

$$\Omega = \frac{1}{(12)(23)(34)(41)} \frac{(13)}{(35)(51)}$$

- Cut diagram has $n_B = 4 k_p = 3$
- One level annihilates \mathcal{G}_{np}

$$\left(\mathcal{M}_{B}^{[4]}
ight)^{ab}\mathcal{G}_{np}=0$$

with
$$\left(\mathcal{M}_{B}^{[4]}\right)^{ab} = (-1)^{ab+c+d+e} (\mathcal{W}_{4}^{a}\partial_{4}^{c})(\mathcal{W}_{3}^{c}\partial_{3}^{d})(\mathcal{W}_{2}^{d}\partial_{2}^{e})(\mathcal{W}_{1}^{e}\partial_{1}^{b})$$

Transfer matrix identities

Further identities can be obtained for the transfer matrix

 $\mathcal{T}_B(u) = \operatorname{str} \mathcal{M}_B(u)$

Consider Yangian invariance condition for cylinder

$$\mathcal{M}_{B}^{ab}(u)\mathcal{G}_{cyl} = \frac{(-1)^{k_{p}}u^{n_{B}-k_{p}}}{(1-u)^{n_{B}-k_{p}}}\int_{C,C'}\Delta_{C,C'}\mathcal{M}_{\bar{R}}^{ab}(1-u)\mathcal{G}_{p}$$

Yields analog of Yangian invariance for transfer matrix

 $u^{k_{cyl}-n_B}\mathcal{T}_B(u)\mathcal{G}_{cyl} = (-1)^{k_{cyl}}(1-u)^{k_{cyl}-n_{B'}}\mathcal{T}_{B'}(u)\mathcal{G}_{cyl}$

Follows after integrating by parts and using "unitarity relation"

$$\mathcal{L}_{C'_i}(u)\mathcal{L}_{C_i}(u)\Delta_{C'_iC_i}=u(u-1)\Delta_{C'_iC_i}$$

Decomposition of non-planar diagrams

► All non-planar diagrams G_{np} can be cut into a cylindrical one

• Decomposition in terms of \mathcal{G}_{cyl} :

$$\mathcal{G}_{np} = \int_{C,C'} \Delta_{C,C'} \mathcal{G}_{cyl}$$

Transfer matrix identities

We obtain action of transfer matrix on a given boundary

$$\mathcal{T}_{B}(u)\mathcal{G}_{np} = rac{(-1)^{k_{p}}u^{n_{B}-k_{p}}}{(1-u)^{n_{R}-k_{p}}}\int_{C,C'}\Delta_{C,C'}\mathcal{T}_{\bar{R}}(1-u)\mathcal{G}_{cyl}$$

Expansion of transfer matrix

$$\mathcal{T}_{B}(u) = u^{n_{B}} + u^{n_{B}-1}\mathcal{T}_{B}^{[1]} + \ldots + \mathcal{T}_{B}^{[n_{B}]}$$

Higher level transfer matrix coefficients annihilate G_{np}

$$\mathcal{T}_B^{[i]}\mathcal{G}_{np}=0$$
 for $i=k_{cyl}+1,\ldots,n_B$

Does not follow from planar cutting as in general k_{cyl} < k_p!

• Special case B' = (5) contains only one element

 $\mathcal{T}_{B'}\mathcal{G}_{cyl}=0=\mathcal{T}_B\mathcal{G}_{cyl}$

LHS is trivially satisfied as central charge vanishes

► RHS yields constraints $\mathcal{T}_B^{[i]}\mathcal{G}_{cyl} = 0$ for i = 2, 3, 4 with

$$\mathcal{T}_{B}^{[i]} = \sum_{j_{1} > \dots > j_{i}} (\mathcal{W}_{j_{1}}^{a_{1}} \partial_{j_{1}}^{a_{2}}) (\mathcal{W}_{j_{2}}^{a_{2}} \partial_{j_{2}}^{a_{3}}) \cdots (\mathcal{W}_{j_{i}}^{a_{i}} \partial_{j_{i}}^{a_{1}})$$

Conclusion

- Identified Yangian-type symmetries in non-planar on-shell diagrams
- While Yangian invariance is broken, some generators may still annihilate non-planar on-shell functions
- Similar statement for coefficients of the transfer matrix

Outlook

- Determine general expression for non-planar on-shell functions
- Investigate how symmetries manifest themselves in non-planar contribution to amplitudes

Thank you!

Drinfeld's 1st realization of $\mathcal{Y}(\mathfrak{sl}(m|n))$

 Infinite tower of Yangian generators is generated by 1st and 2nd level:

$$[J_{\mu}^{(1)}, J_{\nu}^{(1)}] = f_{\mu\nu\rho}J_{\rho}^{(1)}, \qquad [J_{\mu}^{(1)}, J_{\nu}^{(2)}] = f_{\mu\nu\rho}J_{\rho}^{(2)}$$

with Serre relations $(n \neq 2)$ $[J^{(2)}_{\mu}, [J^{(2)}_{\nu}, J^{(1)}_{\lambda}]] + \text{cyclic} = a_{\mu\nu\lambda\delta\gamma\sigma} \{J^{(1)}_{\delta}, J^{(1)}_{\gamma}, J^{(1)}_{\sigma}\}$

Co-product

$$\Delta(J_{\mu}^{(1)}) = J_{\mu}^{(1)} \otimes \mathbb{I} + \mathbb{I} \otimes J_{\mu}^{(1)}$$
$$\Delta(J_{\mu}^{(2)}) = J_{\mu}^{(2)} \otimes \mathbb{I} + \mathbb{I} \otimes J_{\mu}^{(2)} + \frac{1}{2} f_{\mu\nu\rho} J_{\nu}^{(1)} \otimes J_{\rho}^{(1)}$$

Antipode