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First Part of Introduction
“Excursion into finite temperature 4D Y-M”

Based on
D.Diakonov [0906.2456]

* Y-M theory at finite T:

Z= [DA# exp{_él%;ﬁ [fideﬁuFﬁu}g
‘ ‘ |

‘4‘# (f‘: Tj — *4;1“' + 3, Tj B = ?

* Holonomy: 1

L(x) ="Pexp i/dtﬂq{t,x}
0

L(oo) = diag{e?™#1 e2minz  o2™ikn}



Effective potential as a function of {:}

Figure 8. The perturbative potential energy as
function of the Polyakov line for the SU(2) (top)
and SU (3) (bottom) groups. It has minima where
the Polyakov loop is one of the N elements of
the center Zn and is maximal at the “confining”
holonomy.

[Gross, Pisarski, Yaffe],
[Weiss]

Figure 9. Dyon-induced nonperturbative poten-
tial energy as function of the Polyakov line for the
SU(2) (top) and SU(3) (bottom) groups. Con-
trary to the perturbative potential energy, it has
a single and non-degenerate minimum at the con-
fining holonomy corresponding to Tr L = 0.

[Diakonov, Gromov,
Slizovskiy, Petrov]
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potential energy in SU(2)

Figure 14. Potential energy of the pure SU(2)
YM theory as function of 3TrL at zero (lower
curve), critical (middle curve) and high (upper
curve) temperatures. At the critical temperature
the curve is flat exhibiting the second order phase
transition.



* Main contribution comes from the dilute gas of KvBLL calorons —
neutral clusters of N dyons.

[D.Diakonov, N.Gromov, S.Slizovskiy, V.Petrov]

Dyon-induced potential: F=-TlogZz

where:
r 1
Z =exp(An fVN (1vs..vn)W)

Vm = Hm+1 — fm, VN = 1+ 1 — HN

Minimum corresponds to: M= = =UN =
N . ) ot N — 1%
0 = ¢ FET " diag {1, e F, F L T
A 4 All criteria of confinement in this limit are satisfied!
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Zero trace of holonomy

Figure 12. Action density inside the SU(3)

KvBLL instanton as function of time and one ¢ |_| near pOte ntial
space coordinate, for large (fop), intermediate
(middle) and small (bottom) separations between * NO mass | essm Od es

the three constituent dyons.

* efcC



Second Part of Introduction
“Resurgence in 2D PCF sigma-model”

Classical action of SU(N) Principle Chiral Field model:
L

1 7 o
S = 59 [ dt.[d.r tr 0,U0*UT
— oo 0

Twisted boundary conditions: | |
Ut,x + L) = EHLUICL I)E_E‘L

At I — oc and periodic b.c. the quantum theory has

T
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23,
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, sin(
- N-1 particles  mj =m—=
A sin( )
- m=mj =—e Nd
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labeled by fundamental reps of SU(N)
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Asymptotic freedom:  ¢?(L) —— 0
L—0



Reduction to QM:
Asymptotic series for energy:

Not a Borel summable:
2

BE;i(t) = TI1_ 2

Ambiguity :

Resurgence at the twist

[Cherman, Dorigoni, Dunne, Unsal]

Unitons - saddle points consisting of fractons:

CDS( Eﬁ) . £ = 2x/(NL)

" 5 13 3
— 1 _ = ,
85) n! (1 5 32 +O(n )) .

1 fractons, respectively.

i _E

Y _ A6z .:Fi?i —_ntx = Re Fi?i +il Fi?:' _
&]4_—5@ =RES@£?;:|:3'322 e a°N [ ]9 0+ E‘[ ] { m[ ]a 0+
7 o (2 -
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Cancelation of ambiguities and confined mass-gap:

o [16 &= 1 o r
A=(F_-F,)~ H ﬁﬁ FN HE Suniton /N _"L{J'&L:'M) !

Figure 9. Action densities for the large SU(3) and SU(4) unitons. They split to three and four

Ambiguity from fraction-antifracton:



ILast Section of Introduction
“What do I want?”’

* | want to analyze this twisted PCF using Integrability and check is there something special about
that particular twist at any coupling constant.



Twisted TBA

* Vacuum energy: —H(L)R)

. logtr(e
Eg:_Rh_IEC 0 tl(fR

* Using usual logic of TBA we go to the mirror model:

TI.(E—H{L]IR) _ Tr(c—ﬁf[R}L )



Twisted TBA

* Vacuum energy: (e—H(L)R
gY Fd = lim log tr(e )
R—oo R
* Using usual logic of TBA we go to the mirror model: — Twist as a defect-line operator

TI'(E_H{L)R) — TT(E_H[R)L(_-"HI})

* In the mirror model the twist €'® acts on one —particle states as ¢2®1-18i® 1P _ diaglei® ¢i92 10N



Twisted TBA

Vacuum energy: g _ logtr(e  HDR)
Ey =— Rhm 7
—r OC

Using usual logic of TBA we go to the mirror model: — Twist as a defect-line operator

TI'(E L)R) TI'( —H(R)L .ltI>)
1D

In the mirror model the twist ¢

TBA equations (a € [1,.... N — 1]):

acts on one —particle states as ¢/®®1-19i® - I _ diqgeetft o192 1ON]

a,0 sin ‘\. 2m 1 a’,0),(a,0) ra’ ﬂ (a’,s"),(a,0)
=mlL 1 Kl log(1+Y — ),
A= i = N Cyao T Z *log(1 4+ )+ ,; K *log(l+ ooy ),
F r r 7 r ].
a,s=£0 sa,s (a".0).(a.s) a0 ~(a’,s"),(a,s)
: = —logY K log(1+Y K g —
[ og —- Z + log(1 + )+ Z * log(1 4+ Y‘f“"')
al 5’—%‘0,(1;
where chemical potentials defined as: As usual:
a,l —a, 8
) a0 _ P a,s#0 _ p_
Ha,s = _?I'S(C.Da-f-l - ﬁéa): s > 0 Y PaD Y pa._s?
fa,s = 1|8|(at+1 — @a), s<0 f g (u) = / v f(u — v)g(v)
fia.s =0, s=10

—00

K~ 3, log S(u—v).




e TBA can be rewritten as a Y-system:

}/a-l._s}faTs o 1+ 1/}fﬂ!s+1 1+ ]-/Y_a.s—l : : NS0T
Ya.s—l—l}fa,s—l 1+ 1/"}/114_1_.3 1+ 1/}/_&_1.5

* The asymptotic solution at large L :

Y Xﬂ-_s-l-l(e_i(b}-’(ﬂ.s—l(E’_i@)
a,s —

Xﬂ-l-l,S(E_iq‘}f’(a—l,s(e_i@)

- T —idy —L
}a.[] = Xa.l(E? )Xa.l(e ' )E pu(u}: s=0
i Xa.|s+1(€"")Xa 5] -1(€") sin 4
Yoo= =+ = il = s<0 Pa(l) = m S’; X cosh (“J,.\_—’TQ
¥a+1.|s|(e }-}(ﬂ—l._|s|(B j N )

* In order to reproduce the right chemical potentials in TBA we need a special epsilon prescription:

eTi® diag{giaqueﬂ ? E,:I:aqazee-z? E,:I:lqh'arEE:«.'}

where 0 > €; > €5 > ... > €), —— - fixed and ey — 0.

€i 11



e Let’s see how this prescription works at large L :

Ha,s = —log(Ya,s) — ) min(s, s") log(1 + )+

g8'=1

= i . ! ' 1 = . ! 1 f p—mL
+ Z (2min(s,s") — s o) log(1 + ]/Fa__s"} — Z min(s, s’ )log(1 + Virro )+ O(e” ™)

g'=1

}/a—l._.s’

='=1
e Exponentiating r.h.s we get:

Er.h.s. — llI'ﬂ

. : Ty f . 5
()(a—lm—l—l(ﬂﬂb) Xa,p(glq)z Xa-l-ld’-"-l-l(ﬂyb))

Xa—l-.;ﬂ(‘fidj) Xaep+1(€i@)2 Xa—kl,p(“—?@)

* Epsilon prescription leads to

lim X®Ptl _ —ig1,—ig2 —ida

P~ Xa,p

* And finally:



Exact solution for Vacuum at twist ¢

* The characters of () in all fundamental representations are zero: xa.0(2) = 0. What gives Y, = 0.

« Zero-characters decouple Y-system in two independent wings, as e~ "% does in the large L limit.
It means that the large L ansatz turns out to be exact solution atany L :

N—-1 ¢

| 1
EG (L) = lim —— ) /f-mpa(e) log(1 4+ o(e;)) = 0
a=1 'CJ-C

€;—0 bl



Exact solution for Vacuum at twist ¢

* The characters of () in all fundamental representations are zero: xa.0(2) = 0. What gives Y, = 0.

« Zero-characters decouple Y-system in two independent wings, as e~ "% does in the large L limit.
It means that the large L ansatz turns out to be exact solution atany L :

N—-1 °°
| 1
EG (L) = lim —— ) / dfpa(6)1og(1 + o(e;)) = 0
a=1 'DC

R GO:.:



Exact solution for Vacuum at twist ¢

* The characters of () in all fundamental representations are zero: xa.0(2) = 0. What gives Y, = 0.

« Zero-characters decouple Y-system in two independent wings, as e~ "% does in the large L limit.
It means that the large L ansatz turns out to be exact solution atany L :

Egract(L)) = lim —— Z /dﬁpa log(1 + o(e;)) =0

Comparing with week coupling (small )

oo 1 — 1 i 2
* One loop Casimir energy at arbitrary twist:  E' 3% = = —— ) — (\t-r(e ) - 1) [Cherman, Dorigoni, Unsal]
i n=1
131 (N2 — 1)
l1—loop T N2 _
* In the periodic case it gives well known result: Eperiodic = ——7 ) SV 1) = T

L
. . . 1—loop 1 > 1 2 - 1
* At twist (2 it gives zero: Eq = ——F Z —(N)* — Z — | =



An interesting open question:
What is the symmetry behind this cancelation?

From the Integrability point of view this zero is very similar to the vanishing of anomalous
dimension of BPS operators in the undeformed limit of N=4 SYM. In this case it has very simple
physical explanation — undeformed case has unbroken supersymmetry. But in our case there is no
SUSY which could make such miracle cancelation...



ABA. Any twist, any excited state.

e Y-system can be rewritten as Hirota (V, s = ;;1;_1* ):

TJ:STCZS — a—l—l.STa—l,s + Ta.s—l—lTa,s—l

where T-functions are defined up to gauge-transformation: T.. — xS et ma=slp = flM(9) = F(6+n)).

* We can choose either T, ~ e tr=l®) or T, _; ~ e~LP=(¥) What leads to two natural gauges - left(L) and right(R):

Té-@l <1 ; Téﬁ] <1 ; ch‘?jo ~1 ; Tiﬁ;o ~ 1

L

1c_:a§rw—1
* The large L limit corresponds to the spin-chain limit and 77, can be found from generating function:
= THO+ 5= 1) L,

R 1 1
WE = S— . — — =
(1 —e*on X ﬁrj (B)etP) (1—e 11X &(9)6@‘) ; w(f — 1%)

and generating function for Ti_, differs by substitution @i — —a;
Ji\'\.H.j 7

[IN/2=k—=1] ) [N/2—k+2] ! : ,
Q.E;‘ ) L, o 1 2 -1\.7 ECR) (Qj = H (9 - u'_EiJl)) 1 QE\L) (9) = (9 - t'!;h)) 1 (’I‘: = 11 e :j\"l - 1)
[N/2—k+1] (W) [N/2—Fk] Bt Ak =1 1

Tk

L)

-

Q!
(

,1!'
(W) _
Xy = o

k_

.
I

e Pt

) ()

N
p0)=T[e—0). Q" @)=1.
Jj=1



* Cancelling poles T at w—%(4 —k+1)we get twisted auxiliary Bethe equations:

_Ell:n:m_-_

and similar for the left wing.

* Asymptotic form of the middle-node Y-functions reads as:

}Tu_[]ll!g]l oo Lp,

and it leads to the massive Bethe equation v; o(; +i

1=

— k) _ Qr 5w — 11 Qf J(w+ i) (w — %]‘
DH lw+ i., {? (w — 1 {}i_i[ur—i— %j
]-'rz.lTjd__l ;;.[‘"E:—fi+1] A= —a+1] 1
Tat1.0Ta—1,0 pl-7 +e-pl-F+a+1l ({SI—%HH}}%)
A)=0:
€—imL sinhﬂTTE'j Qﬁ—l(ﬂj . %JQi’—l(Hj . %j
xeppS*(0;) QN _1(6; +3)Q% _1(6; + 3)



Finite L.

* General solution of Hirota system can be represented through the Wronskian determinants:

T{E-fj (6) = -iMDet(cj ) 1< k<N [Krichever, Lipan, Wiegmann, Zabrodin]
‘ 5 R [Zabrodin]
| ei“**‘fisf!g_k)q_j[SJraHJr%_zk- itk <a [Zabrodin]
where ¢ = : N
3.k Ez‘riij{—s;’z—k]qj_s'i'“"'l"‘%_Ek] ifk>a,

and similar for the left wing.

* q; (resp g;) are analvtic on the lower (resp upper) half plane. In addition g; — g, decreases at
large @ as e~ L cosh(2m/NO) |t gllows us to introduce the following parametrization:

g; if Im(@) >0
g; ifIm(f) <0

—g;) is areal jump density and P;’s are polynomials.

P; —I—'I'C:i:sz{

— 1 . .
where C = 5-— is Cauchy kernel, f; = i(q;



SU(2) case. Vacuum and particle in the rest.

Some states like vacuum or one particle in the rest ©, have extra symmetry:  TL_ (6) = (-1)NTH_, .(—6)

@d,—S8 .

where N denotes number of Bethe roots.

General twist in SU(2) case:

e'? = diag[e'?, e™?]
Vacuum :
Pr=1 P =1
One particle in the rest :
PL=1 P) =0+c c=—5nms
Gauge freedom allows to set g; = 1and then one can notice that T, | = —i(@ — ¢2) = —f> and write:

TR — je=ils+Dé ((9[5“] + eV el Tl'i__*’f}l)_igftwl}r:; ((gj—s—l] LN 4acl1 Tfi}lj |

which holds for [Im(f)| < s+ 1



Final equation:

Aea 140
T{R}' _ —mL cosh(m#) (_1))& |T[E E{TlRl} *
bl P2 A2y )

0 { 0 }‘

where {fHu)= f(-u), f** =exp(logf*(1/(2cosh(wf)))) and

Tl{,ij'iﬁ} if Im(#) €] — %%[

T;'f;?'(ﬁ — 1) ifIm(f) > 1
To(0) = { T}
Ty (6+%) if Im(f) < —3.

We can express all T’s through T ; and equation ($¢) has a form of T{*_| = F(T{*_,)

F is contraction mapping and the equation can be solved iteratively.



Numerics

“vacuum

Vacuuin

FIG. 1. Energies of vacuum and ®¢ as functions of twist at

L = 1. Dashed gray lines are the large L expression of energy L = 1/10. Deviation from the dashed gray lines shows the
as a function of twist. In all numerical calculations we put importance of finite-size effects.
m = 1.

FIG. 2. Energies of vacuum and ©g as functions of twist at



Does one-particle in the rest give us a mass-gapr

&

N AT
| log L|
would expect the confined form of the mass-gap:

* Making reduction to QM at small ¢*(L)

Am Lol
~ — ) oY,
A
* However for the one particle in the rest
: : 2 1
we see ideal perturbative mass-gap: A~< ~_——
P gap L  LloglL

Open guestion: Is there contradiction and who is mass-gap?

Potential answer: Probably in the twisted case the mass gap

realizes by another state.

and using WKB approach or resurgence one

-
[=p}

%
XX

L

10-3 102 10-1 1

FIG. 3. Energy of the state ©g at twist ¢ = w/2. Crosses
are numeric results and the dashed gray line is a linear fit. In
spite of the limited numeric precision. it is manifest that at
small L, ﬁ scales linearly with log L.



Outlook

We constructed finite system of equations for (generally)twisted PCF.
At the special twist €2 large L solution turns out to be exact. It gives exactly zero vacuum energy.

In case of SU(2) energies of vacuum and one particle in the rest was calculated numerically for
arbitrary twist and different L.

Wish list

Full analysis of all states in the twisted PCF. Clarifying the nature of mass-gap.
What is the mechanism behind vanishing vacuum energy at the twist {2 ?
Generalization to other sigma-models. What happens at twist {2 in supersymmetric theories?

Build connection between integrability and resurgence.



Thank youl



